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Abstract

In this paper a neuro-fuzzy modeling framework is proposed, which is devoted to discover knowledge from data
and represent it in the form of fuzzy rules. The core of the framework is a knowledge extraction procedure that is
aimed to identify the structure and the parameters of a fuzzy rule base, through a two-phase learning of a neuro-fuzzy
network. In order to obtain reliable and readable knowledge, two further stages are integrated with the knowledge
extraction procedure: a pre-processing stage, performing variable selection on the available data to obtain simpler
and more reliable fuzzy rules, and a post-processing stage, that granulates outputs of the extracted fuzzy rules so as
to provide a validity range of estimated outputs. Moreover, the framework can address complex multi-input multi-
output problems. In such case, two distinct modeling strategies can be followed with the opportunity of producing
both a single MIMO model or a collection of MISO models. The proposed framework is verified on a real-world
case study, involving prediction of chemical composition of ashes produced by combustion processes carried out
in thermo-electric generators located in Italy.
© 2004 Published by Elsevier B.V.
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1. Introduction

The knowledge-data trade off represents a key issue in the field of modeling: both the available observed
data and the initial prior knowledge can be exploited to construct models that mimic relationships among
data. Modeling takes place between two extremes which in their “pure form” can be identified in the
following ideal conditions: (i) the initial knowledge is nil and the model is extracted by a learning process
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based on a certain amount of data; (ii) the initial knowledge is complete and correct and the model can
be learnt with no need of any data. In the first case, inductive methods are applied to generalize the
information deriving from a particular set of data to a wider context (data-driven learning). On the other
hand, a deductive inference is performed when the general purpose a priori knowledge is employed to
reformulate what is already known in order to increase efficiency in the performance of certain tasks
(knowledge driven learningor analytical learning) [15,33].

As known, different approaches have been proposed to develop artificial intelligent systems that are able
to efficiently conform to a particular environment, characterized by a certain kind of available information.
Symbolic or well-structured schemes of representation have been studied to encode prior knowledge in a
comprehensible form, while the most powerful mechanisms to deal with plain observational data derive
from the employment of neurocomputing methods.

In real-world problems, learning flows out from a context where some incomplete (possibly inexact)
domain knowledge and a finite amount of data are available.A wide range of possibilities, therefore, exists
between pure knowledge-driven and pure data-driven learning. In particular, the process ofknowledge
discoverystarting from data is becoming an urging issue whose relevance is growing together with
the technological progresses that permit the manipulation of massive amounts of data[14]. Knowledge
discovery from data (KDD) basically concerns the study of mechanisms which allow to recognize precise
patterns in a set of data that can be exploited as a form of knowledge in particular learning tasks[17].
Actually, KDD strategies reverberate also over a number of data-mining related topics, affecting data
pre-processing methods, data clustering, explanation of the obtained querying results.

In this context, the emerging role of fuzzy logic assumes crucial relevance amongst the innovative
approaches that try to make use of natural language expressiveness to tackle KDD problems, thus im-
proving comprehensibility of the obtained results. Fuzzy sets lend themselves well to handle incomplete
and heterogeneous data and their application to knowledge discovery processes results very helpful in
terms of interpretability.

Fuzzy logic methods have been largely combined with different approaches to originate several suc-
cessfully hybrid systems oriented to exploit in a complementary fashion the individual strong points
of various techniques. By following this direction, systems endowed with higher performance and a
kind of intelligent behavior can be designed. The knowledge-data trade off has been a major driving
force behindneurosymbolic integration, a research area currently aimed at building hybrid intelligent
systems, commonly known as neuro-fuzzy systems, that realize the synergy of symbolic and neural pro-
cessing to undertake real-world KDD tasks. From the first pioneering papers about neuro-fuzzy systems
[2,25,36,42,45], many other examples of such systems have been developed and successfully used in a
wide range of applications[31,44]. An overview about the state-of-art of neuro-fuzzy systems can be
found in[1] and[35].

In this paper we illustrate a KDD methodology based on a combination of fuzzy techniques with neural
network learning to extract knowledge from data in the form of linguistic rules. The aim of our work
is to develop a systematic fuzzy modeling mechanism which is capable of automatically generating a
rule-base from numerical data (without any assumption about the structure of the data), finding a suitable
rule number, optimizing the parameters of the fuzzy membership functions and providing a readily
interpretable model.

