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Abstract 

The completeness and consistency conditions were introduced in order to achieve acceptable concept recognition rules. 
In real problems, we can handle noise-affected examples and it is not always possible to maintain both conditions. Moreover, 
when we use fuzzy information there is a partial matching between examples and rules, therefore the consistency condition 
becomes a matter of degree. In this paper, a learning algorithm based on soft consistency and completeness conditions 
is proposed. This learning algorithm combines in a single process rule and feature selection and it is tested on different 
databases. @ 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Inductive learning has been successfully applied to 
concept classification problems. Usually, the knowl- 
edge is represented through rules meaning the rela- 
tionships between the different problem variables. In 
this paper, we are interested in studying conditions 
that allow us to propose learning algorithms capable 
of  learning concept classification rules. Moreover, 
we are interested in algorithms capable o f  handling 
fuzzy information [ 18] and capable o f  obtaining fuzzy 
rules. Several learning algorithms working in fuzzy 
environments have been proposed in the literature 
[3, 4, 9, 12, 15-17]. 

Two conditions that must be satisfied for a learn- 
ing algorithm to obtain acceptable concept recogni- 
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tion rules were introduced in [11]. These conditions 
are the completeness and the consistency conditions. 
The completeness condition states that every example 
of  some class must satisfy some rule from this class. 
The consistency condition states that if an example 
satisfies a description of  some class, then it cannot be 
a member of  a training set o f  any other class. 

Both conditions provide the logical foundation o f  
algorithms for concept learning from examples, but in 
real cases both conditions are difficult to satisfy. In 
our case, we find two problems, first, on real problems 
we can handle noise-affected examples and therefore 
it is not always possible to keep the completeness and 
consistency conditions. Moreover, when we use fuzzy 
rules we have a second problem since the examples 
have a partial matching with the rules, and therefore 
the consistency condition becomes a matter of  degree. 
Thus, we are interested in obtaining soft consistency 
and completeness conditions. 

The basic idea of  the proposed learning algorithm 
consists in, on the one hand, determining the best 
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Fig. 1. The fuzzy domain of X1 and )(2. 

rules to represent a set of examples E (rule selec- 
tion), on the other, obtaining for each rule the rel- 
evant variables in order to describe each particular 
concept (feature selection). Thus, the algorithm starts 
with all possible antecedent variables and a fixed con- 
sequent variable (representing the concept). We want 
to know which are the rules capable of identifying 
each value of the consequent variable, and for each 
rule, the relevant antecedent variables to describe the 
concept. 

The rule selection is carried out by choosing among 
those rules that satisfy the soft consistency condition 
and cover the maximum number of positive examples. 
Thus, we fix a value of the consequent variable and 
next we select the rule that covers the maximum num- 
ber of positive examples. Since it is possible that this 
value may be described for several different rules, we 
eliminate the examples covered by the previous rule 
and we repeat the process until the soft completeness 
condition is verified. These steps are carried out for 
each value of the consequent variable, and in the end, 
we have a set of rules that represent the original set 
of examples, E. In each step, we shall use a genetic 
algorithm [6] as a search method for the best rule. 

The feature selection is based on the use of a 
particular model of rule that allow us to eliminate 
non-relevant variables. The rule model, that we use 
in this work, consists in the left-hand side (the an- 
tecedent part) of a conjunction of one or more vari- 
ables whereas the right-hand side (the consequent 
part) indicates the value of the classification variable 
to be assigned to the examples that are matched by 
the left-hand side of the rule. Each member of the 
conjunction in the antecedent can have an internal dis- 
junction, i.e., we accept that the value assigned to an 
antecedent variable in the rules can be a subset of its 

domain. For example, a rule might take the following 
expression: 

If (Xl = Very-High) and 

(X2 = Very-Low or Low or Medium) then 

(Y = approximately equal to 0) 

(1) 

where the domain of variables Xl and )(2 has been 
represented in Fig. 1. 

In order to learn the structure of a rule this model 
is fundamental in the proposed learning algorithm, 
since at the beginning it will start with atl the possi- 
ble antecedent variables and then it will decide which 
are the relevant variables for the fixed consequent. 
In this process, the algorithm uses the aforemen- 
tioned model of rule to eliminate the non-relevant 
variables. When the best rule for a class contains a 
variable having a value made up of all possible val- 
ues of its domain, then the algorithm has discovered 
that this variable is not relevant to this consequence 
and it can be eliminated from the rule. This model 
of rule has been used in the literature by several 
authors (see [2, 8, 11] for example). In the fuzzy 
learning literature, there are not many previous pa- 
pers suggesting solutions to this difficult problem. 
The greater part of these papers achieve rules in 
which all the variables necessarily appear, and the 
algorithms are not able to eliminate non-relevant 
variables. Therefore, these algorithms need a prior 
reduction in the possible variable set. In [10], this 
task is carried out by an expert that proposes a 
pre-selection of "possible interesting" features. An 
exception is [15] in which an algorithm capable 
of determining the structure of the fuzzy rules is 
proposed. 
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One of the main advantages of  the proposed leam- 
ing algorithm is that combines in a single process the 
rule selection and the feature selection. 

Moreover, the aforementioned model of rule is im- 
portant since it allows us to change, in some cases, 
the granularity of  the domain by combining different 
elements. For example, the rule shown in (1) assigns 
the value {Very-Low, Low, Medium} to the variable 
X2. This value may be interpreted as a new label "less 
than or equal to medium". The proposed model of rule 
therefore allows us to include some structured descrip- 
tors [ 11 ] in an easy way. 

