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Abstract Fuzzy classification systems (FCS) are tradition-
ally built from observations (data points) in an off-line one
shot-experiment. Once the learning phase is exhausted, the
classifier is no more capable to learn further knowledge from
new observations nor is it able to update itself in the future.
This paper investigates the problem of incremental learning
in the context of FCS. It shows how, in contrast to off-line
or batch learning, incremental learning infers knowledge in
the form of fuzzy rules from data that evolves over time. To
accommodate incremental learning, appropriate mechanisms
are applied in all steps of the FCS construction: (1) Incremen-
tal supervised clustering to generate granules in a progressive
manner, (2) Systematic and automatic update of fuzzy par-
titions, (3) Incremental feature selection using an incremen-
tal version of Fisher’s interclass separability criterion. The
effect of incrementality on various aspects is demonstrated
via a numerical evaluation.

Keywords Incremental fuzzy rule learning · Incremental
and supervised clustering · Classification · Incremental
feature selection

1 Introduction

Traditionally, in the framework of machine learning, off-line
or batch learning aims at extracting some knowledge in the
form of a function F from a set of data points D characterized
by D = {(Xk, y)/y = F(Xk)}, where each data point Xk =
(xk1, . . . , xkn) is an n-dimensional vector. Each dimension
represents a feature and each component of Xk represents a
feature value. The function F maps each data point in the
input space to a corresponding class y in the output space.
This is simply a classification formulation which is a tradi-
tional formulation of machine learning. The task of classifi-
cation is therefore given by a function from an input space
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(a domain) to a set of classes (range). Since we are limited
by the number of samples serving to learn F , we can only
learn an approximation F̃ of F .

The task of estimating the function F̃ (or inducing knowl-
edge) relies on the data set that is provided at the beginning of
the learning process. Once this data is exhausted, the process
of learning stops. The system can no more learn new knowl-
edge. However, there is a number of applications (i.e. agents,
profiling, computer intrusion detection, etc.) where data is not
available at once. Data arrives in small batches over long peri-
ods of time. The traditional learning scheme cannot deal with
such a situation unless the system is retrained with the old
and new data. Of course, it is possible to do so whenever new
data points arrive to produce an entirely new knowledge from
scratch. This approach is known as revolutionary approach
[26]. But, as the number and the diversity of new data points
grow, this non-incremental approach becomes very costly or
even intractable. The alternative is to apply an incremental
learning scheme which is known as evolutionary strategy
[26]. This strategy changes some parts of the knowledge to
accommodate the new data points. The essence of incremen-
tal learning is to allow the learning process to take place over
time in a continuous and progressive manner rather than as a
one-shot experience [16].

Depending on the type of learning, there are various com-
putational models to induce knowledge. Moreover, this kno-
wledge can be extracted and represented in different forms.
Thus, depending on the learning algorithm applied, F (or
F̃) may take various forms, e.g., weights in neural networks
[20], probabilities [14], decision trees [31], and explicit rules
[23].

Because rules are easy to understand and to interpret,
this work focusses on classification rule extraction from data.
FCSs consist of rules of the form if-then with fuzzy (linguis-
tic) antecedents in the if-part and class labels in the conse-
quent part with eventually some confidence factors:

If x1 is A1 ∧ . . . ∧ xn is An ⇒ ỹ = c j {τ j } (1)

where xi , Ai , c j , τ j are respectively the features which
stand for fuzzy sets, the linguistic values (i.e., domain of the
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features), the winning class label, and the confidence value
associated with the consequent. Various approaches have
been applied to generate such rules ranging from pure fuzzy
model [10], via hybrid neuro-fuzzy model [27], or hybrid
fuzzy-genetic model [11], to rough-neuro-fuzzy model [2].

Traditionally, to build a fuzzy classifier, the input space
is partitioned into fuzzy regions (fuzzy relations) which rep-
resent the antecedents of rules. To gain more insight into the
knowledge disseminated from data, these rules have to be
of high quality (accurate, compact, consistent). The quality
depends directly on the quality of the fuzzy partitions gen-
erated. Fuzzy clustering is a popular technique to achieve
partitioning. In general, a projection operation onto the fea-
tures axes is performed to get the membership functions. This
step is crucial for the accuracy of the classifier. The first fac-
tor that impacts the quality of rules is foremost clustering.
Purity, separability, and compactness of the clusters, which
are vital criteria to be observed by the clustering algorithm,
depend of course on the nature (i.e., the computational basis)
of this algorithm.

Since we are referring to both clustering and classifica-
tion, it is necessary to draw the difference between these
two concepts. Clustering is the process of assigning unla-
beled data points to groups using some similarity measure
(i.e., distance based, density based, etc.). This process is self
supervised. Ideally, two criteria have to be satisfied, namely
intra-cluster similarity and inter-cluster dissimilarity. Classi-
fication, on the other hand, is the process of assigning labeled
data to groups, where labels indicate the classes and are
a priori known. If data is continuous (i.e., signal), the process
is known as regression. In this work, clustering as a step in
the process of FCS construction.

Being concerned in this paper with a particular kind of
knowledge discovery from raw data, that is fuzzy rule learn-
ing, incremental learning is a key aspect. Rule learning aims
at generating rules having the form shown in Eq. 1 which
allow to categorize data into distinct classes. Traditional rule
learning systems assume that all learning resources are avail-
able before the learning phase is conducted. Once this phase
is exhausted, the system is no more capable of learning addi-
tional rules. In other words, the system is not adaptive in order
to accommodate new data and cannot evolve over time.

To overcome this limitation, incremental learning offers
mechanisms that help equip rule-based systems with adap-
tivity. Indeed, incremental learning allows the system to infer
rules continually as new data becomes available without for-
getting the previously learned ones and without referring at
any time to the previously used data. Hence, the system be-
comes self-adaptive and the acquired knowledge becomes
self-corrective. As new data arrives, new rules may be cre-
ated and existing ones modified allowing the system to evolve
over time.

To accommodate this revolutionary concept of incremen-
tal learning, we present in this paper an approach that can be
seen as a cause-effect process. New data leads to changes in
the rule base. These changes are systematically propagated

through all layers/steps of the system being used. In a nut-
shell, the contributions of the paper are threefold:

• Incremental supervised clustering: Given a labeled data
set, the first step is to cluster this data with the aim to
achieve high purity and separability of clusters emanating
from various classes. To achieve that, a clustering algo-
rithm is introduced that is both incremental and supervised.
These two characteristics are vital for the whole process.
The resulting cluster prototypes are projected onto each
feature axis to generate some fuzzy partitions. Note that
traditionally, the fuzzy partitions are produced by cluster-
ing algorithms that do not utilize the data labels.

