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Abstract 
For constructing compact fuzzy rule-based systems 

with high classification performance, we have already 
formulated a rule selection problem. Our rule selection 
problem has two objectives: to minimize the number of 
selected fuzzy if-then rules (i.e., to minimize the fuzzy 
rule base) and to maximize the number of correctly 
classified patterns (i.e., to maximize the classification 
performance). In this paper, we apply single-objective and 
multi-objective genetic local search algorithms to our rule 
selection problem. High performance of those hybrid 
algorithms is demonstrated by computer simulations on 
multi-dimensional pattem classification problems in 
comparison with genetic algorithms in our former studies. 
It is shown in computer simulations that local search 
procedures can improve the ability of genetic algorithms 
to search for a compact rule set with high classification 
performance. 

1. Introduction 

Genetic algorithms [l] have been applied to various 
optimization problems [2,3]. The main advantage of 
genetic algorithms over hill-climbing techniques is their 
global search ability. That is, genetic algorithms are not 
usually stuck into local optima. The suitability for parallel 
implementation is another advantage of genetic algorithms. 
While many successful results have been reported for 
various application areas in the literature, several studies 
[4-61 pointed out that the performance of genetic 
algorithms was inferior to other search algorithms such as 
simulated annealing and taboo search for some 
combinatorial optimization problems. This is because 
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genetic algorithms do not have the local search ability. 
Recent studies [7-101 suggested that the performance of 
genetic algorithms could be improved by combining local 
search procedures. 

Genetic algorithms have been employed for generating 
fuzzy if-then rules and tuning membership functions (for 
example, see [ 1 1-19]). We proposed a GA-based rule 
selection method [20,21] where a small number of fuzzy 
if-then rules were selected fi-om a large number of 
candidate rules for pattern classification problems. 
Genetic algorithms were used for constructing compact 
i k z y  rule-based systems with high classification 
performance. The GA-based method in [20,21] was 
extended to a multi-objective genetic algorithm for 
finding non-dominated solutions of the rule selection 
problem with two objectives: to minimize the number of 
selected rules and to maximize the number of correctly 
classified pattems [22,23]. 

The aim of this paper is to show how the performance 
of our single-objective and two-objective genetic 
algorithms can be improved by combining local search 
procedures. In this paper, we first describe a single- 
objective genetic algorithm for the rule selection. Next we 
show a simple heuristic procedure and an iterative local 
search procedure, which are combined with the genetic 
algorithm to construct a genetic local search algorithm. 
Then we propose a modified version of the local search 
procedure for decreasing the computation time of our 
genetic local search algorithm. Finally our genetic local 
search algorithm is extended to the case of the two- 
objective rule selection problem. High performance of OUT 
single-objective and two-objective hybrid algorithms is 
illustrated by computer simulations on real-world pattem 
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classification problems (i.e., iris data with four attributes, 
and wine data with 13 attributes). 

2. GA-based fuzzy rule selection 

2.1. Pattern classification problem 
Let us consider a c-class pattern classification problem 

in an n-dimensional pattem space [0,1]”. We assume that 
m training patterns x p  = ( x p l ,  ..., xpn) , p = 1,2 ,..., m , are 
given from the c classes ( c < < m ) .  In computer 
simulations of this paper, attribute values are normalized 
into the unit interval [0,1]. 

2.2. Fuzzy if-then rules for pattern classification 

following type for our pattern classification problem: 
In this paper, we use fuzzy if-then rules of the 

Rule R j :  If xpl  is AJ and ... and xpn is Ajn 
then Class C j  with CF = CFj , (1) 

where Rj is the label of the j-th rule, Aj1,...,Ajn are 
antecedent fuzzy sets, C j  is the consequent class, and 
CFj is the grade of certainty. Membership functions of 
the antecedent fuzzy sets are to be specified by domain 
experts, and their specifications depend on characteristic 
features of each pattem classification problem. In 
computer simulations, we use three linguistic values and 
“don ’t care” in Figure 1 as the antecedent fuzzy sets. 

I) f1.b, !I]-,, 

don’t care s 
0. 0. 

2 
0.0 0.5 1.0 0.0 0.5 1 .o 

Figure 1. Antecedent fuzzy sets. 
(S: small, M: medium, and L: large) 

The consequent class C j  and the grade of certainty 
CFJ of each fuzzy if-then rule in (1) are determined by 
training patterns in the fuzzy subspace specified by the 
antecedent fuzzy sets A j l ,  ..., Ajn (see [20-231). 