This work deals with the problem of defining com- 
pleteness and consistency conditions for learning 
fuzzy rules. The next section is devoted to introduce 
a soft consistency condition. The completeness con- 
dition and the learning algorithm are introduced in 
Section 3. We have implemented a system called 
SLAVE with the aforementioned features and in 
Section 4 we carry out different experimental 
tests in order to study its predictive performance. 
Finally, in the last section we propose a modification 
of the algorithm that attempts to simplify the practical 
choice of the parameters in SLAVE. 

2. The k-consistency condition 

The consistency condition states that if an example 
satisfies a description of some class, then it cannot be 
a member of a training set of any other class. We pro- 
pose a weaker definition based on the non-fulfillment 
of this condition in several cases. 

Let us suppose E is a set of  examples containing 
every example 

X1 )(2 X3 ... X, c(Ye ) 
el e2 e3 en 

n antecedent variables X1,X2 . . . . .  X, and a consequent 
variable Y. 

The referential set for each antecedent variable X/is 
Ui and the referential set for the consequent variable 
is V. The domains for the rules will be D i for the an- 
tecedent variables and F for the consequent variable. 
In this paper, we accept that the sets Di Vi C { 1 . . . . .  n} 
and F are finite sets, and that some of them may be 

fuzzy domains, i.e., set made up by fuzzy sets in the 
respective referential sets. 

Let e be a crisp example 

e = ( e l , e 2  . . . . .  en,c(e)), 

where ei C Ui are the values of  the antecedent variables 
and c(e) is the class associated to e. Let A be the 

rule set 

A = P(D1) x P(D2) x . . .  x P(Dn) x F, 

where P(X)  denotes the set of subsets of  X. 
Let R be a crisp rule with an antecedent part ant(R) 

and a consequent part con(R). We can say that the 
example e adapts to the rule R iff 

(i) (el . . . . .  e , )  C ant(R), 
(ii) c(e) C_ con(R). 
For example, the example (10, red, 1) adapts to the 

rule " I f X  is less than 20 and Y is any colour, then Z 
is an integer". 

By using the adaptation between example and rule, 
we can classify the examples as negative or positive to 
a rule. An example is positive if it adapts to the rule, 
and an example is negative if (i) is a true condition 
then (ii) is a false condition. 

Let E be an example set. By using the concept 
stated, we can define the following subsets of  E: 

E+(R) = { e E E l e  is a positive example to R} 

E- (R)  = { e E E l e  is a negative example to R} 

and the cardinality of  these subsets shall be denoted by 

n~(R) = IE-(R)I, 

n; (R)  = IE (R)I. 

Let H C_ A be a set of  rules, then the following 
equivalence is obviously verified 

H satisfies the consistency condition 

n~(R) = 0, VREH. 

Therefore, the consistency condition implies that 
the rules selected by the learning algorithm must not 
have negative examples. In order to weaken this strong 
condition, the first idea consists in allowing it to have 
some negative examples, but not many. How many 
examples can we admit? We can fix a hard threshold, 
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i.e., H could satisfy a new consistency condition if 
and only if, for some ~, n{ (R)~< e VR E H. However, 
this definition does not take into account the number 
of positive examples. Perhaps we might be interested 
in admitting two negative examples for a rule with 20 
positive examples, but we do not admit it if the rule 
only has two positive examples. Therefore we propose 
the following weak definition of consistency. / 

Definition 2.1. Let R E A be a rule and k c [0, 1] be 
a fixed parameter. We say that the rule R, such that 
n + (R) > 0, satisfies the k-consistency condition if and 
only if 
• k = 0 t h e n n { ( R ) = 0 .  
• kE(0 ,  1] then n~(R) < kn+(R). 

The classical consistency condition is included in 
this definition as a 0-consistency condition and, in 
general, the parameter k allows us to weaken this 
condition. Parameter k may be interpreted as a noise 
threshold since a rule satisfies the k-consistency con- 
dition when a noise level less than the 100*k per- 
cent of  the positive examples, appears in the example 
set. Parameter k will be called the consistency para- 
meter. This definition uses the same noise threshold 
for all rules. The k-consistency condition allows us 
to weaken the hard consistency condition gradually 
through the growth of the parameter k, as the follow- 
ing proposition shows. 

Proposition 2.1. Let R E A be a rule and kt <<. k2 then 

R satisfies the kl-consistency condition 

R satisfies the k2-consistency condition. 

By using this proposition, and if we denote by 
A k C A, the set of  rules that satisfies the k-consistency 
condition is then 

A k~ C_ A kz, 

Vkl, k2 c [0, 1 ] such that k~ ~< k2. 
Therefore, if we increase the value of parameter k, 

we also increase the size of  the search space for the 
best rules (see Fig. 2). This process might be neces- 
sary, since in some cases it is not possible to find good 
rules in such a small space. 

Once we have achieved a weak definition of con- 
sistency for crisp examples and rules, we extend this 

Fig. 2. The k-consistency spaces. 

definition to fuzzy examples and rules. In order to 
obtain this extension, we have to define the set of  neg- 
ative and positive examples of  a rule. The basic con- 
cept in these definitions is the concept of  compatibility 
between two fuzzy sets. 

Definition 2.2. Let a and b be two fuzzy sets in a 
common referential set U, and • a t-norm, we define 
the compatibility between a and b as the following 
function: 

~r(a, b) = s u p { r e ( x )  * ub(x)} .  
xCU 

In this paper, we need to widen this definition to 
calculate the compatibility between two sets of  fuzzy 
sets, and we propose the following definition. 