• Fuzzy partitioning and accommodation of change: Fuzzy
partitions are generated relying on two steps: Initially, each
cluster is mapped onto a triangular partition. In order to
optimize the shape of the partitions, the number and the
complexity of rules, an aggregation of these triangular
partitions is performed. As new data arrives, these parti-
tions are systematically and automatically updated without
referring to the previously used data. The consequent of
rules are accordingly updated.

• Incremental feature selection: To find the most relevant
features, an incremental version of Fisher’s interclass sepa-
rability criterion is devised. This mechanism allows to keep
an eye on arriving new data and to show how this affects the
features that are readily used. As new data arrives, some
features may be neglected in the rules and some new fea-
tures may be included in the rules. The premises of the
rules are dynamically and systematically updated. At any
time of the life of a classifier, the rule base should reflect the
semantical contents of the already used data. To the best of
our knowledge, there is no previous work on feature selec-
tion algorithms that observe the notion of incrementality.
All available algorithms work with the assumption that
the available data is sufficient to select the most relevant
features.

The details of the whole fuzzy modeling process is pro-
vided in the following sections. Section 2 overviews the prob-
lem of incremental learning in general. Section 3 outlines
some related work to fuzzy rule generation. Section 4 intro-
duces the suggested incremental clustering algorithm.
Section 5 describes the process of feature selection. The inc-
remental rule induction is presented in Sect. 6. Evaluation
of the approach suggested is discussed in Sect. 7. Section 8
concludes and outlines future work.

2 A note on incremental learning

Despite its importance in real life applications, incremen-
tal learning (IC) remains a topic at its very earlier stages.
Traditionally in machine learning, the learned knowledge is
induced from data in a one-shot experiment. This assumes
that the whole data, source of knowledge induction, is en-
tirely available during the learning stage. Once this stage



Towards incremental fuzzy classifiers 195

is exhausted, the induced knowledge is no more subject to
automatic update. Therefore, the performance of the system
depends heavily on the available data used during the learn-
ing phase. There are several real-world applications such as
intelligent agents, user profile learning, computer intrusion,
and software engineering where data becomes available over
time. In such applications, it is important to devise learn-
ing mechanisms to induce new knowledge without ‘cata-
strophic forgetting’ and/or to refine the existing knowledge.
The whole problem is then summarized in how to accom-
modate new data in an incremental way while keeping the
system under use. This problem has been studied in the frame-
work of adaptive resonance theory (ART) [8]. This theory has
been proposed to deal efficiently with the stability–plasticity
dilemma. It is concerned with learning new knowledge with-
out forgetting the previously learned one. Formally, the dilem
ma stipulates that a classifier (or any similar machine learn-
ing device) is totally stable if it keeps the acquired knowledge
in memory without any catastrophic forgetting. However, it
is not required or assured that it is able to accommodate new
knowledge. On the contrast, a classifier is completely plas-
tic if it is able to continually learn new knowledge with-
out any requirement on preserving the knowledge previously
learned. ART classifier networks allow to accommodate new
data (plasticity) without forgetting (stability) by generating
categories over time whenever the new data is sufficiently
dissimilar to the existing categories.

Basically there are two schemes to accommodate new
data: either to retrain the classifier from scratch using the
old and the new data, known as revolutionary strategy, or
to further train the classifier using only the new data which
corresponds to evolutionary strategy [26]. The first option
fulfills the stability requirement, whereas the second option
is a typical IC scheme that is able to fulfill both stability and
plasticity. The basic problem in incremental learning is to
make a tradeoff between the stability and plasticity ends of
the learning memory spectrum as shown in Fig. 1.

As noted in [30], there are many approaches that pres-
ent some aspects of IC and are used under various names
like on-line learning, constructive learning, lifelong learning,
concept drift, and evolutionary learning. Therefore, a clear
definition of IC turns out to be vital. Here are some of the
characteristics that an IC algorithm should satisfy:

• IC should be able to accommodate the plasticity phenome-
non by learning knowledge from new data. This data can
refer either to already known structure or to a new structure
of the data.

• IC should not have access at any time to the previously
used data to update the existing classifier. IC can use only
the new data.

Favoring stability Favoring plasticity

Incremental learning

Fig. 1 Incremental learning between stability and plasticity

• IC should be able to observe the stability of the classifier
by avoiding forgetting the previously induced knowledge.

Various approaches under the name of “Incremental learn-
ing” within the framework of neural networks have been
investigated. These range from retraining misclassified
sample to various weighing schemes [15,17]. In [30], an
incremental learning algorithm that combines an ensemble of
multilayer perceptron networks is used to accommodate new
data. In [7], an incremental learning algorithm for construct-
ing support vector machine classifiers has been introduced.

On the other hand, incremental symbolic learning has
been mainly studied by Michalski and his team [32]. For in-
stance, in [24], a partial memory incremental learning that
relies on AQ inductive learning is proposed. It consists of us-
ing variable-valued logic as a representation language to gen-
erate symbolic rules in the form of term conjunctions. This
approach is claimed to be incremental in the sense that the
changing learned concepts are incrementally updated. How-
ever, some representative examples from the data used in the
past are used together with the new samples to update the
system. The proposed approach was applied in the context of
computer intrusion. In [33] an incremental version of ID3 has
been investigated whereas concept drift has been thoroughly
investigated in [9].

Many of these algorithms are not truly incremental be-
cause at least one of the requirements mentioned earlier is
violated. In fact, to avoid the misuse of the term “incremen-
tal”, Maloof [23] categorizes the learning algorithms in three
memory models: no memory, partial memory, and full mem-
ory. According to no-memory model, the learned concepts
are refined using only the new data which is discarded after-
wards. With the partial memory model, after the training
phase, some samples are stored for future use (i.e., model
not entirely incremental). With the full memory model, all
training samples are maintained and used for future use. This
latter is obviously not incremental at all.

In this paper, we will apply truly incremental learning to
extract fuzzy classification rules. It will be shown how data
is discarded once used in an incremental step and how the
classifier can incrementally accommodate new rules and rule
update without forgetting already learned ones.

3 Fuzzy rule modeling

Fuzzy classification systems consist of fuzzy If–then rules.
Each rule describes one region in the n-dimensional feature
space and corresponds to one of the H classes to be mod-
eled. The if-part of the rules, known as the rule’s antecedent,
defines the rule’s domain while the rule consequent is the
class label from the class label set {c1, . . . , cH }. The class
label can be associated with a confidence factor τ j . A rule r ,
Rr , is then given as:

If x1 is Ar
1 (x1k) ∧ · · · ∧ xn is Ar

n(xnk) then cr (2)

where Ar
1, . . . , Ar

n are the fuzzy sets that stand for anteced-
ent terms. They can be modeled using various membership
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functions like: triangular, trapezoidal, Gaussian, etc. In the
current work, we will apply two types. Initially triangular
membership functions are used and then via an aggregation
procedure, trapezoidal membership functions are derived as
will be explained later. The degree of activation of a rule r is
computed by:

μr (xk) =
n∏

i=1

Ar
i (xik). (3)

Given a new data point, xk , entering the system, the output
of the fuzzy classifier with respect to this point is the win-
ner class, w, referred in the consequent of the rule with the
highest activation degree.

