
Multi-Objective Genetic Local Search for Minimizing the Number of Fuzzy Rules
for Pattern Classification Problems

Hisao Ishibuchi
Department of Industrial Engineering

Osaka Prefecture University
Sakai, Osaka 599-853 1, Japan

hisaoi@ie.osakafu-u.ac.jp

Abstract
For constructing compact fuzzy rule-based systems

with high classification performance, we have already
formulated a rule selection problem. Our rule selection
problem has two objectives: to minimize the number of
selected fuzzy if-then rules (i.e., to minimize the fuzzy
rule base) and to maximize the number of correctly
classified patterns (i.e., to maximize the classification
performance). In this paper, we apply single-objective and
multi-objective genetic local search algorithms to our rule
selection problem. High performance of those hybrid
algorithms is demonstrated by computer simulations on
multi-dimensional pattem classification problems in
comparison with genetic algorithms in our former studies.
It is shown in computer simulations that local search
procedures can improve the ability of genetic algorithms
to search for a compact rule set with high classification
performance.

1. Introduction

Genetic algorithms [l] have been applied to various
optimization problems [2,3]. The main advantage of
genetic algorithms over hill-climbing techniques is their
global search ability. That is, genetic algorithms are not
usually stuck into local optima. The suitability for parallel
implementation is another advantage of genetic algorithms.
While many successful results have been reported for
various application areas in the literature, several studies
[4-61 pointed out that the performance of genetic
algorithms was inferior to other search algorithms such as
simulated annealing and taboo search for some
combinatorial optimization problems. This is because

0-7803-4863-x/98 $10.00@1998 EEE

Tadahiko Murata
Department of Industrial & Systems Engineering

Ashikaga Institute of Technology
Ashikaga, Tochigi 326-8558, Japan,

murata@genlab.ashitech.ac.jp

genetic algorithms do not have the local search ability.
Recent studies [7-101 suggested that the performance of
genetic algorithms could be improved by combining local
search procedures.

Genetic algorithms have been employed for generating
fuzzy if-then rules and tuning membership functions (for
example, see [1 1-19]). We proposed a GA-based rule
selection method [20,21] where a small number of fuzzy
if-then rules were selected fi-om a large number of
candidate rules for pattern classification problems.
Genetic algorithms were used for constructing compact
i k z y rule-based systems with high classification
performance. The GA-based method in [20,21] was
extended to a multi-objective genetic algorithm for
finding non-dominated solutions of the rule selection
problem with two objectives: to minimize the number of
selected rules and to maximize the number of correctly
classified pattems [22,23].

The aim of this paper is to show how the performance
of our single-objective and two-objective genetic
algorithms can be improved by combining local search
procedures. In this paper, we first describe a single-
objective genetic algorithm for the rule selection. Next we
show a simple heuristic procedure and an iterative local
search procedure, which are combined with the genetic
algorithm to construct a genetic local search algorithm.
Then we propose a modified version of the local search
procedure for decreasing the computation time of our
genetic local search algorithm. Finally our genetic local
search algorithm is extended to the case of the two-
objective rule selection problem. High performance of OUT
single-objective and two-objective hybrid algorithms is
illustrated by computer simulations on real-world pattem

1100

mailto:hisaoi@ie.osakafu-u.ac.jp
mailto:murata@genlab.ashitech.ac.jp

classification problems (i.e., iris data with four attributes,
and wine data with 13 attributes).

2. GA-based fuzzy rule selection

2.1. Pattern classification problem
Let us consider a c-class pattern classification problem

in an n-dimensional pattem space [0,1]”. We assume that
m training patterns x p = (x p l , ..., xpn) , p = 1,2 ,..., m , are
given from the c classes (c < < m) . In computer
simulations of this paper, attribute values are normalized
into the unit interval [0,1].

2.2. Fuzzy if-then rules for pattern classification

following type for our pattern classification problem:
In this paper, we use fuzzy if-then rules of the

Rule R j : If xpl is AJ and ... and xpn is Ajn
then Class C j with CF = CFj , (1)

where Rj is the label of the j-th rule, Aj1,...,Ajn are
antecedent fuzzy sets, C j is the consequent class, and
CFj is the grade of certainty. Membership functions of
the antecedent fuzzy sets are to be specified by domain
experts, and their specifications depend on characteristic
features of each pattem classification problem. In
computer simulations, we use three linguistic values and
“don ’t care” in Figure 1 as the antecedent fuzzy sets.