Definition 2.3. Let Doml and Dora2 be two domains 
made up by fuzzy sets in a common referential set U, 
and C1 C_DOml and C2 C Dom2 each be a set of  fuzzy 
sets. We define the compatibility between both sets as 

~r(C1,C2) = sup sup a(a,b). 
acCI bEC2 

We use the same symbol tr for both definitions since 
the last definition is an extension of  the former, and 
both coincide for unitary sets. 

From these concepts, we define the adaptation 
between an example and the antecedent and conse- 
quent of a rule, respectively, through the extension to 
the cartesian product of a normalization of the said 
compatibility. 

Let e be an example composed of  different features 

e = (el,e2 . . . . .  en, c(e)), 
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where ei is now a fuzzy set in the referential set Ui, 
and c(e) is the class assigned to the example e. 

Usually, the features of  the examples are crisp 
more than fuzzy, but without difficulty we can extend 
the kind of examples that the learning algorithm can 
use. In general, to allow fuzzy examples is useful 
in order to include some possible imprecision in the 
data. For example, fuzzy inputs can appear when we 
have imprecise rules in which we have no complete 
confidence and we can decide to include them as new 
examples to be considered. Moreover, fuzzy inputs 
can appear when we have missing values and we de- 
cide to replace them by its complete domain (a set of 
fuzzy sets) representing that any value is possible. 

Let RB(A) be a rule with antecedent part 
A = (A1 .. . .  ,An) Ai C Di and consequent part B E F. 
For each component of  the antecedent obviously the 
following quotient is a measure of possibility 

Poss(Ailei ) _ a(ei,Ai ) 
a(ei,Di)' 

and its dual is a measure of  necessity 

G(ei,Ai) 
Nec(Ai[ei) = 1 a(ei ,Di) '  

where the negation is considered in this work as the 
complementary of the set Ai, that is, 

= {aCDi la ~ Ai}. 

Thus, we can define the adaptation between an ex- 
ample and the antecedent of  a rule combining through 
a t-norm the different measures of  possibility or 
necessity of each Ai given the evidence supported by 
the example. Since we have two possible measures, 
we obtain two adaptation concepts. 
• Upper adaptation between example and antecedent 

of Rs(A): 

U(e,A) 

= Poss(A1 [el ) * Poss(A2[e2 ) * . ' .  * Poss(An [en ). 

• Lower adaptation between example and antecedent 
of RB(A): 

L(e,A) 

= Nec(A~ ]el ) * Uec(A2le2) * . . .  * Nec(A, len). 

In the same way, we define the adaptation between 
the example and the consequent of  the rule as 
• Upper adaptation between example and consequent 

of  RB(A): 

~r(c(e),B) 
U(e,B) -- 

a(c(e) ,F)  

• Lower adaptation between example and consequent 
of R~(A): 

a(c(e),B) 
L(e,B) = 1 

a(c(e),F)" 

Obviously, the following inequalities are verified: 

L(e,A)<~ U(e,A) VeEE, 

and 

L(e,B)<~ U(e,B) Ve6E. 

These inequalities show that we have two possible 
adaptation concepts, the first one is a stricter definition 
based on a measure of  necessity and the second one is 
a wider definition based on a measure of  possibility. 

From these concepts we can define the positive and 
negative example set given a rule. 

Definition 2.4. The lower and upper set of positive 
examples for the rule RB(A) are the following fuzzy 
subsets of  E, 

E](R~(A)) = {(e,L(e,A) * Z(e ,B) ) le  EE}, 

E+(RB(A)) = {(e, U(e,A) • U(e ,B) ) IeEE} ,  

where A = (Ai . . . . .  An), and * is a t-norm. 

Definition 2.5. The lower and upper set of negative 
examples for the rule RB(A) are the following fuzzy 
subsets of E, 

EE(RB(A)) = {(e,L(e,A) * L(e,B)) ]eEE),  

E~,(RB(A)) = {(e, U(e,A) * U(e,B)) I eEE) ,  

where A = (A1 . . . . .  A,), and • is a t-norm. 

Obviously, 

E~(Rs(A))  C_ Ely(Re(A)), 

E E (R~(A)) c_ EU (RB(A)). 



42 A. Gonzalez, R. Perez/Fuzzy Sets and Systems 96 (1998) 37-51 

Usually, the domain of the consequent variable in 
concept classification problems, consists in nominal 
descriptors, i.e., the domain is formed by indepen- 
dent symbols or names, and therefore no structure 
is assumed to relate the values in the domain. In 
this case, the said definition may be simplified, since 
L(e,B) = U(e,B) = 1 if c(e) = B and 0 otherwise, 
and, for example, the upper set of  positive examples 
becomes 

E+(RB(A)) = {(e, U(e ,A) ) [eEE and c(e) = B}. 

Once we have definitions for positive and nega- 
tive examples of  a rule, we can use a counter to 
determine the number of  positive and negative exam- 
ples for a rule, which are the concepts needed in the 
k-consistency condition. Thus, let us denote ]A[ = 
~u~UpA(u), as the cardinality of a fuzzy subset. By 
using this, we obtain the following definitions: 
• Number of  positive examples on Rs(A) 

- lower value n + (RB (A)) = [E + (RB (A))[, 
- upper value n + (RB (A)) = ]E + (R8 (A))]. 
Obviously, 

n-~ (RB(A) ) <~ n+ (Rs(A) ). 