The core of the framework is a knowledge extraction procedure that is devoted to identify the structure
and the parameters of a fuzzy rule base, through the learning of a neuro-fuzzy network. The learning
strategy, that we previously presented in[8] and [9], involves two phases: an unsupervised learning
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phase, to group training data into clusters that are used to define fuzzy rules, and a supervised learning, to
refine the extracted rules. We integrate the knowledge extraction core with two stages devoted to improve
reliability and readability of the extracted knowledge. Namely, a pre-processing performing a selection
of input variables and a post-processing leading to a granulation of output values.

The framework is designed to deal with complex multi-input multi-output problems in such a way that
two modeling strategies can be employed: it can be derived a single MIMO model, catching altogether the
existing relationships among input and output variables, or a collection of MISO models, that separately
capture relations between input variables and a single output variable.

To show how complicated problems can be handled by the proposed framework, a complex industrial
problem is considered to perform a knowledge discovery process, managing actual experimental data.
The problem at hand consists in predicting the chemical composition of ashes deriving from combustion
processes for electric generation.

The paper is organized as follows. Section 2 outlines the general scheme of the KDD framework,
giving details about the adopted fuzzy inference model and the related neuro-fuzzy architecture. Section
3 describes the knowledge extraction procedure which involves identification and optimization of the
structure and the parameters of fuzzy rules. In Section 4 we introduce the pre- and post-processing stages
integrated with the core of the proposed methodology. Section 5 is concerned with the application of the
proposed framework to the ash property prediction problem. Finally, some conclusive remarks are drawn
in Section 6.

2. General scheme of the KDD methodology

In this section we introduce the proposed modeling framework oriented to find patterns and structures
in data and to represent them in the form of linguistic rules. In order to obtain readable knowledge from
data, the framework involves an integration between a knowledge extraction procedure and two additional
processing phases, as depicted in Fig.1.

The knowledge extraction process, which represents the core of the proposed framework, is performed
through the learning of a neuro-fuzzy network that encodes in its structure the discovered knowledge in the
form of fuzzy rules. Two further stages are integrated with the knowledge extraction procedure, namely:

• a pre-processing variable selection stage, which aims at simplifying the predictive task by identifying
the most relevant input variables for the derivation of each output value;

Fig. 1. General scheme of the KDD methodology.
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Fig. 2. Splitting of a MIMO problem into a collection of MISO problems.

• a post-processing output granulation stage, which is intended to better specify the final obtained results
through the use of prediction intervals.

These processing steps are oriented to further improve the accuracy and comprehensibility of the obtained
fuzzy rule base. However it should be emphasized that not all the aforementioned stages are always
necessary: some of them can be omitted in specific cases. For example, the input selection could be dropped
if the process to be modeled is low-dimensional or if prior knowledge about the relevant input variables
is available. The employment of prediction intervals, moreover, finds justification when a measure of
the uncertainty on the estimation is needed. Similarly, the employment of prediction intervals can be
bypassed when only scalar outputs are required.

The general nature of the proposed framework lends itself to adapt to the particular task at hand. To
better deal with complex multi-output problems, the framework offers a twofold choice between the
identification of a single MIMO model or a collection of MISO models, as depicted in Fig.2. In the
multi-MISO approach, each model is separately designed and trained according to the proposed KDD
methodology.

The choice between the MIMO or multi-MISO approach should be driven by the complexity of the
problem to be addressed. In particular, the MIMO approach would provide for a more compact model,
especially suitable when the output variables are strongly correlated[40]. On the other hand, by splitting a
global multi-output modeling problem into several simpler single-output tasks, we achieve an enlargement
of the whole model variance amount due to the increased number of free parameters[20]. Consequently,
it is possible to directly intervene in the bias-variance tradeoff in order to build a more flexible model
that can be useful in solving highly non-linear prediction problems. Approaches that model complex
MIMO systems through identification of a collection of MISO fuzzy models can be found, for example,
in [3,19,21,23,24,34], while methods to deal with genuine MIMO models have been developed in[28,47].

Before describing in detail the stages involved in our framework, we outline the basics of the adopted
fuzzy reasoning scheme and the related neuro-fuzzy architecture.