Let us denote a set of fuzzy if-then rules by S. The rule 
set S can be also viewed as a fuzzy rule base and a fuzzy 
rule-based classification system. When a new pattern 
x p  = ( x p i ,  ..., x p n )  is presented to the rule set S, x p  is 
classified by a single winner rule, which is defined as 
follows [20-231: 

p-.(x ).U‘: = max{p,(xp) .CF, 1 R, E S } ,  
J p  J 

where 

P j  ( x p  1 = P ~ I  ( x p l )  P J ~  ( x p 2  1 ..** iujn(xpn1. (3 ) 

2.3. Rule selection problem 
For constructing a compact fuzzy rule-based system 

with high classification performance, the following rule 
selection problem was formulated [20-231: 

Maximize NCP(S) and minimize 1 S I , (4) 

where NCP(S) is the number of correctly classified 
patterns by the rule set S, and I S I is the number of fuzzy 
if-then rules in S. The performance of the rule set S and its 
compactness are measured by NCP(S) and / S I ,  
respectively, in the rule selection problem. 

2.4. Genetic algorithm for the rule selection 
The two objectives in our rule selection problem were 

combined using non-negative weights WNcp and W, into 
the following scalar fitness function in the single- 
objective genetic algorithm in our former work [20,21]: 

$tness(S) = W ~ c p  . NCP(S) - Ws- I S I . ( 5 )  

Let us assume that r fuzzy if-then rules are given as 
candidate rules for our rule selection problem. A subset S 
of those candidate rules is represented by a bit string as 
S = ~ 1 ~ 2 . ~ 3  ... s, where s j  = 1 means that thej-th candidate 
rule is included in the rule set S, and s j  = 0 means that 
the j-th candidate rule is not included. In the genetic 
algorithm, first a nimber of strings are randomly 
generated as an initial population. Then the population 
update is iterated using genetic operations such as 
selection, crossover, mutation, and elitist strategy. In 
computer simulations, we used the roulette wheel 
selection with the linear scaling, the uniform crossover, 
and the standard bit mutation. 

2.5. Computer simulations 
We applied our GA -based rule selection method to the 

well-known iris data. The iris data set is a four- 
dimensional three-class pattern classification problem 
with 150 samples. Bec<ause we have four antecedent fuzzy 
sets in Figure 1 for each attribute, the total number of 
possible combinations of antecedent fuzzy sets is 
44 = 256. Using thost: combinations, we generated 222 
fuzzy if-then rules as candidate rules. The other 34 fuzzy 
if-then rules were not generated because the consequent 
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class of each of those rules could not be uniquely 
specified. The genetic algorithm with the following 
parameter specifications was employed for selecting a 
small number of fuzzy if-then rules. 

Population size: 20, 
Crossover probability: 1 .O, 
Mutation probability: 0.1 for the mutation from 1 to 0, 

Weights in the fitness function: Wj,~cp = 10, W, = 1, 
Stopping condition: Evaluation of 20,000 rule sets. 

0.001 for the mutation from 0 to 1, 

The genetic algorithm selected four fuzzy if-then rules 
that can correctly classify 146 patterns (97.3% of the 
given 150 patterns). The mutation probability was biased 
for efficiently decreasing the number of fuzzy if-then rules. 
When the mutation probability was not biased, good 
results were not obtained. For example, the genetic 
algorithm selected 81 fuzzy if-then rules when we 
specified the mutation probability as 0.0 1. 

3. Genetic local search for the rule selection 

3.1. Simple heuristic procedure 
In this subsection, we show that the performance of 

the genetic algorithm can be improved by combining a 
simple heuristic procedure. Because each pattern is 
classified by a single winner rule in a rule set S, some 
fuzzy if-then rules in S have no contribution to the 
classification (i.e., they classify no patterns). Those fuzzy 
if-then rules can be removed from the rule set S with no 
deterioration of the classification performance. A simple 
heuristic procedure is to remove those fuzzy if-then rules 
from each rule set (i.e., fiom each string). 

The genetic algorithm with the heuristic procedure 
selected four fuzzy if-then rules that can correctly classify 
146 patterns (97.3% of the given 150 patterns). While the 
final result was not improved, the heuristic procedure 
accelerated the evolution by the genetic algorithm. In 
Figure 2, we show the number of fuzzy if-then rules 
included in the best string at each generation in the early 
stage of the evolution by each algorithm. From this figure, 
we can see that the heuristic procedure had a large effect 
on the decrease of the number of fuzzy if-then rules. 
Because the evaluation of compact rule sets does not 
require long computation time, the heuristic procedure can 
decrease not only the number of fuzzy if-then rules but 

also computation time. For example, computation time 
required for 50 generations (i.e., 1000 evaluations of rule 
sets) was 26.9 (sec.) with the heuristic procedure while it 
was 58.3 (sec.) for the genetic algorithm without the 
heuristic procedure. 

k? 120 r 

-0- CiA with the heuristic procedure g 100 
s 

0 

E n  
L ”  

0 10 20 30 40 50 
Generations 

Figure 2. The number of fuzzy if-then rules 
included in the best string at each generation. 