I) f1.b, !I]-,,

don’t care s
0. 0.

2
0.0 0.5 1.0 0.0 0.5 1 .o

Figure 1. Antecedent fuzzy sets.
(S: small, M: medium, and L: large)

The consequent class C j and the grade of certainty
CFJ of each fuzzy if-then rule in (1) are determined by
training patterns in the fuzzy subspace specified by the
antecedent fuzzy sets A j l , ..., Ajn (see [20-231).

Let us denote a set of fuzzy if-then rules by S. The rule
set S can be also viewed as a fuzzy rule base and a fuzzy
rule-based classification system. When a new pattern
x p = (x p i , ..., x p n) is presented to the rule set S, x p is
classified by a single winner rule, which is defined as
follows [20-231:

p-.(x).U‘: = max{p,(xp) .CF, 1 R, E S } ,
J p J

where

P j (x p 1 = P ~ I (x p l) P J ~ (x p 2 1 ..** iujn(xpn1. (3)

2.3. Rule selection problem
For constructing a compact fuzzy rule-based system

with high classification performance, the following rule
selection problem was formulated [20-231:

Maximize NCP(S) and minimize 1 S I , (4)

where NCP(S) is the number of correctly classified
patterns by the rule set S, and I S I is the number of fuzzy
if-then rules in S. The performance of the rule set S and its
compactness are measured by NCP(S) and / S I ,
respectively, in the rule selection problem.

2.4. Genetic algorithm for the rule selection
The two objectives in our rule selection problem were

combined using non-negative weights WNcp and W, into
the following scalar fitness function in the single-
objective genetic algorithm in our former work [20,21]:

$tness(S) = W ~ c p . NCP(S) - Ws- I S I . (5)

Let us assume that r fuzzy if-then rules are given as
candidate rules for our rule selection problem. A subset S
of those candidate rules is represented by a bit string as
S = ~ 1 ~ 2 . ~ 3 ... s, where s j = 1 means that thej-th candidate
rule is included in the rule set S, and s j = 0 means that
the j-th candidate rule is not included. In the genetic
algorithm, first a nimber of strings are randomly
generated as an initial population. Then the population
update is iterated using genetic operations such as
selection, crossover, mutation, and elitist strategy. In
computer simulations, we used the roulette wheel
selection with the linear scaling, the uniform crossover,
and the standard bit mutation.

2.5. Computer simulations
We applied our GA -based rule selection method to the

well-known iris data. The iris data set is a four-
dimensional three-class pattern classification problem
with 150 samples. Bec<ause we have four antecedent fuzzy
sets in Figure 1 for each attribute, the total number of
possible combinations of antecedent fuzzy sets is
44 = 256. Using thost: combinations, we generated 222
fuzzy if-then rules as candidate rules. The other 34 fuzzy
if-then rules were not generated because the consequent

1101

class of each of those rules could not be uniquely
specified. The genetic algorithm with the following
parameter specifications was employed for selecting a
small number of fuzzy if-then rules.

Population size: 20,
Crossover probability: 1 .O,
Mutation probability: 0.1 for the mutation from 1 to 0,

Weights in the fitness function: Wj,~cp = 10, W, = 1,
Stopping condition: Evaluation of 20,000 rule sets.

0.001 for the mutation from 0 to 1,

The genetic algorithm selected four fuzzy if-then rules
that can correctly classify 146 patterns (97.3% of the
given 150 patterns). The mutation probability was biased
for efficiently decreasing the number of fuzzy if-then rules.
When the mutation probability was not biased, good
results were not obtained. For example, the genetic
algorithm selected 81 fuzzy if-then rules when we
specified the mutation probability as 0.0 1.

3. Genetic local search for the rule selection

3.1. Simple heuristic procedure
In this subsection, we show that the performance of

the genetic algorithm can be improved by combining a
simple heuristic procedure. Because each pattern is
classified by a single winner rule in a rule set S, some
fuzzy if-then rules in S have no contribution to the
classification (i.e., they classify no patterns). Those fuzzy
if-then rules can be removed from the rule set S with no
deterioration of the classification performance. A simple
heuristic procedure is to remove those fuzzy if-then rules
from each rule set (i.e., fiom each string).