Suppose that a setT = {(xt , yt )}Nt=1 of N input–output data describing the behavior of a process is
available. The aim of knowledge extraction is to derive a model that predicts the values of the output
variablesy = (y1, . . . , ym), given the values of the input variablesx = (x1, . . . , xn). In other words, we
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have to approximate the unknown function:

f : X ⊂ �n → Y ⊂ �m. (1)

If a multi-MISO strategy is adopted, the dependency (1) can be modeled as a collection ofm separate
dependencies:

fj : X ⊂ �n → Y ⊂ � j = 1, . . . , m. (2)

For the sake of simplicity, henceforth we describe the adopted fuzzy model as a MISO model, since an
extension to an MIMO model is straightforward. Without loss of generality, we refer to the modeling
task of a dependencyfj by means of a fuzzy modelMj dropping the indexj. In particular, we consider
a fuzzy model based on rules of the following type:

IF (x1 is A1r ) AND · · · AND (xn is Anr ) THEN (y is br )
wherer = 1, . . . , R (beingR the number of fuzzy rules of the model);Air (i = 1, . . . , n) are fuzzy sets
defined over the input variablesxi ; br is a fuzzy singleton defined over the output variablesy. Each fuzzy
setAir is represented by a Gaussian membership function in the form

�ir (xi) = exp

(
−(xi − cir )

2

2a2
ir

)
, (3)

wherecir andair are the center and the width of the Gaussian function, respectively.
Based on a set ofRrules (generated through the proposed modeling framework), the output of the fuzzy

model for any unknown input vectorx0 is obtained adopting the following fuzzy reasoning procedure:
(1) Calculate the matching degree of inputx0 to the rth rule, for r = 1, . . . , R, by means of Larsen

product operator:

�r (x0) =
n∏

i=1

�ir (x0i) r = 1, . . . , R. (4)

(2) Calculate the inferred outputŷ0 as:

ŷ0 =
∑R

r=1 br�r (x0)∑R
r=1 �r (x0)

. (5)

Summarizing, the knowledge extraction process can be stated as that of finding a proper numberRof fuzzy
rules and optimal parameters(c,a,b) from a data setT of input–output pairs, such that the fuzzy model
closely approximates the unknown functionf (·). To accomplish this job, the fuzzy model is implemented
as a particular neural network, so that structure and parameter identification of the fuzzy rule base can
be obtained by adapting the topology and the parameters of the corresponding neuro-fuzzy network, in a
data-driven fashion.

The considered neuro-fuzzy network has a three-layer architecture. According to the layer they belong
to, units in the network have the following specifications:

• Units in the first layerL1 receive the input values(x1, . . . , xn) and act as membership functions
representing fuzzy sets of the corresponding input variable. Units in this layer are arranged intoR
groups, one for each fuzzy rule. Therth group includesn units, that correspond to the input fuzzy sets
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defining the premise part of therth rule. Each unituir ∈ L1 receives the input valuexi and computes
the membership value�ir (xi). According to (3), the output of unituik ∈ L1 is given by the following
function:

O
(1)
ir = exp

(
−(xi − cir )

2

2a2
ir

)
i = 1, . . . , n, r = 1, . . . , R, (6)

wherecir andair constitute the free parameters of unituir ∈ L1.
• The second layerL2 containsR units that perform precondition matching of fuzzy rules. These units

are fixed, meaning that no modifiable parameter is associated with them. For each unit, there aren
fixed links deriving from the preceding layerL1, representing the IF-part of the fuzzy rule. The output
of unit ur ∈ L2 is computed according to the expression of the rule activation strength in (4), namely:

O(2)
r =

n∏
i=1

O
(1)
ir r = 1, . . . , R. (7)

• The third layerL3 provides the output valuêy resulting from the inference of rules, according to (5):

ŷ = O(3) =
∑R

r=1 brO
(2)
r∑R

r=1 O
(2)
r

. (8)

Connections between layerL2 andL3 are weighted by the fuzzy singletonsbr that represent another
set of free parameters for the neuro-fuzzy network.

The architecture of the neuro-fuzzy network is depicted in Fig.3, where nodes representing the premise
part of a fuzzy rule are enclosed in a gray circle, that can be regarded as ameta-nodeof the network.
The weights of the network correspond to the Gaussian membership function parameterscir , air and to
the consequent singletonsbr . In other words, each meta-noder is associated with two premise weight
vectorscr andar and one consequent weight vectorbr .

This neuro-fuzzy network encodes a set of fuzzy rules in its topology, and processes information so
as to match the adopted fuzzy reasoning scheme. Hence, it can be regarded both as an adaptive fuzzy

Fig. 3. The neuro-fuzzy network.



G. Castellano et al. / Fuzzy Sets and Systems 149 (2005) 187 – 207 193

inference system with the capability of learning fuzzy rules from data, and as a connectionist architecture
provided with linguistic meaning.