• Number of  negative examples on R~(A) 
- lower value n[(Rs(A))  = ]E~(RB(A))[, 
- upper value n~(R~(A)) = ]E{(Rs(A))[. 
Obviously, 

n[ (RB(A) ) <~ n~(RB(A) ). 

Now, Definition 2.1 can be also applied to fuzzy 
rules. However, since we have two concepts for pos- 
itive and negative examples of  a rule, we also have 
two different consistency definitions for fuzzy rules: 
a lower consistency condition (using n + and n~-) and 
an upper consistency condition (using n + and n~). 
We denote by AkL and A~, the set of rules that satisfies 
the lower and upper k-consistency conditions, respec- 
tively. These definitions are the basis for the learning 
algorithm that we propose in the next section. 

3. Learning algorithm and completeness condition 

As we said in the introduction we are interested in 
determining the best rules to represent the set of  exam- 
pies E. The complete space of antecedents for a fixed 

to fix a concept 

J 
to select the best 

rule using examples 

to eliminate the examples 

covered by the rule 

to determine ff more rules 

for this concept are needed 

_ _ l  oo 

to take a new concept using 

the initial set of  examples 

Fig. 3. The rule selection. 

consequent is the set A. But now, we shall choose 
among those rules that satisfy the k-consistency con- 
dition, with k E [0, 1] being a fixed parameter. There- 
fore, the search space is AkC_ A. Thus, first we fix 
a value of the consequent variable and next we se- 
lect the rule of A k that covers the maximum num- 
ber of  positive examples. We eliminate the examples 
covered by the previous rule and we repeat the process 
until we have examples of  this class. These steps are 
carried out for each value of the consequent variable, 
and finally, we obtain a set of  rules that represents the 
original set of  examples E. 

The basic step in the algorithm that we propose con- 
sists in obtaining rules covering the maximum number 
of  examples in the training set E, i.e., for each value 
B E F, the main problem is 

max{n+(RB(A)) IRB(A) E Ak}, (2) 

where in the definition of n + and n - ,  we can use the 
lower or upper definitions from the previous section, 
and D = P(D1) × P(D2) × ' . - ×  P(Dn). 

In order to solve the problem of obtaining the rules 
covering the maximum number of  examples, we need 
to clarify the concept of  the set of examples covered by 
a fuzzy rule. We know that an example is covered by 
a rule to a certain degree, therefore, in a sense, a rule 
covers all the examples, but we are interested in the 
examples covered with the higher degree. Therefore, 
we propose the following definition. 
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Definition 3.1. Let R be a rule and E a set of exam- 
ples. The subset of  E representing the examples 2- 
covered by R is the 2-cut of  E+(R). )~ will be called 
the covering parameter. 

We said earlier that the algorithm must repeat the 
process of  searching for the best rule and eliminating 
the examples covered by it while there are examples 
of  the present class. Really, this condition is equiva- 
lent to the completeness condition given in the previ- 
ous section and it is very difficult to satisfy when we 
work with noisy or fuzzy examples. Thus, we propose 
a weaker condition that we call weak completeness 
condition for a class. The latter attempts to determine 
when the number of  examples covered for a set of 
rules on a fixed class is sufficient to represent such a 
class. 

In order to propose the definition, let us suppose 

T = {RI , R 2 , . . .  ,Rs, Rs+l } 

an ordered set of  rules for a class C, being R1 the 
first rule and Rs+l the last rule. Let E be the initial 
set of  examples, and let C¢~(Ri) be the set of  examples 
2-covered by the rule Ri. If  we denote by 

i 

E i = E - U C2(Rj) ,  

j= l  

we can say that the learning algorithm must obtain 
• the rule Rl using E, 
• the rule R2 using E l, 
• the rule R3 using E 2, 
and in general the rule Ri is obtained using E i-1 . 

class, but it is not included in the set of  rules of  this 
class, that is, the output of  the learning algorithm is 

{R1,R2 . . . . .  Rs}. 
In order to give a detailed description of the learning 

algorithm, first we have to solve the associated opti- 
mization problem (2) by means of a procedure called 
G E N E T I C ,  which basically uses a genetic algorithm 
to solve the best rule search problem. 

3.1. The 9enetic algorithm 

Genetic algorithms (GAs) are theoretically and em- 
pirically proven to provide robust search capabilities 
in complex spaces, offering an interesting approach to 
problems requiring efficient and effective search [6]. 

In order to use a GA to solve problem (2), we 
need to define the main components of our prob- 
lem in the common formulation of genetic algorithms. 
The final genetic algorithm adapted to solve (2) has 
been called GENETIC. First, we need a representation 
of the potential problem solution, i.e., the antecedent 
of  the rules. In [7] we propose the following binary 
coding: 

If  the database contains n possible antecedent vari- 
ables and each one of them has a fuzzy domain Di 
associated with mi components 

Xi ~ Di = {A i l , . . . ,A im i } ,  

then we use the following method of coding any el- 
ements of  P(D1) × P(D2) x .-.  x P(D,) ,  a vector 
of m~ + m2 + . . .  + mn zero-one components, such 
that, 

Definition 3.2. We say that the set of rules T = 
{R1,R2 . . . . .  R~, Rs+l} of the class C verifies the weak 
completeness condition if and only if 

Rs+l ~ A k 

or  

R,+I EA ~ and C~.(R,+I) = (~. 