3.2. Genetic local search algorithm 
The above heuristic procedure is a special kind of local 

search. Formally, a local search procedure to maximize 
the fitness function Jitness(S) can be written as follows: 

Step 1 :Specify an initial solution S. 
Step 2:Examine the fitness value of a randomly selected 

neighborhood solution S‘ of the current solution S. 
Step 3:If Jitness(S’) > Jifness(S), then move to the 

neighborhood solution S’ (i.e., replace the current 
solution S with S‘ ) and return to Step 2.  

Step 4:If all the neighborhood solutions of S have already 
been examined, then stop the local search procedure. 
Otherwise return to Step 2 to examine another 
neighborhood solution. 

This local search procedure is combined with the 
genetic algorithm. In our genetic local search algorithm, 
the local search procedure is applied to each string in each 
population after the above heuristic procedure. 
Neighborhood solutions of the current solution S are 
generated by changing the value of a single bit of S. This 
means that the Hamming distance between the current 
solution S and its neighbors is 1. For example, 
neighborhood solutions of “001 1” are “101 l”, “01 1 l”, 
“OOOl”, and “0010”. 

Our genetic local search algorithm with the same 
parameter specifications as in Subsection 3.1 was applied 
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to the iris data. This means that the computation load of 
the genetic local search algorithm was the same as the 
genetic algorithm, Seven rules with a 97.3% classification 
rate were selected by the genetic local search algorithm. 
This is not as good as the result by the genetic algorithm 
( i .e . ,  four rules with the same classification rate). That is, 
the performance of the genetic algorithm was deteriorated 
by combining the local search procedure. We discuss this 
deterioration of the performance in the next subsection. 

3.3. Modification of the local search procedure 
Because the local search procedure is applied to all 

strings generated by genetic operations, it usually spends 
long computation time in our genetic local search 
algorithm. In the rule selection problem, the number of 
neighborhood solutions is the same as the string length 
(i.e., the number of candidate rules: r). This means that at 
least r neighborhood solutions are examined for each 
string generated by genetic operations in the genetic local 
search algorithm. Thus long computation time is spent by 
the local search procedure. This leads to a small number 
of generation updates because the total number of 
evaluated solutions was used as the stopping condition in 
our computer simulations. In fact, the number of 
generation updates was three in the genetic local search 
algorithm in Subsection 3.2 while it was 1000 in the 
genetic algorithm in Subsection 3.1. The main reason of 
the deterioration of the performance in the genetic local 
search algorithm is that the number of generation updates 
is not enough. The global search ability of the genetic 
algorithm was not utilized well in the genetic local search 
algorithm because the number of generation updates is 
small. 

One strategy to reduce the computation time spent by 
the local search procedure is to restrict the number of 
examined neighborhood solutions [9, lo]. That is, all the 
neighborhood solutions are not examined in our modified 
local search procedure. Let k ( k  5 r ) be the number of 
examined neighborhood solutions for each current 
solution. When a better solution is not found among k 
neighborhood solutions of a current solution, our modified 
local search procedure is terminated. 

Using various values of k, we applied the genetic local 
search algorithm to the iris classification problem. In this 
computer simulation, k neighborhood solutions were 
randomly selected. Simulation results for training patterns 

are summarized in Table 1. In Table 1, k = 0 means no 
local search procedure (i.e. , the genetic algorithm with 
only the heuristic procedure). On the other hand, k = 222 
(i.e., k = r )  means no modification of the local search. 
From this table, we can see that the number of generation 
updates was increased by using small values for k. 
Because the rule selection problem for the iris data is not 
difficult, the advantage of the genetic local search over the 
genetic algorithm is not clear in Table 1. The advantage 
will be clearly shown in computer simulations for the two- 
objective rule selection in the next section. 