L(xk) = cw, where w = arg max
r, r=1,R

{μr (xk)} (4)

where L indicates the class label.
In this paper, we are interested in a more general form of

the classification rules that have the following form:

Rr : If x1 is Ar
1(x1k) ∧ . . . ∧ xn is Ar

n(xnk)

Then cr
1[br

1], . . . , cr
H [br

H ]. (5)

Here, the consequents of the fuzzy rules are associated with
some confidence value bh , called representativeness degree.
The degree br

h associated with each class cr
h reflects the

strength (or the weight) of the class modeled by the rule r .
To compute it, a simple proportionality measure is used. Each
region (i.e. fuzzy relation) corresponds to a rule, the number
of instances in that region for each class is counted and a cor-
responding degree reflecting the representativeness of each
class within that region is computed. Note that by combining
rules via certain optimization procedures, we can generate
fewer rules whose antecedents terms are connected not only
by the AND operator, but also by the OR operator as was
done by the author in [6].

To induce rules, first, the incremental clustering algorithm
described in Sect. 4 is applied to generate a non-predeter-
mined number of clusters, let it be C. Information about a
given class is thus concentrated into C n-dimensional gran-
ules. Because we seek to interpret these granules in terms of
linguistic values such as small, medium, and large, the result-
ing granules are projected onto each dimension (feature) axis
so that a feature i , fi , is patched into linguistically interpret-
able regions: fi = A1 × A2 × · · · × AC equivalent to the
number of clusters C. The data representation space will then
be organized into n-dimensional linguistically interpretable
regions. Each region is actually a fuzzy relation and corre-
sponds to a rule.

We assume in our study that a class can be described by
more than one rule. This assumption follows from the fact
that the data points of a given class need not necessarily lie
contiguously in one compact region of the space. However,
if classes are well separated we could represent each class
with a single rule. Ideally, the number of rules should be
minimal for reasons of computational complexity and fore-
most for interpretability. To achieve that, a certain number of
optimization steps are necessary as discussed in Sect. 7.

On the other hand, the patching has to satisfy some con-
straints defined in [29], known as the frame of cognition
(FOC). This latter stipulates that a fuzzy set (patch) along
a dimension must satisfy: normality, typicality, full member-
ship, convexity, and overlap. To fulfill these constraints, we
apply two types of membership functions: a triangular, and
a trapezoidal membership function for the antecedents A j .

Trapezoidal forms are generated on top of triangles as
a process of optimization. Each triangle, defined by three
points (a, b, c), covers a cluster of a given class and is for-
mally described:

μAr
i j
(xik) = max

(
min

(
xik − ar

i j

br
i j − ar

i j
,

cr
i j − xik

cr
i j − br

i j

)
, 0

)
, (6)

while a trapezoidal function defined by four points (a, b, c, d)
is given as:

μAr
i j
(xik) = max

(
min

(
xik − ar

i j

br
i j − ar

i j
, 1,

dr
i j − xik

dr
i j − cr

i j

)
, 0

)
.

(7)

This process of optimization aims at aggregating clusters
that are neighbors and have the same label, meaning that they
belong to the same class. This process is necessary because
the incremental supervised clustering, that will be explained
later, allows to generate more than one cluster within the
same class. By aggregating triangles modeling the clusters,
the number of regions are reduced and consequently more
transparency and compactness of rules is gained. Of course
one can perform the aggregation of clusters before generat-
ing the triangle partitions. In our experimental evaluation, we
did not observe any difference.

Let Fig. 2 plot a synthetic data defined by the character-
istics shown in Table 1. The prototypes of the clusters are
also displayed in Table 2 and plotted in Fig. 2. Each cluster
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Fig. 2 Synthetic data set
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Table 1 Characteristics of the synthetic data set

Chracteristics μ �

Features 1 2 1 2

Classes H1 10 10 15 15
H2 70 70 15 15
H2 120 120 15 15

Table 2 Cluster prototypes

Features 1 2

Classes H1 8.1425 9.7859
H2 66.086 66.456

32.512 86.2
H3 103.81 139.93

126.1 117.58

Table 3 Triangular membership functions

Features 1 2

Points l1 j m1 j r1 j l2 j m2 j r2 j

H1 –34.1 8.1 38.2 –18.2 9.7 37.6
H2 18.5 32.5 46.5 27.2 66.4 98.2

32.1 66.0 94.9 80.6 86.2 92.4
H3 81.6 103.8 117.1 92.4 117.5 138.5

100.1 126.1 148.6 112.9 139.9 161.4

will be represented by a triangular function (see Table 3 and
Fig. 3) and is defined by its center v j and its left and right
endpoints l j , r j . Algorithm 1 explains in detail how the trian-
gular membership functions are generated using the clusters.

Algorithm 1 : Generation of triangular functions
for all features do

- Project the clusters (l j , v j , r j ) onto the current feature axis i .
Let this projection correspond to partition j given by Ai j which is
defined by (li j , mi j , ri j ) corresponding to the left, middle, and right
endpoints of the triangular function.
- Sort the projected clusters in an ascending order according to their
first endpoint l j .
for all sorted clusters do

- Compute the breakpoints of the triangular function Ai j =
(li j , mi j , ri j ) for the current cluster (l j , v j , r j ) as follows:
The projected center v j corresponds to mi j .
if the current cluster is the first on the feature axis, then

li1 = l j
else

if r j < l j+1 // j+1 means next cluster on the axis then

li j = r j +l j+1
2

li, j+1 = r j
else

ri j = r j
li, j+1 = l j+1

end if
end if

end for
end for

To optimize this patching, we aggregate the triangular
functions modeling clusters that emanate from the same class

provided that they are neighbors. The result of this aggregation
is shown in Table 4 and plotted in Fig. 4. The aggregation is
achieved via a two-step process: fusion based on the second
breakpoint (i.e., clusters’ centers), and then fusion based on
the first breakpoint of triangles as described in Algorithm 2.