3. Knowledge extraction by neuro-fuzzy learning

To extract knowledge from data in the form of fuzzy rules, we apply a hybrid learning procedure to the
neuro-fuzzy network, whose preliminary scheme has been previously presented in[8,9]. The knowledge
extraction procedure involves two learning steps (Fig.4). In the first step, an unsupervised learning
scheme is applied to identify the structure and the parameters of fuzzy rules. In the second step, fuzzy
rule parameters are tuned via supervised learning to improve the accuracy of the derived knowledge.
Unlike other neuro-fuzzy approaches based on similar two-phase learning strategies[12,16,27,29,41],
the first phase of our approach can find automatically a suitable number of clusters, hence the proper
number of rules for the problem at hand. In the following each learning phase is detailed.

3.1. Structure and parameter identification

In the first learning step, the proper number of fuzzy rules and membership functions (size of the
network topology), together with initial values of rule parameters (network weights) are simultaneously
determined, thereby enabling the construction of a rule base in a self-organized fashion. This is accom-
plished by clustering the input space and then deriving a fuzzy rule from each cluster. To find proper
prototypes of clusters in the input space, a modified competitive learning algorithm, similar to those
proposed in[32] and[46], is defined to learn the weight vectorscr on the basis of available input data. To
start this learning phase, an initial structure of the neuro-fuzzy network is firstly constructed based on a
guessed maximum numberR∗ of rules (meta-nodes) given as a form of a priori knowledge. Then, during
learning, the network self-organizes its structure via a mechanism that gradually drives the weight vectors
of extra meta-nodes far away from the distribution of the data, thus reducing the final number of clusters.
In this way the appropriate number of rules for representing the input data is automatically selected.

Fig. 4. Scheme of the neuro-fuzzy learning.
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This clustering procedure, though implemented in an unsupervised context, is similar to a cluster repul-
sion mechanism described in[43] which finds application when a priori class information knowledge
is available. However, the key point of our algorithm is that no expert intervention is needed for the
completion of the competitive learning and the most appropriate number of clusters (corresponding to
the number of fuzzy rules) is determined merely from data investigation.

Only meta-nodes of the network are involved in the competitive learning phase. When an input vector
x is presented, such nodes compete and the meta-node whose weight vectorc is closest to the input vector
is chosen as winner, while the second closer node is marked as therival. Then, the weight vector of the
winner node is rewarded, i.e. updated so as to become closer to the current input vector, while the weight
vector of the rival is punished, i.e. updated so as to move it away fromx. This mechanism tries to push the
weight vector of the rival node far away from the cluster towards which the weight vector of the winner is
moving, thus implicitly making sure that each cluster is represented by only one weight vector. As stated
also in[46], the use of such reward/punishment mechanism, that gradually drives the weight vectors of
useless nodes far away from the distribution of the data, allows the number of necessary meta-nodes, and
hence the number of rules, to be automatically selected. The complete competitive learning algorithm is
summarized below.

Set� := 0;
Initialize randomly the center vectorsc(�)r (r = 1, . . . , R∗).
Initialize the learning rates�� and�� for the winner and the rival, respectively, so that 0��� ��� �1.
Repeat

(1) For each input vectorxt , t = 1, . . . , N perform the following steps:
(a) Compute the distances:

d(xt , c
(�)
r ) = nr∑R∗

s=1 ns
dE(xt , c

(�)
r ) r = 1, . . . , R∗,

wherenr is the cumulative number of the winning occurrences for meta-noder anddE(·, ·) is the Euclidean
distance.

(b) Determine the winning meta-node� and its rival� using the rule:

� = arg min
r

d(xt , c
(�)
r ) � = arg min

r �=�
d(xt , c

(�)
r ).

(c) Update the number of winning occurrences for the winner:

n� := n� + 1.

(d) Update weight vectors of the winning and the rival meta-node according to:

c(�+1)
� := c(�)� + ��

(
xt − c(�)�

)
c(�+1)

� := c(�)� − ��

(
xt − c(�)�

)
(2) Set� := � + 1;

Until 1
R∗
∑R∗

r=1 ‖c(�)r − c(�−1)
r ‖� �

Remove all meta-nodes whose weight vector falls outside the input range.