The genetic algorithm with the heuristic procedure
selected four fuzzy if-then rules that can correctly classify
146 patterns (97.3% of the given 150 patterns). While the
final result was not improved, the heuristic procedure
accelerated the evolution by the genetic algorithm. In
Figure 2, we show the number of fuzzy if-then rules
included in the best string at each generation in the early
stage of the evolution by each algorithm. From this figure,
we can see that the heuristic procedure had a large effect
on the decrease of the number of fuzzy if-then rules.
Because the evaluation of compact rule sets does not
require long computation time, the heuristic procedure can
decrease not only the number of fuzzy if-then rules but

also computation time. For example, computation time
required for 50 generations (i.e., 1000 evaluations of rule
sets) was 26.9 (sec.) with the heuristic procedure while it
was 58.3 (sec.) for the genetic algorithm without the
heuristic procedure.

k? 120 r

-0- CiA with the heuristic procedure g 100
s

0

E n
L ”

0 10 20 30 40 50
Generations

Figure 2. The number of fuzzy if-then rules
included in the best string at each generation.

3.2. Genetic local search algorithm
The above heuristic procedure is a special kind of local

search. Formally, a local search procedure to maximize
the fitness function Jitness(S) can be written as follows:

Step 1 :Specify an initial solution S.
Step 2:Examine the fitness value of a randomly selected

neighborhood solution S‘ of the current solution S.
Step 3:If Jitness(S’) > Jifness(S), then move to the

neighborhood solution S’ (i.e., replace the current
solution S with S‘) and return to Step 2.

Step 4:If all the neighborhood solutions of S have already
been examined, then stop the local search procedure.
Otherwise return to Step 2 to examine another
neighborhood solution.

This local search procedure is combined with the
genetic algorithm. In our genetic local search algorithm,
the local search procedure is applied to each string in each
population after the above heuristic procedure.
Neighborhood solutions of the current solution S are
generated by changing the value of a single bit of S. This
means that the Hamming distance between the current
solution S and its neighbors is 1. For example,
neighborhood solutions of “001 1” are “101 l”, “01 1 l”,
“OOOl”, and “0010”.

Our genetic local search algorithm with the same
parameter specifications as in Subsection 3.1 was applied

1102

to the iris data. This means that the computation load of
the genetic local search algorithm was the same as the
genetic algorithm, Seven rules with a 97.3% classification
rate were selected by the genetic local search algorithm.
This is not as good as the result by the genetic algorithm
(i .e . , four rules with the same classification rate). That is,
the performance of the genetic algorithm was deteriorated
by combining the local search procedure. We discuss this
deterioration of the performance in the next subsection.

3.3. Modification of the local search procedure
Because the local search procedure is applied to all

strings generated by genetic operations, it usually spends
long computation time in our genetic local search
algorithm. In the rule selection problem, the number of
neighborhood solutions is the same as the string length
(i.e., the number of candidate rules: r). This means that at
least r neighborhood solutions are examined for each
string generated by genetic operations in the genetic local
search algorithm. Thus long computation time is spent by
the local search procedure. This leads to a small number
of generation updates because the total number of
evaluated solutions was used as the stopping condition in
our computer simulations. In fact, the number of
generation updates was three in the genetic local search
algorithm in Subsection 3.2 while it was 1000 in the
genetic algorithm in Subsection 3.1. The main reason of
the deterioration of the performance in the genetic local
search algorithm is that the number of generation updates
is not enough. The global search ability of the genetic
algorithm was not utilized well in the genetic local search
algorithm because the number of generation updates is
small.

One strategy to reduce the computation time spent by
the local search procedure is to restrict the number of
examined neighborhood solutions [9, lo]. That is, all the
neighborhood solutions are not examined in our modified
local search procedure. Let k (k 5 r) be the number of
examined neighborhood solutions for each current
solution. When a better solution is not found among k
neighborhood solutions of a current solution, our modified
local search procedure is terminated.

Using various values of k, we applied the genetic local
search algorithm to the iris classification problem. In this
computer simulation, k neighborhood solutions were
randomly selected. Simulation results for training patterns

are summarized in Table 1. In Table 1, k = 0 means no
local search procedure (i.e. , the genetic algorithm with
only the heuristic procedure). On the other hand, k = 222
(i.e., k = r) means no modification of the local search.
From this table, we can see that the number of generation
updates was increased by using small values for k.
Because the rule selection problem for the iris data is not
difficult, the advantage of the genetic local search over the
genetic algorithm is not clear in Table 1. The advantage
will be clearly shown in computer simulations for the two-
objective rule selection in the next section.