Algorithm 2 : Generation of trapezoidal functions
for all features do

- Sort the triangles (li j , mi j , ri j ) in an ascending order according to
the middle point (i.e., the cluster’s center) mi j .
for all sorted triangles do

- Compute the breakpoints (aie, bie, cie, die) of the trapezoidal
function from the current triangle (li j , mi j , ri j ) as follows:
aie = li j
bie = mi j
cie = mi j
die = ri j
- Get the label of the next triangle, j = j + 1, on the axis
while label(current trapeze)=label(next triangle) do

aie = min(aie, li j )
bie = min(bie, mi j )
cie = max(cie, mi j )
die = max(die, ri j )
- Get the label of the next triangle, j = j + 1, on the axis

end while
end for
- Sort the trapezoidal functions (ai j , bi j , ci j , di j in an ascending
order according to the first breakpoint ai j .
for all sorted trapezoidal functions Ai j do

- Compute the breakpoints (pi j , qi j , ri j , si j ) of the new trape-
zoidal function l from the current trapeze (ai j , bi j , ci j , di j ) as
follows:
pil = ai j
qil = bi j
ril = ci j
sil = di j
- Get the label of the next trapeze, j = j + 1, on the axis
while label(current trapeze)=label(next trapeze) do

pil = min(pil , ai j )
qil = min(qil , bi j )
ril = max(ril , ci j )
sil = max(sil , di j )
- Get the label of the next triangle, j = j + 1, on the axis

end while
end for

end for

4 Incremental supervised clustering

In order to obtain multi-dimensional granules that serve to
partition the feature space with the overall goal of generating
fuzzy rules, there are three known methods to do that:

• Partitioning based on interval/grid analysis
• Partitioning by choosing a particular fuzzy membership

function, and
• Partitioning based on data specificities such as periodicity

as in the case of time-series analysis.

Extensive work is done with respect to the second method.
It consists of applying a clustering algorithm that generates
some clusters. A partitioning of the feature space is achieved
by choosing a membership function and applying it on the ob-
tained clusters. This approach is applied in this work. The key
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Fig. 3 Derived triangular membership functions

Table 4 Resulting trapezoidal membership functions

Features Beakpoints Classes

H1 H2 H3

1 p1 j −84.12 18.50 81.62
q1 j 8.14 32.51 103.81
r1 j 8.14 66.08 126.10
s1 j 38.29 94.96 148.61

2 p2 j −68.22 27.23 92.48
q2 j 9.78 66.45 117.58
r2 j 9.78 86.2 139.934
s2 j 37.61 98.29 161.44

point remains the choice of a clustering algorithm to be used.
There exists a number of clustering algorithms which are
distance-based, volume-based, or distribution-based. Some
of the clustering algorithms applied in the context of fuzzy
rule generation are fuzzy C-means algorithm [4](e.g. in [10]),
Gustafson and Kessel [18], and Gath-Geva [1]. However,
these algorithms are fully unsupervised, they do not use any
labeling information to generate clusters. In addition, they
are batch clustering algorithms and require the pre-specifi-
cation of the number of clusters to be generated. As we are
concerned with incremental learning, we are interested in
clustering algorithms that are supervised and incremental at
the same time.

In this work, a new algorithm is suggested. It is incremen-
tal and the number of clusters is automatically determined
during the clustering process. Furthermore, because we are
investigating the classification rules, the clustering algorithm
has to take labels of data points into account so that clusters
are generated within classes. The suggested algorithm con-
sists of steps described in Algorithm 3.

Basically, the algorithm assigns a data point to the closest
cluster having the same class label. As a new point is made
available, the algorithm computes the distance to clusters of

Algorithm 3 : Incremental supervised clustering

1. First data point x1 is assigned to the first cluster, M1 whose proto-
type, v1, is that data point.
2. Initialize a value σ that indicates the maximal distance between a
data point xk and the prototype vp of its cluster (it indicates the spread
of the cluster). The larger σ , the larger will be the clusters. Therefore,
the value of σ has to be reasonable so that the size of clusters gets
also reasonable. In the current work, experiments have shown it had
not any impact on the final results.
for each next data point xk do

3. Compute the distance d(xk , vp) between the data point at hand
and each cluster of the same class, hence the supervision aspect of
this algorithm.
4. Retain the computed distance d and the index l of the cluster that
allows for the smallest distance to that data point.
5. If d ≤ σ , xk is assigned to cluster l
6. If d > σ , a new cluster is created.
7. Recompute the prototype of the cluster to which the new point
xk is assigned as follows:

v
(t+1)
l = Nl

Nl + 1
v

(t)
l + 1

Nl + 1
xk

where Nl is the current number of data points belonging to cluster l.
The superscript t indicates the time (v(t+1)

l is the center obtained
after the arrival of a new data point xk ).

end for

the same class, assigns it to the closest cluster and recomputes
the center of this specific cluster. For the sake of illustration,
let us reconsider the data set plotted in Fig. 2. Figure 5 shows
the effect of σ on the number of clusters generated.

5 Incremental feature selection

To enhance the transparency and the compactness of the rules,
it is important that the if-part of the rules does not involve
many features. Furthermore, low classification performance
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Fig. 4 Derived trapezoidal membership functions

generally results from non-informative features. While there
are many ways to achieve this goal like rule reduction [3],
rule interpolation [22], hierarchical reasoning [21], the very
conventional way to get rid of these features is to apply fea-
ture selection methods. Basically, there exit two large classes
of feature selection methods [13]:

1. Filters: the idea is to filter out features that have small
potential to predict outputs. This technique is done ahead
of the classification task. Filters are preprocessing tech-
niques and refer to statistical selection methods such as
principal components analysis and single value decompo-
sition.

2. Wrappers: select features that optimize the accuracy of a
chosen classifier. Wrappers largely depend on the classi-
fier to judge how well feature subsets are at classifying
training samples.

These methods do not lend themselves the possibility
to determine the most relevant features from incrementally
arriving data. Because the feature selection problem depends
foremost on the data being analyzed, these methods all as-
sume that the whole data is available or at least that there
is sufficient amount of data for learning the most relevant
features. Our literature review indicated that there is no fea-
ture selection method that copes with the problem of partially
available data.

In this work, we suggest a new approach to deal with fea-
ture selection in a dynamic way. This approach assumes that
the data used previously will no more be accessible in the
future. As a point of departure, we will rely on Fisher’s in-
terclass separability criterion [14]. This criterion is based on
the between-class scatter and within-class scatter. Given N
data points whose mean is v distributed over H classes. Each
class j is identified by a center v j and the number of samples
N j it contains. The between-class scatter is then given as:

Qb =
H∑

j=1

N j
(
v j − v

) (
v j − v

)T (8)

where the center of the data, v, is given as:

v = 1

N

N∑

k=1

xk

while the within-class scatter is given by:

Qw =
H∑

j=1

Q j , (9)

where Q j is the covariance matrix which is given by:

Q j = 1

N j

N j∑

k=1

(
xk − v j

) (
xk − v j

)T
. (10)

The total scatter is the sum of between and within scatter
matrices:

Qt = Qb + Qw. (11)

The basic idea of the Fisher interclass separability criterion is
to maximize the between-class variance while reducing the
within-class variance. The balance between these two scat-
ters is expressed as:

J = det(Qb)

det(Qw)
(12)

To select features, the criterion (12) is iteratively evalu-
ated on the set of features. At every iteration, the feature that
produces the smallest value is removed.