Our genetic local search algorithm was also applied to 
wine data (available from UC b i n e  database). The wine 
data set is a three-class pattern classification problem with 
13 continuous attributes. When we use four antecedent 
fuzzy sets in Figure 1 for each of the 13 attributes, the 
total number of possible combinations of the antecedent 
fuzzy sets is 413 = 6.7 x lo7 . Because it is impossible to 
use such a large number of combinations for generating 
fuzzy if-then rules, we only generated f k z y  if-then rules 
with at least eleven “don’t care” attributes in the 
antecedent part. That is, each of the generated fuzzy if- 
then rules has only one or two antecedent conditions. In 
this manner, 74 1 fuzzy if-then rules were generated. 

Simulation results for training patterns of wine data 
are summarized in Table 2. From this table, we can see 
the performance of the genetic algorithm (i.e., the result 
with k =0)  was improved by combining the local search 
procedure (see the result with k = 5) .  

Table 1. Simulation results by the genetic local 
search algorithm for the iris data. 

The value of k 
The number of rules 

/CPU time (min.) 1 7.6 1 7.1 1 7667 1 9;1 1 Generation updates 1000 127 

Table 2. Simulation results by the genetic local 
search algorithm fix the wine data. 

The value of k 
The number of rules 
Classification rate 
CPU time (min.) 
Generation uadates 
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4. Extension to the two-objective rule selection 

4.1. Two-objective rule selection problem 
In the previous sections, our rule selection problem 

was handled by combining its two objectives into a single 
scalar fitness function. In this section, our rule selection 
problem is handled as a two-objective optimization 
problem. That is, our aim is to find all the non-dominated 
solutions of the rule selection problem. 

4.2. Two-objective genetic algorithm 
In our former work [22,23], we applied a two- 

objective genetic algorithm to the rule selection problem 
for finding its non-dominated solutions. Population update 
in our two-objective genetic algorithm is illustrated in 
Figure 3. Main differences between our single-objective 
and two-objective genetic algorithms are as follows: 
(1) The weight values in the fitness function are not 

constant in our two-objective genetic algorithm. They 
are randomly specified whenever a pair of parent 
strings are selected for the crossover operation. 

(2) A tentative set of non-dominated solutions is 
separately stored ftom the current population in our 
two-objective genetic algorithm (see Figure 3). 

(3) Multiple non-dominated solutions are used as elite 
solutions in our two-objective genetic algorithm (see 
Figure 3). 

Current Next 
population population 

Non-dominated Non-dominated 
solutions solutions 

Figure 3. Generation update in the two- 
objective genetic algorithm. 

4.3. Two-objective genetic local search 
The performance of our two-objective genetic 

algorithm can be also improved by employing the simple 

heuristic procedure and the modified local search 
procedure. The local search for each string was performed 
to maximize the fitness function in (5) with the weight 
values used in the selection procedure of its parents. 
Because the weight values are randomly specified 
whenever a pair of parent strings are selected, each sting 
has its own local search direction. Various local search 
directions are necessary for obtaining non-dominated 
solutions with large variety [24]. 

4.4. Computer simulations 
Our two-objective genetic algorithm and genetic local 

search algorithm were applied to the wine data. In 
computer simulations, the number of elite solutions (see 
Figure 3) was specified as 3. The value of k in the 
modified local search procedure was specified as k = 5. 
Non-dominated solutions obtained by each algorithm are 
summarized in Figure 4 and Table 3. From the simulation 
results in Figure 4 and Table 3, we can see that the 
heuristic procedure and the local search procedure 
improved the search ability of the genetic algorithm. That 
is, compact rule sets with higher classification rates were 
obtained by the genetic algorithm with the heuristic 
procedure and the genetic local search algorithm. The 
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Figure 4. Nondominated solutions obtained by 
each algorithm for the wine data. 

Table 3. Classification rates of obtained rule 
sets by each algorithm for the  wine data. 
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CPU time of each trial (i.e., 1000 generations of the 
genetic algorithm) in Table 3 was about 25-40 minutes on 
the same workstation used to obtain the results of Table 2. 

5. Conclusion 

In this paper, we demonstrated that the performance of 
the GA-based rule selection methods was significantly 
improved by the simple heuristic procedure and the local 
search procedure. These two procedures compensate the 
lack of the local search ability of genetic algorithms. Thus 
our hybrid algorithms have the local search ability as well 
as the global search ability. By computer simulations, we 
showed that a small number of fuzzy if-then rules with 
high classification performance were selected by our 
hybrid algorithms. The classification performance can be 
improved further by tuning the grade of certainty of each 
fuzzy if-then rule (see [25]). Because a small number of 
fuzzy if-then rules with linguistic interpretation are 
selected, our rule selection methods can be also viewed as 
a promising knowledge acquisition tool. 
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