Our genetic local search algorithm was also applied to
wine data (available from UC b i n e database). The wine
data set is a three-class pattern classification problem with
13 continuous attributes. When we use four antecedent
fuzzy sets in Figure 1 for each of the 13 attributes, the
total number of possible combinations of the antecedent
fuzzy sets is 413 = 6.7 x lo7 . Because it is impossible to
use such a large number of combinations for generating
fuzzy if-then rules, we only generated f k z y if-then rules
with at least eleven “don’t care” attributes in the
antecedent part. That is, each of the generated fuzzy if-
then rules has only one or two antecedent conditions. In
this manner, 74 1 fuzzy if-then rules were generated.

Simulation results for training patterns of wine data
are summarized in Table 2. From this table, we can see
the performance of the genetic algorithm (i.e., the result
with k =0) was improved by combining the local search
procedure (see the result with k = 5) .

Table 1. Simulation results by the genetic local
search algorithm for the iris data.

The value of k
The number of rules

/CPU time (min.) 1 7.6 1 7.1 1 7667 1 9;1 1 Generation updates 1000 127

Table 2. Simulation results by the genetic local
search algorithm fix the wine data.

The value of k
The number of rules
Classification rate
CPU time (min.)
Generation uadates

1103

4. Extension to the two-objective rule selection

4.1. Two-objective rule selection problem
In the previous sections, our rule selection problem

was handled by combining its two objectives into a single
scalar fitness function. In this section, our rule selection
problem is handled as a two-objective optimization
problem. That is, our aim is to find all the non-dominated
solutions of the rule selection problem.

4.2. Two-objective genetic algorithm
In our former work [22,23], we applied a two-

objective genetic algorithm to the rule selection problem
for finding its non-dominated solutions. Population update
in our two-objective genetic algorithm is illustrated in
Figure 3. Main differences between our single-objective
and two-objective genetic algorithms are as follows:
(1) The weight values in the fitness function are not

constant in our two-objective genetic algorithm. They
are randomly specified whenever a pair of parent
strings are selected for the crossover operation.

(2) A tentative set of non-dominated solutions is
separately stored ftom the current population in our
two-objective genetic algorithm (see Figure 3).

(3) Multiple non-dominated solutions are used as elite
solutions in our two-objective genetic algorithm (see
Figure 3).

Current Next
population population

Non-dominated Non-dominated
solutions solutions

Figure 3. Generation update in the two-
objective genetic algorithm.

4.3. Two-objective genetic local search
The performance of our two-objective genetic

algorithm can be also improved by employing the simple

heuristic procedure and the modified local search
procedure. The local search for each string was performed
to maximize the fitness function in (5) with the weight
values used in the selection procedure of its parents.
Because the weight values are randomly specified
whenever a pair of parent strings are selected, each sting
has its own local search direction. Various local search
directions are necessary for obtaining non-dominated
solutions with large variety [24].

4.4. Computer simulations
Our two-objective genetic algorithm and genetic local

search algorithm were applied to the wine data. In
computer simulations, the number of elite solutions (see
Figure 3) was specified as 3. The value of k in the
modified local search procedure was specified as k = 5.
Non-dominated solutions obtained by each algorithm are
summarized in Figure 4 and Table 3. From the simulation
results in Figure 4 and Table 3, we can see that the
heuristic procedure and the local search procedure
improved the search ability of the genetic algorithm. That
is, compact rule sets with higher classification rates were
obtained by the genetic algorithm with the heuristic
procedure and the genetic local search algorithm. The

GA 0 GA with heuristic A Genetic Local Search

h

0

e

A

0

e

A

0
-a

A
8

3 4 5 6 7
The number of rules

94

Figure 4. Nondominated solutions obtained by
each algorithm for the wine data.

Table 3. Classification rates of obtained rule
sets by each algorithm for the wine data.

1 1 0 4

CPU time of each trial (i.e., 1000 generations of the
genetic algorithm) in Table 3 was about 25-40 minutes on
the same workstation used to obtain the results of Table 2.

5. Conclusion

In this paper, we demonstrated that the performance of
the GA-based rule selection methods was significantly
improved by the simple heuristic procedure and the local
search procedure. These two procedures compensate the
lack of the local search ability of genetic algorithms. Thus
our hybrid algorithms have the local search ability as well
as the global search ability. By computer simulations, we
showed that a small number of fuzzy if-then rules with
high classification performance were selected by our
hybrid algorithms. The classification performance can be
improved further by tuning the grade of certainty of each
fuzzy if-then rule (see [25]). Because a small number of
fuzzy if-then rules with linguistic interpretation are
selected, our rule selection methods can be also viewed as
a promising knowledge acquisition tool.