Obviously, this definition is associated to an algo- 
rithm that generates an ordered set of  rules, and the 
order corresponds to an optimality criterion, that is, Ri 
is a better rule (in some sense) that Ri+l. 

The last rule Rs+l is really only used to conclude 
that the number of  rules is enough to represent the 

component(ml + . . .  + mr-I  + s) 

1, if the sth element of the domain Dr is a 
= value of the Xr variable, 

0, otherwise. 

Example 1. Let us suppose we have three variables 
XI,X2 and X3, such that the fuzzy domain associated 
with each one is 

D1 = {AI1,A12,A13}, 

D2 = {A21,A22,A23,A24,A25 }, 

D3 = {A31,A32}. 
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In this case, the vector 1010010111 represents the fol- 
lowing antecedent 

X 1 is {All,A13} and )(2 is {A23,A25} 

and 

X3 is {A31,A32}. 

Since )(3 takes all the elements in the domain D3, 
the said antecedent is equivalent to 

X, is {A,,,AI3} and )(2 is {Az3,A25}. 

Another important component of the genetic al- 
gorithm is the method for creating the initial solu- 
tion population. In GENETIC we use a procedure for 
obtaining antecedents with a high possibility to guide 
the search toward good solutions. The procedure con- 
sists in taking a subset of examples at random among 
those with the current consequent and that they have 
not been eliminated yet. For each one of these exam- 
ples, we select the most specific antecedent having the 
highest adaptation with the example. 

For example, let us suppose three variables X1,X2 
and X3 with the associated fuzzy domain described 
in Fig. 1, the same for all the variables. Thus, if we 
choose the example (26, 54, 100), the procedure will 
generate the antecedent corresponding to binary code 
00100 00100 00001. 

The GENETIC procedure uses the following fit- 
ness function that measures the power of the rule 
(positive examples) whenever the rule satisfies the k- 
consistency condition. 

fitness(Re(A)) : { 0 +(RS(A)) otherwise,ifR~(A) E A k, 

where the number of positive examples and the defi- 
nition of A k have been achieved with the same adap- 
tation function. Thus, in fact, we have two different 
fitness functions, one based on the lower consistency 
condition and the other one based on the upper con- 
sistency condition. From now on, we assume that the 
choice of the consistency type is an additional para- 
meter of the genetic algorithm and we do not indicate 
the specific type selected. 

The GENETIC procedure uses a set of genetic 
operators: the ranking linear selection, the mutation 
operator, the two point crossover operator and a self- 
crossover operator. This last operator is a modification 

of the crossover operator that uses only one element in 
the population and it allows us to explore new space 
zones. Moreover, we have considered an elitist model. 

Finally, the genetic algorithm ends, and gives as 
output the best rule founded in the last population, if 
at least one of the following sentences is true: 
• the number of iterations is greater than a fixed limit. 
• the fitness function of the best rule of the population 

does not increase its value during at least a fixed 
number of iterations and previously rules with this 
consequent already have being obtained. 

• there are no rules with this value of the consequent 
yet, but the fitness function does not increase the 
value during a fixed number of iterations and the 
current best rule A-covers at least one example, with 
A being the covering parameter. 
The input of the GENETIC procedure is a set of 

examples E and a value of the consequent variable 
B EF,  and the output is a single rule Re(A)C A k rep- 
resenting the k-consistent rule with consequent B with 
the largest number of positive examples, and corre- 
sponding to the best rule of the last population of the 
genetic algorithm. 

3.2. The learnin9 algorithm 

Now, by using the consistency and completeness 
conditions, the GENETIC optimization procedure 
and the previous general description, we can state the 
following learning algorithm: 

Learning Algorithm 
1. Let R ULES be the set of rules, at the beginning 

RULES is empty, and let E be the training set 
of examples. 

2. Repeat for each B E F 
2.1 Assign the set E to EXAMPLES. 
2.2 Run the GENETIC procedure, with the in- 

put, EXAMPLES and B. Let R be the rule 
obtained as the output of this procedure. 

2.3 While the set of rules of class B does not 
satisfy the weak completeness condition, 
add R to RULES, eliminate the examples 
2-covered by R from EXAMPLES and go 
to step 2.2. Otherwise, take another value of 
the consequent variable and go on to step 2. 

3. Give the set RULES as the output of the algo- 
rithm. 
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This learning algorithm has as input a set o f  exam- 
ples, a set o f  parameters and a basic structure (the con- 
sequent variable and a set of  all possible antecedent 
variables), and generates as output a set o f  rules that 
satisfies the k-consistency and the weak completeness 
condition. 

It would be worthwhile studying some properties 
of  this algorithm, which would demonstrate its overall 
behaviour. 

3.3. Properties 

Firstly, we attempt to discover whether the algo- 
rithm can generate contradictory rules, i.e., rules which 
have the same antecedent but different consequents. 
The answer is negative. 

L e m m a  3.1. Let RULES  be the set of  rules 9ener- 
ated by the learnin9 algorithm and Re, (A), Re, (A) E 
RULES,  with B~ ~ B2 then 

n (RB,(A))>~n+(R82(A)). 

Proof.  The positive and negative example sets were 
defined using a lower or an upper measure, therefore 
this result must be proved for each measure. 
• By using the upper case: 

U(e,/~t ) = supb 6 9, a(c(e), b) >1 a(c(e), B2 ) 
a(c(e),F) a(c(e),F) 

= U(e,  B2 ). 