Such competitive learning performs clustering in the input space with the ability of adapting the number of
clusters as the learning proceeds. Starting withR∗ meta-nodes, the network self-organizes its structure by
automatically finding a set ofR meta-nodes(R�R∗) whose weight vectorscr (r = 1, . . . , R) represent



G. Castellano et al. / Fuzzy Sets and Systems 149 (2005) 187 – 207 195

the centers of spherical clusters in the input space. Each cluster is regarded as a multi-dimensional fuzzy set
representing the antecedent of a fuzzy rule. Precisely, the cluster prototype vectorcr = (c1r , c2r , . . . , cnr)

provides centers of the Gaussian membership functions�ir , while the widths{air} are defined using the
first-nearest-neighborheuristic:air = ‖cr−cs‖

� , wherecs is the cluster center nearest tocr and� is an
overlapparameter ranging in[1.0,2.0]. The consequents parametersbr are obtained as follows:

br =
∑N

t=1 �r (xt )yt∑N
t=1 �r (xt )

(9)

with �r (xt ) being the matching level of the premise part of the rule defined as in (4), which can be
computed once premise membership functions�ir have been derived as described above.

3.2. Parameter optimization

After structure identification, we obtain both the number and the initial parameters of rules that are used
to build the fuzzy models. To improve accuracy, i.e. to find the best fit to the data, in the second learning
phase all the parameters of the fuzzy rules are finely tuned via a gradient descent technique. A very large
number of neuro-fuzzy systems are based on back-propagation-like algorithms to optimize the parameters
of fuzzy systems, from the most famousANFIS[25] to its variants proposed in[22,29,38,39,45]. Similarly,
in this work, a supervised learning algorithm based on a gradient-descent technique is formulated, that
optimally adjusts the parameterscir , air , br using the mean squared error (MSE) as performance index.
The update formulas for the parameter learning algorithm are derived as:

�br = −�
�E
�br

= �	(3)O(2)
r , (10)

�cir = −�
�E
�cir

= −�	(2)r

xi − cir

a2
ir

, (11)

�air = −�
�E
�air

= −�	(2)r

(xi − cir )
2

a3
ir

, (12)

where	(3) = − y−O(3)∑R
s=1 O

(2)
s

and	(2)r = 	(3)(br − O(3))O
(2)
r ; � is the learning rate.

Once the learning is completed, the network architecture encodes the knowledge learnt in the form of
fuzzy rules and processes data following fuzzy reasoning principles.

4. Readability and reliability improvement

The neuro-fuzzy learning procedure described above is a valid tool to extract accurate knowledge from
data. Nevertheless, it does not take into account the issue of readability of the fuzzy rules. Actually, the
resulting rules may reveal too complex to be read, thus missing the benefits in terms of comprehensibility
deriving from the employment of a fuzzy representation of knowledge. In order to increase the inter-
pretability of fuzzy rules while preserving (and possibly improving) the accuracy, the proposed KDD
methodology offers two further stages besides the neuro-fuzzy learning core.
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On one side, a pre-processing stage consisting in an input variable selection procedure is integrated in the
KDD methodology. Indeed, one main factor that influences the readability of the extracted knowledge is
the number of input variables: each rule should use as few variables as possible to be more comprehensible.
Moreover, it is plausible that taking into account the entire set of input variables to predict a particular
output variable could not prove to add information, but often may increase noise.

Moreover, when a high degree of variability in output values is experienced, a simple scalar output
may not sufficiently provide useful information. A post-processing phase, based on the definition and the
employment of prediction intervals, contributes to an output granulation that allows a better understanding
and an uncertainty estimation of the inferred information.

4.1. Variable selection

Variable or feature selection is a pre-processing step of prominent importance in KDD. From the the-
oretical side, feature selection is necessary to alleviate the so-called “curse of dimensionality”, which
implies an exponential growth of examples required to represent a function as the number of features
increases[4]. Curse of dimensionality is particularly felt in data mining contexts, where data are of-
ten defined by a high number of features, thus requiring a huge number of records that are usually
not available. From a more practical standpoint, feature selection can drastically reduce the compu-
tation burden required for the optimization of the fuzzy model, due to a relevant reduction of free
parameters.

The problem of feature selection is intrinsically difficult, since an exhaustive search of a proper subset
of features has a combinatorial nature. As a consequence, algorithms for searching a proper subset of
features are often time consuming and usually return only suboptimal solutions (see e.g.[13,18,26]).