Reference
[I] J. H. Holland. Adaptation in Natural and Artificial

Systems, University of Michigan mess, Ann Arbor,
1975.

[2] D. E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-
Wesley, Reading, 1989.

[3] L. Davis. Handbook of Genetic Algorithms, Van
Nostrand Reinhold, New York, 1991.

[4] C. A. Glass et al. Genetic algorithms and
neighborhood search for scheduling unrelated parallel
machines, Preprint Series, No. OR47, University of
Southampton, 1992.

[5] H. Ishibuchi et al. Genetic algorithms and
neighborhood search algorithms for fuzzy flowshop
scheduling problems, Fuzzy Sets and Systems, 67: 8 1-
100,1994.

[6] T. Murata, and H. Ishibuchi. Performance evaluation
of genetic algorithms for flowshop scheduling
problems, Proc. 1st ICEC: 812-817, 1994.

[7] P. Jog et al. The effects of population size, heuristic
crossover and local improvement on a genetic
algorithm for the traveling salesman problem, Proc.
3rd ICGA: 110-1 15,1989.

[SI N. L. J. Ulder et al. Genetic local search algorithms for
the traveling salesman problem, in: H. -P. Schwefel
and R. Manner (Eds.), Parallel Problem Solvingfrom
Nature, Springer-Verlag, Berlin: 109- 1 16, 199 1 .

[9] P. Men, and B. Freisleben. Genetic local search for
the TSP: New results, Proc. 4th ICEC: 159-164, 1997.

[lo] H. Ishibuchi et al! Effectiveness of genetic local
search algorithms, Proc. 7th ICGA: 505-512, 1997.

[l 11 M. Valenzuela-Rendon. The fuzzy classifier system:
A classifier system for continuously varying variables,
Proc. 4th ICGA: 346-353, 1991.

[12] P. Thrift. Fuzzy logic synthesis with genetic
algorithms, Proc. 4th ICGA: 509-513, 1991.

[13] H. Nomura et al. A self-tuning method of fuzzy
reasoning by genetic algorithm, Proc. International
Fwqv Systems and Intelligent Control Conference:

[14] C. L. Karr, and E J. Gentry. Fuzzy control of pH
using genetic algorithms, IEEE Trans. on Fuzzy
Systems, 1 (1): 46-53, 1993.

[lS] D. Park et al. Genetic-based new fuzzy reasoning
models with application to fbzzy control, IEEE Trans.
on SMC, 24 (1): 39-47, 1994.

[16] A. Homaifar, anti E. McCormick. Simultaneous
design of membership functions and rule sets for fuzzy
controllers using genetic algorithms, IEEE Trans. on
Fuzzy Systems, 3 (2): 129-139, 1995.

[17] F. Herrera et al. Tuning f i m y logic controllers by
genetic algorithms, Approximate Reasoning, 12: 299-
315,1995.

[18] K. Shimojima et al. Self-tuning fuzzy modeling with
adaptive membership function, rules, and hierarchical
structure based on genetic algorithm, Fuzzy Sets and
Systems, 71 : 295-309, 1995.

[19] B. Carse et al. Evolving fuzzy rule based controllers
using genetic algorithms, Fuzqy Sets and Systems, 80:

[20] H. Ishibuchi et al. Construction of fuzzy
classification systems with rectangular fuzzy rules
using genetic algorithms, Fwzy Sets and Systems, 65:

[21] H. Ishibuchi et al. Selecting fuzzy if-then rules for
classification problems using genetic algorithms, IEEE
Trans. on Fuzzy Sysrems, 3: 260-270, 1995.

[22] H. Ishibuchi et al. Single-objective and two-objective
genetic algorithms for selecting linguistic rules for
pattem classification problems, Fuzzy Sets and
Systems, 89 (2): 135-150, 1997.

[23] H. Ishibuchi and T. Murata. Minimizing the fuzzy
rule base and maximizing its performance by a multi-
objective genetic algorithm, Proc. FUZZ-IEEE '97:

[24] H. Ishibuchi and T. Murata. A multi-objective
genetic local search algorithm and its application to
flowshop scheduling, IEEE Trans. on SMC (to appear).

[25] K. Nozaki et al. Adaptive fuzzy rule-based
classification systems, IEEE Trans. on Fuzzy Systems,

236-245, 1992.

273-293,1996.

237-253, 1994.

259-264, 1997.

4 (2): 238-250, 1996.

1105