Therefore, 

nu(Rs~(A)) = Z U ( e , A )  * U(e,/~l) 
eEE 

>~ Z U ( e , A )  * U(e, B2) = n[/(Re,(A)). 
eEE 

• By using the lower case: In a similar way it is very 
easy to show that U(e,/~2)>~ U(e,B~), therefore 
L(e, Bi ) : 1 - U(e, B1)>~ 1 - U(e,/12) = L(e, B2) 
and then n~(Rs,(A)) = ~-~eEEL(e,A) *L(e, Bt) 

}--~ec_E L(e, A ) * L(e, B2) = n~(Re, (A)). 

P r o p o s i t i o n  3.1. I f  RB,(A) E RULES  then Re,_(A) 
RULES VB2 EF such that Bt 7 ~ B2. 
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Proof .  Let us suppose that both Rs,(A),R~2(A ) E 
RULES. In this case both rules must verify the 
k-consistency condition, i.e., 

n-(R~,(A)) < kn+(R~,(A)), 

n-  (RB:(A) ) < kn+(Re2(A ) ). 

By using these expressions and the previous lemma 

n+(RB2(A))<~ n (Re,(A)) < kn+(R~,(A)), 

n+(Re, (A)) <, n-(R~:(A)) < kn~(Rs:(A )). 

Therefore, 

n+ (Re:(A) ) < kn+ (Re~ (A ) ) < k2n+ (Rs:(A) ), 

and this expression implies that 

k 2 >  l 

since n+(R&(A)) > 0, and this is a contradictory result 
with the range of  the parameter k E [0, 1 ]. 

This first result shows that the algorithm cannot pro- 
duce contradictory rules, since both cannot verify the 
k-consistency condition simultaneously. The second 
result, which we are going to prove, shows the basic 
algorithm's behaviour. 

Propos i t ion  3.2. Let Re(At ), Rs(A2) E A k such that 
At C_A2 then 

fitness( Re( A i )) <~ fitness( Rs( A2 ) ). 

Proof.  Let A 1 : (A t t . . . . .  A in ) and A 2 = (A 21 . . . . .  A2,, ). 
Since Ai C A2 then AIj  C_Azj Vj = l . . . . .  n. For each 
example e we have 

Poss(A1/]ej ) <~ Poss(Azj[ej ), 

and 

Nec(A lj[ej ) <~ Nec(A 2j[ej ). 

Therefore, 

U(E, Al )<~ U(e, A2), 

and 

L(E, AI )<~L(e, A2). 

Thus, the result is obvious. 



~ Yes 
No 

This result shows that if a rule RB(A2) is more gen- 
eral than another rule Rs(AI), i.e., A1 C_A2, then the 
first rule has more positive and negative examples. 
The algorithm always chooses the rule with more pos- 
itive examples, therefore if the more general rule con- 
tinues verifying the k-consistency condition then the 
algorithm prefers this more general description. Fi- 
nally, we can say that the learning algorithm chooses 
the most general description for a rule that satisfies 
the k-consistency condition. 

4. Experimental studies 

We have implemented SLAVE (Structural Learn- 
ing Algorithms in Vague Environments) a graphical 
environment for testing and experimenting with the 
proposed learning algorithm. SLAVE is a C written 
program working in an OpenWindows environment. 
The algorithm uses several parameters in the learning 
process. Here we want to study the predictive perfor- 
mance of SLAVE for different consistency type and 
parameters. One of the greatest difficulties associated 
with SLAVE will be the choice of these parameters. 
In this section, we shall propose a modified fitness 
function that make this selection easy. 

4.1. The domains 

We have tested the learning algorithm on six 
databases: five correspond to artificial domains and 
one to a natural domain. Two from the artificial do- 
mains, ART1 and ART2, have been generated from 
a decision tree and the other three were proposed by 
Quinlan in [13] and they are called MONK1, MONK2 
and MONK3, respectively. These domains corre- 
spond to single-class learning problems. The sixth is 
the well known database Iris Plants Database, IRIS, 
created by Fisher [5] that correspond a multi-class 
learning problem. In the following subsections we 
explain each domain. 

4.1.1. ART1 and ART2 databases 
These artificial domains have been designed to 

reveal the predictive performance of SLAVE when 
noise increases in the different database sets. For 
these databases, we use six-feature world in which 
four (XI,Xz,X3,X5) have been considered as continu- 
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Fig. 4. A decision tree. 

ous ones and two-feature (X4,X6) are nominals. The 
ART1 database has 200 examples (144 of the 0-class 
and 56 of the 1-class) and it was generated from the 
decision tree of Fig. 4. 

The ART2 database contains 200 examples (140 of 
the 0-class and 60 of the 1-class), and it was generated 
from the same decision tree but adding a 10% of noise. 

In order to use SLAVE, the continuous features 
have been considered as fuzzy ones and the associated 
domain corresponds to those shown in Fig. 1. 

4.1.2. MONK's databases 
The MONK's problems are a collection of three 

binary classification problems over a six-attribute 
discrete domain. Each training/test data is of the 
form 

(value 1 ) (value2) (value3) (value4) (value5) (value6) 

--+ (class). 

where (value n) represents the value of attribute 
#n, and (class) is either 0 or 1, depending on the class 
this example belongs to. The attributes may take the 
following values: 

attribute # 1 : { 1,2, 3 } 
attribute #2: {1,2,3} 
attribute #3: { 1,2} 
attribute #4: {1,2,3} 
attribute #5: {1,2,3,4} 
attribute #6: { 1,2} 
Thus, the six attributes span a space of 432 = 3 × 
x 2 x 3  x 4 x 2 e x a m p l e s .  
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Fig. 5. Domains for the iris problem. 