Now, the question that arises is how to equip this selec-
tion method with the capability of incrementally selecting
features when data arrives over time such that the previously
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Fig. 5 The resulting number of clusters (prototypes are indicated by
filled diamonds) is inversely proportional to the value of σ

used data is no more accessible. To achieve this goal, the
within-class and between-class scatter have to be updated
incrementally.

Let us assume that at time (t + 1), a batch of data points
arrives and let a part of it, consisting of n points, affect
cluster j . Therefore, the center, the covariance, and the num-
ber of points of that cluster change which implies a re-com-
putation of Qw and Qb. In the following, we develop the
recurrent formulas of the center and covariance matrix that
take into account only the new data points, without referring
to the previously used data in order to preserve the spirit of
incremental learning. Let the cluster j at time (t) consist of
N j data points (for simplicity, the index j in N j is omitted),

X (N )
j = {x1, x2, . . . , xN }. Recall that the center of the cluster

j , v j , is defined as:

v j = 1

N

N∑

k=1

xk . (13)

After a new set of points of size n is assigned to the cluster j ,
i.e., X (N+n)

j = {x1, x2, . . . , xN , xN+1, . . . , xN+n}, the new
center is transformed as follows:

v
(t+1)
j = 1

N + n

N+n∑

k=1

xk . (14)

This can be rewritten as:

v
(t+1)
j = N

N (N + n)

N∑

k=1

xk + n

n(N + n)

N+n∑

k=N+1

xk . (15)

In other words, the new center can be expressed using the old
center as follows:

v
(t+1)
j = N

N + n
v

(t)
j + n

N + n
w j , (16)

where w j is the center of the new arriving samples. Then,
Eq. 16 can be written:

v
(t+1)
j = (1 − a)v

(t)
j + aw j , (17)

where a = n
N+n and 1 − a = N

N+n .

The recurrent formula (17) indicates that the new cen-
ter of the cluster affected by adding new data points can
be expressed using the previous center of that cluster and
the center of the new data points. This means that the data
used previously will prevail but not be used for learning new
knowledge.

Similarly, the covariance matrix for the cluster j is given
by:

Q(t)
j = 1

N

N∑

k=1

(
xk − v

(t)
j

) (
xk − v

(t)
j

)T
. (18)

This matrix will be updated as new data points arrive as fol-
lows:

Q(t+1)
j = 1

N + n

N+n∑

k=1

(
xk − v

(t+1)
j

) (
xk − v

(t+1)
j

)T
(19)

which can be reformulated as follows:

Q(t+1)
j = 1

N + n

N∑

k=1

(
xk − v

(t+1)
j

) (
xk − v

(t+1)
j

)T

+ 1

N + n

N+n∑

k=N+1

(
xk − v

(t+1)
j

) (
xk − v

(t+1)
j

)T

(20)

After substituting Eq. 17 in Eq. 20, the updated covariance
matrix becomes:
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Q(t+1)
j = 1

N + n

N∑

k=1

(
xk − (1 − a)v

(t)
j − aw j

)

×
(

xk − (1 − a)v
(t)
j − aw j

)T

+ 1

N + n

N+n∑

k=N+1

(
xk − (1 − a)v

(t)
j − aw j

)

×
(

xk − (1 − a)v
(t)
j − aw j

)T
(21)

Q(t+1)
j = 1

N + n

N∑

k=1

((
xk − v

(t)
j

)
+ a

(
v

(t)
j − w j

))

×
((

xk − v
(t)
j ) + a(v

(t)
j − w j

))T

+ 1

N + n

N+n∑

k=N+1

((
xk − v

(t)
j

)
+ a

(
v

(t)
j − w j

))

×
((

xk − v
(t)
j

)
+ a

(
v

(t)
j − w j

))T
. (22)

After developing the products within the sum term using (A+
B)(A + B)T = AAT + B BT + ABT + B AT, the expression
will be transformed into:

Q(t+1)
j = 1

N + n

[
N∑

k=1

(
xk − v

(t)
j

) (
xk − v

(t)
j

)T

+
N∑

k=1

a
(

xk − v
(t)
j

) (
v

(t)
j − w j

)T

+
N∑

k=1

a
(
v

(t)
j − w j

) (
xk − v

(t)
j

)T
]

+ Na2

N + n

(
v

(t)
j − w j

) (
v

(t)
j − w j

)T

+ 1

N + n

[
N+n∑

k=N+1

(
xk − w j

) (
xk − w j

)T

+
N+n∑

k=N+1

b
(
xk − w j

) (
w j − v

(t)
j

)T

+
N+n∑

k=N+1

b
(
w j − v

(t)
j

) (
xk − w j

)T

]

+ nb2

N + n

(
w j − v

(t)
j

) (
w j − v

(t)
j

)T
(23)

where b = a − 1. Taking into account the definition of v
(t)
j

(Eq. 13), the 2nd, 3rd, 6th, and 7th terms of Eq. 23 will reduce
to 0. Consequently, Eq. 23 is transformed into:

Q(t+1)
j = 1

N + n

(
N Q(t)

j + nZ (t+1)
j +

(
Na2 + nb2

)

×
(
v

(t)
j − w j

) (
v

(t)
j − w j

)T
)

(24)

where Z (t+1)
j is the covariance matrix associated with the

n new samples. Substituting a and b with their respective
expressions in Eq. 24, we get the final expression:

Q(t+1)
j = 1

N + n

(
N Q(t)

j + nZ (t+1)
j + Nn

N + n

(
v

(t)
j − w j

)

×
(
v

(t)
j − w j

)T
)

. (25)

Equation 25 indicates that the new covariance matrix of the
cluster receiving the new data points can be computed by
means of the previous covariance associated with that clus-
ter, the covariance matrix associated with new data, the old
center of the cluster and the center of the new data. Again,
here the previously used data will not be used to compute
the new covariance matrix and consequently to learn new
knowledge.

Having shown how to incrementally update the covari-
ance matrix associated with the cluster that is updated, it is
easy to apply this straightforwardly in the context of Fisher’s
interclass separability criterion. The new between-class scat-
ter (after adding new points) requires only to update the num-
ber of points of the affected cluster, N (t+1)

j , its new center

v
(t+1)
j , and the center of the whole data set using the formula

(17) which is equivalent to:

v(t+1) = 1

N + n

H∑

j=1

N (t+1)
j v

(t+1)
j (26)

The between-class scatter is then:

Q(t+1)
b =

H∑

j=1

N (t+1)
j

(
v

(t+1)
j −v(t+1)

)(
v

(t+1)
j −v(t+1)

)T

(27)

The within-class scatter is now given by:

Q(t+1)
w =

H∑

j=1

Q(t+1)
j (28)

where Q(t+1)
j is defined by (25).

It is clear that the algorithm can handle batches of any
size following the same steps.