In this work we employ an alternative approach that consists in ranking features according to an
importance factor. The adopted procedure, similar to the one proposed in[30], operates by defining a
number of fuzzy models with an increasing number of input variables that are selected from a list of
features sorted according to their rank. Finally, the fuzzy model of highest quality is chosen, and the
corresponding features are hence selected.

In order to assign a rank value to each feature, an initial fuzzy model that incorporates all possible
input variables is built from data by a fast clustering algorithm illustrated below.

Given a data setT = {z1, z2, . . . , zN |zt = (xt , yt )}
(1) Set the first prototypew1 := z1
(2) Set� := 1, NS1 := 1
(3) For eacht = 1,2, . . . , N ,

(a) Find the nearest prototypewk such that
‖wk − zt‖ = min

s=1,...,N
‖ws − zt‖

(b) If ‖wk − zt‖�	 (where	 is a predefined threshold), then
(i) SetNSk := NSk + 1

(ii) Setwk := wk + ‖wk − zt‖/NSk
(c) else

(i) Set� := � + 1
(ii) Create a new prototypew� = zt

(4) End for
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Such algorithm returns a set of prototypes in the input/output product space, by performing only one
cycle on the data set. Each discovered prototypewr = (w1r , . . . , wnr, wn+1,r ) corresponds to one fuzzy
rule as follows:

IF x1 is A(w1r , 
) AND . . . AND xn is A(wnr, 
) THEN y = wn+1,r ,
where the fuzzy setsA(wir , 
) are characterized by Gaussian membership functions of centerwir and
width 
. The common width
 is selected by choosing the value that provides better accuracy results
among a set of possible widths.

The derived fuzzy model is used to rank the input variables by assessing the sensibility of the model
output with respect to changes of each input variable. Specifically, to assess the ranking of theith feature,
we consider a simplified fuzzy model with rules of the form:

IF xi is A(wir , 
) THEN y = wn+1,r .
The available training setT is applied on the simplified rule base in order to evaluate the contribution of
theith input variable to the output variable. Given theN output valueŝy(xti), t = 1, . . . , N provided by
the simplified fuzzy model, the importance factor of the variablexi is measured by the following index,
as suggested in[30]:

Ii = max
t=1,...,N

∣∣ŷ(xti)∣∣− min
t=1,...,N

∣∣ŷ(xti)∣∣ (13)

corresponding to the contribution of theith component of thetth input vector inT.
The importance factor provides a measure of variability of the output variable by varying theith input

variable. More specifically, the higher is the importance factor, the wider is the range covered by the
output variable when theith input variable fluctuates in its domain. As a consequence, the higher is the
influence of theith input variable in determining the final output value. As a limit case, if the importance
factor is zero then the output value is not affected by any specific value of the input variable, i.e. the input
variable does not contribute to determine the final output value.

All the input variables are evaluated by the same procedure and then sorted according to their importance
factorIi . The list of sorted variables can be examined by domain experts to discard useless variables, or
conversely to keep those that are judged necessary for the model. Successively, a correlation analysis can
be useful to remove from the list all variables that are highly correlated with other variables of higher
rank. Such filtered list is used as a starting point for an automatic feature selection procedure aimed at
selecting the subset of variables that provides a good accuracy of the final fuzzy model.

To avoid combinatorial explosion, the ranking order of the feature list is exploited. Specifically, given
the feature list(xi1, xi2, . . . , xi�), ��n, a sequence of� fuzzy models is built according to the following
rule schema:

IF xi1 is A(wi1,r , 
) AND xi2 is A(wi2,r , 
) . . . AND xih is A(wih,r , 
)
THEN y1 = wn+1,r ,

whereh��. As a consequence, thehth fuzzy model is built from the firsth variables contained in the
feature list. If some features are forced to be present in the fuzzy model, they can be placed at the top
of the list. Each fuzzy model is evaluated on a test set of data and the model with highest accuracy is
selected (for equal accuracies, the model with fewer variables is selected). As a result, the corresponding
subset of features is retained and employed for the design of the definitive fuzzy model according to the
proposed framework.
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4.2. Output granulation

To enable a better understanding of the extracted fuzzy rules, the knowledge extraction procedure is
equipped with a granular representation of the estimated outputs, which embodies a measure of uncertainty
on the estimation for a user-defined confidence level. This granulation is achieved through the definition
of prediction intervals that provide a range of variability for the inferred output values.