The "true" concepts underlying each MONK's  
problem are given by: 
• MONKI:  (attribute #1 = attribute #2) or (attribute 

#5 = 1) 
• MONK2: (attribute #n = 1 ) for EXACTLY TWO 

choices o fn  (in 1,2 . . . .  ,6) 
• MONK3: (attribute #5 = 3 and attribute #4 -- 1) 

or (attribute #5 ¢ 4 and attribute #2 ¢ 3). MONK3 
has 5% additional noise (misclassifications) in the 
training set. 
In these three databases, all the possible combina- 

tions are considered in its test set, that is, the test set 
contains 432 examples. 

4.1.3. Iris databases 
This is perhaps the best known database to be found 

in the pattern recognition literature. Fisher's paper is 
a classic in the field and is referenced frequently to 
this day. The data set contains 3 classes of  50 in- 
stances each, where each class refers to a type of iris 
plant. 

For classifying each plant four continuous attributes 
are used. The domain of each continuous variable of  
this database has been produced without any specific 
information on the problem, and we used a simple 
method that generates a fixed number of  uniformly 
distributed linguistic labels. These domains for each 
variable are shown in Fig. 5. 

4.2. Learning algorithms 

We tried to investigate the predictive accuracy 
of SLAVE in the aforementioned databases. So, 
we carried out different trials considering different 
consistency types (lower and upper) and different 
consistency parameters. The common parameters 
used in all the trials were: 

Covering parameter 2 0.8 
Size population 20 
Maximum iteration number 500 
t-norm minimum 

In order to compare the behaviour of the learning 
algorithm we also used the well-known learning al- 
gorithms, CART [1], C4.5 [13] and backpropagation 
(BP) neural networks [14]. One of the main reasons 
to select these algorithms is that they can use contin- 
uous valued attributes and we do not need to use a 
discretization technique for them. 

4.3. Inference model 

In order to study SLAVE's predictive performance, 
we included an inference model on fuzzy rules in this 
system. Since all the examples considered here are 
crisp and they have a crisp consequent. We used the 
inference method which takes the consequent corre- 
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sponding to the rule with maximum adaptation with 
the example, i.e., let RULES be a set of  rules 

R U L E S  = {Ri [i = 1 . . . . .  nr}, 

with 

antecedent(Ri ) = (Ail, Ai2 . . . . .  Ain ), 

consequent(Ri) = Bi, 

and the example 

e = (el,e2 . . . .  ,en). 

Let H(Rile)  = minj{maxa~A~j{la~(ej)}} be an adap- 
tation measure between each rule and the example. 
Then, the inference process involves selecting the con- 
sequent Bs such that 

max{II(Ri]e)}  = H(Rs]e). 

However, there is a decision problem in several 
cases. The controversial situation appears for example 
when we have Bsj and B~, 2 such that 

m a x { n ( R i l e ) }  = lI(Rs, le) = II(R,~ le) 

and 

Bs, ¢ Bs2. 

We say that in this case we have a conflict in the rule 
set, and we need to decide what is the best consequent. 

Initially, the set of rules is ordered according to the 
number of  examples that each rule eliminated in the 
learning process. When a conflict appears, SLAVE 
predictive process selects the consequent of  the rule 
with lower order between the rules of  conflict. 

Example 2. Let R U L E S  be a set of  rules learned with 
S L A  VE and e an example that we want to classify. 
Let us suppose that for classifying the e example a 
conflict between three rules in R U L E S ,  RI, R2 and 
R3 is produced, where each rule eliminated d~, d2 and 
d3 examples in the training set, respectively. Let us 
suppose that dl < d2 < d3, then S L A V E  for solving 
the conflict selects the consequent of R~ rule. 

The draw cases are solved by maintaining the order 
in which SLAVE obtained the rules. 

This criterion for solving conflicts is based on a 
probabilistic prediction. SLAVE selects the conse- 
quent of the one rule that has the most probability of  
success using its knowledge about the training set. 
Thus, when the initial set of  rules has been ordered 
by the previous criterion, SLAVE checks the adapta- 
tion between the example and each rule and gives the 
consequent corresponding to the first best value. 

4.4. Results 

We have taken three different partitions from each 
training and test set in the different database sets except 
in the MONK's  problem that we have only used the 
partitions proposed in [ 13]. For ART1, ART2 and IRIS 
the examples were randomly divided into a training 
set (75%) and a test set (25%). The following tables 
show the accuracy rates for each database on differ- 
ent consistency parameters and the lower and upper 
consistency conditions, respectively. The accuracy of 
Table 1 corresponds to the average accuracy of the 
different partitions for each test set. 

In order to compare the results obtained in the dif- 
ferent learning databases Table 2 shows the average 
accuracy for BP 2 , CART and C4.5 in the different 
partitions of  each example set. 

SLAVE improves the accuracy of the reference 
algorithms (BP, CART and C4.5) for all databases 
except for the monk's problem where BP (in MONK1 
and MONK2) and C4.5 (in MONK3) obtain the best 
results, being in both cases SLAVE the second better 
result. The monk's problem is composed by nomi- 
nal variables, where the fuzzyness of  SLAVE seems 
to be less useful (more appropriate for discretizing 
continuous antecedent variables), even in this case 
SLAVE obtains a better result than other more classic 
learning approaches. 