To illustrate the effect of adding new data on the selected
features, Table 5 shows the process of feature selection using
the wine data set that will be presented in Sect. 7. As new
data batches arrive the order of importance of the features
changes. The incremental feature selection uses the new com-
ing batches to update the order of relevance of the features
known up to the moment.



202 A. Bouchachia, R. Mittermeir

◊ ◊+

+

+ +

+

+ +

+

*

*

*
*

*

* *

*

*
*

*

*
*

*

*

◊

◊
◊

◊
◊

◊
◊

◊◊
◊

◊

◊

◊

Fig. 6 Updating the membership after the arrival of new data

Table 5 Order of features according to their importance

Features
Batch 1 5 - 1 - 3 - 4 - 11 - 7 - 8 - 10 - 6 - 9 - 13 -12 - 2
Batch 2 5 - 1 - 3 - 11 - 4 - 9 - 12 - 2 - 13 - 6 - 10 - 7 - 8
Batch 3 1 - 5 - 9 - 2 - 3 - 8 - 10 - 4 - 12 - 6 - 11 - 7 -13
Batch 4 8 - 1 - 3 - 9 - 1 2 - 5 - 10 - 4 - 11 - 7 - 13 - 6 - 2

6 Incremental rule induction

After describing the process of generating rules, the problem
of learning new rules or changing the existing ones can be
addressed. Incremental learning assumes that the data sub-
ject to analysis is not present at once, rather it comes in small
batches over time (Bt , t = 1 . . . T ). The very important as-
pect, that is taken into consideration, is that once a data batch
has been used to update the rule base, there is no access to it
in the future as new ones is made available.

To take the incrementality aspect of data arrival into ac-
count, the rule learning algorithm will consist of the following
steps:

For each new batch Bt arriving at time t do

1. Assume that all data that came before time t is no more
available.

2. Cluster the data batch Bt using the incremental algorithm
described in Sect. 4, compute incrementally the new cen-
ter using Eq. 17, the new covariance matrix according to
Eq. 25, and memorize the endpoints of the cluster. Note
that only the clusters that have received new data points
are subject to further consideration.

3. Based on the new configuration of clusters, the proce-
dure described in Sect. 3 generates the appropriate fuzzy
sets relying on an optimization process. If Bt is the first
batch to be analyzed, this process identifies which cluster
belongs to which trapezoidal partition. A class may consist

of many clusters that are aggregated and represented by
one trapezoidal membership function.
If Bt is not the first batch, an update operation is triggered.
This operation consists of updating the fuzzy partitions
corresponding to the clusters receiving new data points.
As shown in Fig. 6, the update operation starts by identify-
ing the trapezoidal function to which the modified cluster
belongs. There are two steps to be considered:

• The first breakpoint of the trapeze moves to the left if
the most left cluster covered by that trapeze receives
new points among which there is a point that is smaller
than the first breakpoint. In such a case, this left end-
point will be considered as the new first breakpoint of
the trapeze. Similarly, the fourth breakpoint will be
shifted to a new endpoint if there is a new point that
exceeds the current borders of the affected trapeze.

• The second and third breakpoints move to the left or
right if the new points push the center of the aggre-
gated clusters covered by that trapeze in a given direc-
tion. The amount of shift is simply the difference
between the old center and the new center of the
aggregated centers. Figure 6 illustrates all cases we can
encounter (update only the endpoints of the trapeze,
or only the second and third breakpoints, or all of
them at the same time).

The two steps described refer to the situation where all
new coming data points are assigned to the existing clus-
ters covered by an existing trapezoidal partition. A more
complicate situation occurs when the new arriving data
points cannot be assigned to the exiting clusters because
they are simply far away. As a consequence, two cases can
be observed:

• The new generated cluster(s) which belongs to a par-
ticular class can be aggregated with some existing
clusters from the same class. These clusters are
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covered by a trapezoidal partition and therefore the
two steps described above can be applied to update
that partition.

• If the new cluster, after the projection onto the dimen-
sion axis, falls between two clusters emanating from
different classes, a new trapezoidal partition is cre-
ated according to the procedure described in Sect. 3.
A consequence to that, the linguistic scale of the rules’
antecedents change and a new linguistic term is added.
Note that there is no pre-specified linguistic scale. The
number of linguistic values depends directly on the
number of partitions that corresponds to the number
of clusters.

4. For each fuzzy relation corresponding to a rule, compute
the representativeness degree of classes as described in
Sect. 3. It must be stressed out that the only updated re-
gions are taken into account in this step. These regions are
identified after the update of prototypes followed by the
update of the partitions.

5. Reformulate the resulting rules in the form of:
IF x1 is low and x2 is low and …and xn is high THEN
C1[b1], C2[b1], …, Cm[bm].

This process shows how the update is systematically done
and how it is limited to only updated parts of the classifier.

7 Numerical evaluation

To evaluate the proposed approach for incrementally learn-
ing classification rules, two benchmark data sets are applied.
The wine data and the Wisconsin breast cancer from the UCI
Repository of machine Learning Databases [25]. The wine
data set describes the chemical composition of 178 samples
of the wine. These samples belong to 3 classes of wine and
are described by 13 continuous attributes. The Wisconsin
breast cancer data consists of 699 samples distributed over
two cancer classes: benign and malignant . There are 16
samples which are incomplete and therefore are not used
in our experimental evaluation. This data is described by 9
features.

The data set is divided into two parts: the first part con-
sists of 30% of the data and is meant for testing the classifier;
whereas the last 70% is dedicated to training the classifier (i.e.
for generating rules). As we are concerned with incremental
learning, this latter is divided into four batches of approx-
imately the same size: B1, B2, B3, and B4 (see Fig.7). The
split is done randomly but uniformly so that the same number
of samples from different classes is present in all batches.

In the following, we are primarily interested in study-
ing the effect of new data on the rules and related aspects
like optimization and incremental feature selection. In addi-
tion, the classification performance of the induced classi-
fier is discussed, and a comparison between the incremental
classifier against its counterpart that is batch classifier is
conducted.

Batch 2
18%

Batch 3
18%

Batch 4
18%

Testing
30%

Batch 1
16%

Fig. 7 Split of data

7.1 Rule incrementality

Being the main goal of this study, the incrementality is first
discussed from the pure point of view of accommodating
new incoming data. Each new batch is introduced to the clas-
sifier which will update the existing rules and/or generating
new ones during an incremental learning phase. This allow to
investigate the sensitivity analysis regarding the introduction
of new batches on the rule base. The update may take various
forms: generation of completely new rules, generation of par-
tially new rules, and updating the representativeness degrees
associated with the classes in the then-part of the rules. Let
us first start with the evolution of the number of rules. Table 6
shows the number of rules after the arrival of new batches. As
shown, the number of rules generated initially with a small
number of data points increases as new batches arrive. The
increase pace of rules is more important with the wine data
set as with the cancer data although the size of the batches
for the former data set is smaller then that of the latter.