Given a fuzzy rule base derived through the knowledge extraction procedure described in Section3,
the calculation of prediction intervals starts from evaluating the errors on the training data:

et = ŷt − yt t = 1,2, . . . , N. (14)

The valueset , t = 1,2, . . . , N can be considered as an independent and identically distributed sampling
of a random variablee of unknown distribution. As a consequence, the mean value:

e = 1

N

N∑
t=1

et (15)

approaches the normal distribution for largeN. For such a normally distributed random variable, prediction
intervals can be calculated.

A prediction interval[L�, U�] of confidence level� is an interval that will include the errorenew for a
newly drawn examplexnew with probability greater than 1− � (see[37]). Formally:

℘(enew ∈ [L�, U�])�1 − � (16)

or, equivalently:

℘(ynew ∈ [ŷnew − U�, ŷnew − L�])�1 − �. (17)

The relation (17) defines a statistical method to estimate the true value of the underlying function ap-
proximated by the fuzzy rule base with a desirable confidence level. The extreme valuesL� andU� of
the prediction interval are defined as follows:

L� = ē − t �
2 ,N−1

(
s

√
1

N
+ 1

)
, (18)

U� = ē + t �
2 ,N−1

(
s

√
1

N
+ 1

)
, (19)

wheret �
2 ,N−1 is the value of the Student distribution withN − 1 degrees of freedom corresponding to

the critical value�
2, ands is the sampled standard deviation

s =
√√√√ 1

N − 1

N∑
t=1

(et − ē)2. (20)
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The width of the prediction interval provides a measure of the accuracy of the knowledge base. The
less accurate the knowledge base, the wider the prediction interval is. Hence, prediction intervals are
introduced in our framework to increase reliability of the extracted model. Precisely, a prediction interval
defined through (18) and (19) on the basis of the inferred outputsŷt is calculated, thus providing a range
of variability for the outcome of the model.

In addition, in order to improve readability of the extracted knowledge base, prediction intervals can
also be calculated for each rule consequent, leading to fuzzy rules of the following form:

IF x1 is A1r AND x2 is A2r AND . . . AND xn is Anr

THEN y ∈ [br − U�, br − L�] (1 − �).
The insertion of prediction intervals into fuzzy rules provides a more explanatory knowledge base, since
they can help users to perceive an entire range of validity rather than single numerical values. However,
it should be noted that such intervals are used only for knowledge representation purpose, and they are
not employed in the inference process, which is carried out by means of singletons outputs, according to
[30].

5. A real application example

The core of the proposed framework, namely the knowledge extraction process, has been employed
in a wide variety of problems. Among these, we could mention the rule extraction from data in the field
of image processing[6,10], classification[8,9] and system identification[7]. To highlight some of the
most interesting features of the whole KDD framework, here we show the application to a real problem
concerning the prediction of ash properties deriving from combustion processes for electric generation.
The predictive problem can be explicitly stated as follows: given a certain kind of combustible substances
which undergo a specific combustion process, we want to determine the chemical properties of the
resulting ashes.

In the field of electric generation an issue of increasing relevance is represented by the analysis of
the discarded materials deriving from the combustion processes carried out inside the power plants.
The awareness about the after-effects of the chemical emissions affecting the environment and the hu-
man health has notably progressed in the last decades, urging a considerable research effort toward
the industrial dross analysis. Furthermore, considerations about the reusability of particular classes
of discarded materials provide also an economic incentive for this kind of investigation. In particu-
lar, the prediction of chemical composition of ashes deriving from combustion processes is becoming
a strategic and challenging problem, both for environmental impact evaluations and for the possibil-
ity of recycling ashes in the cement production. For many years the industrial research community
in the field of electric generation has been developing methods for predicting the ash properties and
much of this work has concentrated on “traditional” techniques (e.g. numerical treatment of differential
equations in dynamical systems). The application of neuro-fuzzy approaches to tackle such problem
provides the additional advantage to model the relationships underlying the input–output data by means
of fuzzy rules that express the extracted knowledge in a transparent and interpretable way (see for
example[11]).

Although this prediction problem belongs to the classical field of system identification, it is well suitable
to evaluate the effectiveness of our framework in its resolution. Indeed, it is especially complex due to



200 G. Castellano et al. / Fuzzy Sets and Systems 149 (2005) 187 – 207

the multi-variable physical process to be modeled, the heterogeneous nature of the involved variables and
the incompleteness of the available dataset.

5.1. Dataset description

The dataset, provided byENEL Produzione e Ricerca S.p.A. (Italy), collects information deriving from
a number of observations acquired during actual combustion processes carried out in a number of plants
located in Italy.