We can see in the tables that on ART1 and MONK1 
databases the lower case obtains the higher accuracy 
and these are the less noisy databases considered, 
while the upper case obtains its better result for 
databases with a higher noise level (the best for IRIS 
and ART2 and the second better result for MONK2 
and MONK3). After this analysis, we can conclude 

2 The experimental tests have been made using the shareware 
Aspirin/MIGRAINES system copyright of Russell Leighton and 
the MITRE corporation. 
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Table l 

k ART1 ART2 IRIS MONK1 MONK2 MONK3 

Lower case 
0 100 94.42 88 .80  97.22 48.85 78.12 
0.01 100 93.33 89.51 77.78 60.47 78.12 
0.1 99.23 90.45 90.7 91.67 60.47 90.62 

Upper case 
0.1 97.24 93 .33  79 .98  91.67 65.12 93.75 
0.2 98.68 94 .12  93 .74  75.00 48.85 96.88 
0.3 98.68 94.61 94.45 83.33 48.85 96.88 

Table 2 

Learning Algorithm ARTI ART2 IRIS MONK1 M O N K 2  MONK3 

CART 99.23 89.32 92.96 83.27 60.30 92.32 
C4.5 99.23 93.85 91.13 75.70 65.00 97.20 
BP 99.23 87.89 91.56 100 100 93.75 

that the upper case has better behaviour for databases 
with high noise level. The lower case obtain a better 
result in databases with low level o f  noise. 

From the tables, we can see that the accuracy o f  
SLAVE is strongly associated to the value o f  the 
consistency parameter, and the best value for this 
parameter is different for each database. 

With these results, we can conclude that SLAVE is 
capable of  learning with reasonable rate accuracy, but 
the final result is highly dependent on the consistency 
parameter chosen, and it is not easy to know a priori 
what this parameter  is. The following section suggests 
an alternative that makes selection of  the consistency 
parameter easier and that even improves the rates of  
accuracy. 

5. A modified fitness function: The two parameter 
model 

The change between feasible and non-feasible 
solutions in the fitness function in the G E N E T I C  
procedure is radical. With  the genetic algorithms this 
situation can be avoided so that the process evolves 
from a near but non-feasible solution to the best one. 
In order to solve this problem and to avoid the risky 
choice of  only one consistency parameter we pro- 
pose a new fitness function that smoothes the change 

between k-consistency and non k-consistency rules. 
This new fitness function uses two parameters, a 
maximum and a minimum consistency parameter. In 
this case, the learning algorithm uses the following 
fitness function: 

fitness( RB( A ) ) 

n+(RB(A)) 

ken+(R9(A)) - n - (RB(A) )  

k2 - kl 

if  Re(A)~  A k' , 

if  RB(A ) E A k2 
and 
Re(A)  f~ A k', 

otherwise 

with k2 > k~. 
In this fitness function we assign the complete 

power of  the rule (n+(Re(A)))  to kl-consistency 
rules, zero to non-k2-consistency rules, and the rest 
of  the rules (z] k' N A k-') receive a continuous linear 
decreasing function between both values. 

5.1. Results 

Table 3 shows some results using the two parameter 
model. 

The results with the learning algorithm using this 
new fitness function are most regular, that is, the 
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Table 3 

kl -k2 ART 1 ART2 IRIS MONK 1 MONK2 MONK3 

The kl-k2 model: Lower case 
0.0/0.2 100 93.33 92.66 88.89 55.81 90.60 
0.0/0.4 100 94.61 92.66 100 65.12 96.88 
0.1/0.4 98.32 93.86 85.53 83.33 53.49 96.88 
0.1/0.5 97.30 86.67 85.53 77.78 48.84 96.88 

The kl-k2 model: Upper case 
0.0/0.2 93.60 94.12 81.67 100 48.84 93.75 
0.0/0.4 97.92 94.61 94.72 91.67 62.79 96.88 
0.1/0.4 98.68 94.61 95.43 80.56 60.47 96.88 
0.1/0.5 98.68 93.33 93.03 77.78 65.12 96.88 

accuracy has not a strong variation moving in close 
consistency values. Moreover, in some cases we 
even achieve greater accuracy, for example, MONK1 
obtains the maximum possible accuracy. SLAVE 
keeps its better results for ART1, ART2 and IRIS. 

In general, a good result is obtained in the interval 
0.0/0.4 in the lower case, and in the interval 0.1/0.4 
in the upper case. Here, it seems that the solution 
involves selecting an interval that includes a theoreti- 
cal true consistency value. 

In any case, SLAVE has shown to be an useful tool 
to learn fuzzy rules for classification problems. 

6. Concluding remarks 

In this paper we described a learning algorithm 
capable of identifying the fuzzy rules that describe a 
particular system. This algorithm 
• is based on theoretical extensions of  classical 

learning conditions (consistency and complete- 
ness) having good general properties 

• can handle fuzzy information (examples or rules); 
• combines in a single process rule and feature selec- 

tion; 
• is a useful tool for solving multi-class learning 

problems; 
• allows change of the granularity of the elements of 

the domains in some cases; 
• generates a small number of fuzzy rules that are 

very easy to understand by an expert; 
• obtains a level of accuracy that improves those val- 

ues obtained using well-known learning algorithms. 

However, the research must continue, at least, in 
two important aspects: On the one hand, to enrich the 
language of the rules that SLAVE can use, and on 
the other hand, to provide SLAVE with the capacity 
to automatically determine some important parame- 
ters of the learning algorithm such as the consistency 
threshold or the consistency type. 
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