The increase in the number of rules is explained by the
fact that the regions that initially do not contain points are
being populated by new data. However, the resulting number
of rules is high due to three facts:

1. No optimization has been performed except the aggrega-
tion of triangular partitions of the same class lying in the
same neighborhood,

2. All regions have to be taken into account during the whole
life of the system because data comes over time and no-
instantiated regions can get new points,

3. All features have been utilized; no feature selection has
been performed.

The key question is then how would an optimization pro-
cedure be triggered given that the obtained rules at a given
time are never final due to our fundamental assumption that
new data can arrive over time in the future. To cope with this
issue, as new data comes, the rule base is updated and an
optimized version of it is derived. This latter is used by the
classifier until new data arrives.

To generate this optimized version, we will consider a
two-stage optimization procedure, namely
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Table 6 Effect of the new data batches on rule generation without opti-
mization

Batch no. Cancer data Wine data

B1 44 33
B2 73 64
B3 94 97
B4 117 130

1. Redundancy elimination: the goal is to reduce fuzzy par-
titions and rules based on similarity, and

2. Feature selection: the goal is to select features using the
method introduced in Sect. 5.

The first optimization procedure consists of four steps: (1)
removal of redundant fuzzy partitions, (2) partition combi-
nation, (3) removal of redundant rules, and (4) removal of
rules with output close to zero. All these steps are based on
a similarity measure. Since, we are dealing with trapezoidal
membership functions, we will apply the similarity measures
described in [12].

• Redundant partitions: they are discovered by computing
the similarity of the fuzzy sets describing these partitions
to the universe. A fuzzy set Ar

i j is removed if:

Sim(Ar
i j , U ) > ε, (29)

where ε ∈ (0, 1) and indicates a threshold (a required level
of similarity), U indicates the universe that is defined as
follows:

∀ xk, μU (xki ) = 1.

Any sample has a full membership in the universe of dis-
course.

• Combination of fuzzy partition: two fuzzy partition are
combined if their similarity exceeds a certain threshold:

Sim(Ar
i j , Ar

ik) > τ, (30)

where Ar
i j ,A

r
ik are the j th and kth partitions of the feature

i in the rule r
• Removal of weakly firing rules: this consists of identifying

rules whose output is always close to 0.

μr
i < β. (31)

• Removal of redundant rules: there is redundancy if the sim-
ilarity between the antecedents of the rules is high exceed-
ing some threshold δ. The similarity of the antecedents of
two rules r and p is given as:

sim(Ar , Ap) = min
i, i=1,n

{Sim(Ar
i , Ap

i )}, (32)

where the antecedents Ar and Ap are given by the set of
fuzzy partitions representing the n features Ar =〈
Ar

1, . . . , Ar
n

〉
and Ar = 〈

Ar
1, . . . , Ar

n

〉
.

In order to keep a balance between the accuracy and the
compactness of the rules, we set the threshold values ε, τ , β,
and δ to 0.7, 0.7, 0.3, and 0.7, for the cancer data set, while for
the wine data set the β parameter is set to 0.18 and the other

Table 7 Effect of the new data batches on rule generation with optimi-
zation

Batch no. Cancer data Wine data

B1 8 31
B2 8 57
B3 8 80
B4 8 101

Table 8 Evolution the order of features as new data arrives

After Feature order

Cancer data Wine data

Batch 1 4 7 9 1 2 6 8 3 5 5 1 3 4 11 7 8 10 6 9 13 12 2
Batch 2 1 5 8 2 7 9 4 3 6 5 1 3 11 4 9 12 2 13 6 10 7 8
Batch 3 6 4 9 5 3 8 1 2 7 1 5 9 2 3 8 10 4 12 6 11 7 13
Batch 4 9 5 1 8 4 6 7 3 2 8 1 3 9 12 5 10 4 11 7 13 6 2

parameters remain the same. The number of rules resulting
after this optimization are shown in Table 7.

It is clear that the first optimization stage dramatically
reduces the number of rules for the cancer data (only eight
rules), while for the wine data, this number is still high despite
the reduction achieved (101 rules after introducing the four
batches). As we will see in the next section, this reduction
does not affect the classification performance although in
general there is tradeoff between transparency achieved by
means of this simplification and the accuracy of the classifier.

The second optimization stage relies on the incremen-
tal feature selection procedure introduced in this paper. The
application of this procedure allows to identify the important
features. As shown in Table 8, the degree of feature impor-
tance changes as new batches arrive. In fact, some feature
highly ranked in the first batch are pushed to the back of the
ordered list of features and vice versa (see for instance fea-
tures 4 and 5). To reduce the number of rules, the tradeoff
between the classification accuracy and the transparency of
the rules has to be made.

Table 9 shows the number of rules obtained after reduc-
ing the number of features for the cancer data set to 7 and
9 features for the wine data set with which we get the best
classification performance. It is clearly shown that the incre-
mental feature selection procedure reduces the number of
rules. In fact for both data sets, as learning takes place from
many batches, the number of rules decreases. Consider the
wine data, the number of rules goes from 101 rules obtained
via the first stage of the optimization procedure down to 51
after introducing the last batch. For the breast cancer data, the
number goes from 8 down to only 4. In summary, the system
tends to get the optimal set of rules that cover the whole data,
less strong rules are discarded and new rules, if required, are
added reflecting the role of incremental learning.

As to the effect of adding new data on the existing rules,
the confidence factors associated with the classes that reflect
the concentration of samples in the regions modeled by those
rules are updated as explained in the previous section. If a
rule can handle a part of the incoming data, then its conse-
quent part should be re-weighted with the new data. For the
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Table 9 Effect of the new data batches on rule generation with feature
selection

Batch no. Cancer data Wine data

B1 5 4
B2 5 24
B3 5 25
B4 4 51

Table 10 Sample of rules discovered from B1 — cancer data

Rule x4 x7 x9 x1 x2 x6 x8 C1 C2

1 1 1 1 2 1 1 1 1 0
2 1 1 2 1 1 1 1 1 0
3 1 2 1 2 1 1 1 0.8 0.2
4 2 2 1 2 2 2 2 0.333 0.667
5 2 2 2 2 2 2 2 0 1

Table 11 Sample of rules after introducing B2 — cancer data

Rule x1 x5 x8 x2 x7 x9 x4 C1 C2

1 2 1 1 1 1 1 1 1 0
2 1 1 1 1 1 2 1 1 0
3 1 2 2 1 2 1 2 1 0
4 2 2 2 2 2 1 2 0 1
5 2 2 2 2 2 2 2 0 1

sake of illustration, let us consider the cancer data. Table 10
shows the set of rules generated after batch B1 from the cancer
data. Their augmentation after introducing B2 is illustrated in
Table 11. Note that in both tables, the linguistic terms are rep-
resented as integers. The intention behind this is to keep the
rule as general as possible and to achieve simplicity. When,
in the future, these rules involve more than two partitions
per input variable, it is easy to designate them by numbers
rather than by linguistic values. One can associate a corre-
spondence between these numbers and appropriate linguistic
values depending on the feature.

In summary, rules change, over time in an incremental
way as new data is made available, with respect to the fol-
lowing aspects:

• Their number,
• Their consequents,
• The number of partitions per input variable, and
• The number of input variables involved in the antecedents

of the rules.

7.2 Classification performance

As mentioned in the previous subsection, the number of rules
obtained after optimization (see Table 9) after fixing a set
of important features. This number was 7 for the cancer
data and 9 for the wine data. These features, themselves, are
determined on the basis of the accuracy performance of the
induced classifier. Table 12 shows how the classification per-
formance of the classifier monotonically increases as it gets
new batches of data. This can be explained by the fact that

Table 12 Classification performance of the induced classifier

Batch no. Cancer data Wine data

B1 95.13 85.51
B2 96.46 93.10
B3 97.34 96.55
B4 99.11 96.55

Table 13 Incremental version vs. the batch version: Number of rules

Incremental version Batch version

Batch Cancer Wine Available data Can. Win.

B1 5 4 B1 5 4
B2 5 24 B1 ∪ B2 6 22
B3 5 25 B1 ∪ B2 ∪ B3 4 24
B4 4 51 B1 ∪ B2 ∪ B3 ∪ B4 4 46

as the amount of data grows the representation space of data
is completely covered by the rules generated. It is also worth
stressing that the obtained results are very high even though
there is no global optimization that involves the whole data,
as is traditionally done by means of genetic algorithms and
other error minimization techniques. In our case here, this is
not possible because the whole data is not available at once
and we do not have access to previously used data during the
incremental steps.

7.3 Discussion

In a previous work in the context of incremental rule learning
[5,6], a slightly different approach was investigated. It con-
sists of two steps: (1) hierarchical clustering (2) rule induc-
tion. In the first step, the incremental supervised Algorithm 3
is applied generating a certain number of clusters. Using
FCM, the prototypes of these clustered are then grouped into
a predefined number of clusters whose number corresponds
to the linguistic scale in which we are interested. In the second
step, trapezoidal functions are derived by some partitioning
algorithm and rules are then extracted. This approach has
been evaluated on Iris plants data set and very encouraging
results have been obtained. The approach presented in this
paper differs from that approach, where the best classification
result obtained on Iris data was 98.7%, in that: no pre-defined
linguistic scale is required, a one-step clustering is applied,
various aspects of optimization (partition aggregation, rule
reduction, feature selection) are considered.

The approach investigated here is highly competitive with
non-incremental approaches where full data is present at once
as is the case, for instance, in [28] (accuracy is 95.06% for
the wine data) and in [19] (accuracy is 99.4% for the cancer
data but with 60 rules). Having the whole data available, one
can use other optimization techniques like genetic algorithms
that might outperform the optimization techniques we use. In
the future, one can investigate this aspect thoroughly.

To further appreciate the incrementality classifier pre-
sented here, let us compare the classification results and
the number of rules obtained earlier (with incrementality,
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see Tables 9, 12) against those obtained with an off-line or
batch version of the classifier. To perform this comparison,
when an i th batch is used by the incremental version (after
learning from the batches 1 . . . i − 1), the off-line version
uses all batches 1 . . . i . Tables 13 and 14 show the number of
rules and the classification results respectively (For the sake
of readability, we reproduce the already known results of the
incremental version).

Basically, they show that the results obtained by both ver-
sions of the classifier are very similar, though the number of
rules with the batch version is somewhat smaller than that
obtained with the incremental version. On the contrast, the
classification performance resulting from incremental train-
ing of the classifier on the cancer data is slightly higher. For
the case of the wine data, the batch version is slightly better
than the incremental version. The very important fact to be
retained here is that the incrementality does not negatively
affect the accuracy and the transparency of the classifier.

Another aspect can be discussed here, that related to the
time complexity. Although, the training time is not a crucial
point given that incremental learning takes place only as new
data is made available while the classifier is under use, in the
following experiment, we compare the execution time of the
incremental and the batch versions. As anticipated, it is clear
from the plot (Fig. 8) that the execution time of the batch ver-
sion is shorter compared with that needed by the incremental
version. This is because batch learning is a one-step process,
where each task is done once. In incremental learning, the
new data is analyzed and the rule base is upgraded via the
update operations (described in Sect. 6) that require much
time. However, since incremental learning takes place only
when new data becomes available, the update does not have
any impact on the system. In addition, even when we train
the system on new data to obtain a new version of the system,
the current version of the system is still operational.

From the perspective of transparency and compactness
of the rule base, it is important to note that, using all fea-

Table 14 Incremental version vs. the batch version: Classification accu-
racy

Incremental version Batch version

Batch Cancer Wine Available data Can. Win.

B1 95.13 85.51 B1 95.13 85.51
B2 96.46 93.10 B1 ∪ B2 94.41 94.19
B3 97.34 96.55 B1 ∪ B2 ∪ B3 96.46 96.55
B4 99.11 96.55 B1 ∪ B2 ∪ B3 ∪ B4 97.90 97.20

tures allowed to obtain better results with the wine data set
achieving up to 98%; while with the cancer data, the reduc-
tion of features did not deteriorate the classification results. It
is however worth mentioning that in addition to the incremen-
tal feature selection based on Fisher’s interclass separability
method, the redundancy elimination procedure described in
Sect. 7 is also of high importance even when solely applied.
But, their combination, as is done in this work, has provided
better classification results.

A last thing to mention is related to the incrementality
aspect, the subject of this paper. The approach investigated
here is a “truly” incremental learning approach, where data
used previously in an incremental step is never reused in
subsequent steps. It considers in an efficient way all con-
ditions an incremental learning algorithm must fulfill (see
Sect. 2). Our literature review has shown that most of the
algorithms using the wording “incremental” are not really
incremental.

8 Conclusion

This paper presents a new approach for learning fuzzy rules
in an incremental way. The approach consists mainly of three
steps: incremental clustering, rule generation and rule base
optimization. The notion of incremental learning is investi-
gated in depth. At all steps of the fuzzy classifier construction,
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the incrementality aspect is taken care of. The experiments
showed that as new data batches arrive, new rules may be
discovered and existing ones may be updated or partially
removed. Furthermore, the classification accuracy was found
competitive with the no-incremental rule-based classification
systems, though the primary goal in this paper is how to equip
such systems with plasticity by accommodating new data.

As a future work, it is of interest to investigate some fur-
ther cases of incrementality. These include situations when
arriving batches generate new clusters, or when samples of
new batches belong to a different class not known previously.
In addition, interpretability issues remain a hot topic and it
is important to investigate further reduction mechanisms in
addition to those applied in this paper.
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