Besides the intrinsic difficulties of the predictive problem at hand, concerning a complex physical
process with several variables, an additional troublesome issue derived from the small size of the dataset
comprising only 54 samples. Each of them pertains to the measurements related to a combustion process
performed at some detailed conditions, making use of some kind of fuel (or combination of mixed fuels),
with particular plant arrangements, referring to distinct classes of resulting ashes.

Every sample in the dataset collects 32 input features and 22 output values. Precisely, the input variables
encode the following characteristics:

• kind of combustion (single fuel or mixed fuels);
• electric load of the power plant;
• drawing point of ashes;
• chemical composition of fuels.

All the input variables take on numerical values, except for the kind of combustion and the drawing source
variables, which are characterized by discrete categorical values. Such categorical variables have been
handled like the other variables by assigning to each category a distinct value in[0,1]. The 22 output
variables represent the values to be predicted and they refer to 22 distinct chemical compounds affecting
the type of ashes we are considering.

The analysis of the available dataset pointed out two issues.The first concerns the presence of incomplete
samples. Incomplete data represent a common occurrence in real-world applications: to tackle this kind
of problem different approaches have been proposed in literature[5]. If the quantity of data is sufficiently
large and the proportion of affected patterns is small, then the simplest solution is to discard incomplete
samples from the dataset.This particular strategy, besides the inherent drawback of modifying the effective
data distribution (mostly in cases where the missing values are not uniformly distributed in the dataset),
is totally inappropriate in our case, since we are dealing with a small amount of samples. For this reason,
we applied a “fill in” approach consisting in replacing missing values with mean values estimated on the
basis of complete samples.

The second issue regards the heterogenous nature of data. The remarkable differences between the
ranges of some variables, often reported into the dataset with disparate measuring units, reflect the
extreme heterogeneity of data representing very different types of features. This kind of problem could
largely affect the knowledge extraction process; this is the reason why it is necessary to scale the variable
values. A standard scaling procedure has been employed: data were centered and standard deviation was
made equal to 1. Defining byzi and
i , respectively, the mean and the variance evaluated for theith
variable overN samples, each variablezti of the dataset has been transformed intoz̃ti by:

z̃ti = zti − z̄i


i
t = 1, . . . , N, i = 1, . . . ,M,

whereM is the total number of variables (input and output).



G. Castellano et al. / Fuzzy Sets and Systems 149 (2005) 187 – 207 201

The dataset obtained after these pre-processing steps was employed both to perform the knowledge
extraction process by neuro-fuzzy learning and to improve the readability of the extracted knowledge, as
described in the following section.

5.2. Experimental results

To perform simulations, a training set composed of 31 elements was derived from the pre-processed
dataset and used to extract fuzzy rule bases via the proposed neuro-fuzzy learning. The remaining 23
samples constituted the test set to be exploited in checking the generalization ability of the obtained
predictive models. To better assess the performance of the extracted models, five different partitions of
the dataset in a training and test set were considered.

Firstly, the core of the methodology (plain knowledge extraction) was employed to produce both a
MIMO model and a set of 22 MISO models. In the MIMO approach, five single models embedding
the relationships between the input variables and all the output variables were derived. The extraction
of the fuzzy rule bases was carried out by training a proper neuro-fuzzy network using the two-phase
learning scheme described in Section3.1. The application of the competitive learning phase produced
initial rule bases comprising a number of rules ranging from 8 to 14, starting from a number of 20 rules
(clusters) given as a form of a priori knowledge. Then, the rule bases were refined through 1000 epochs
of supervised learning. Table1 reports the average predictive accuracy in terms of MSE over training and
test set for each output of the MIMO models.

Also, the plain knowledge extraction procedure was used as a multi-MISO strategy to build five multi-
MISO models, i.e. five collections of 22 multi-input single-output fuzzy rule bases. Each rule base,
devoted to the prediction of a single output variable, was derived using the same learning setup adopted
in the generation of the MIMO models. Consequently, the MISO models are characterized by a number
of fuzzy rules ranging from 8 to 14, too. Table2 reports the average predictive accuracy in terms of the
standard MSE over training and test set for each MISO model.

As it can be seen from Tables1 and2, all the extracted fuzzy rule bases exhibit a satisfactory prediction
accuracy, despite the complexity of the problem and the very limited number of available samples.

Table 1
Average accuracy of MIMO models derived by plain knowledge extraction

Output variable MSE Output variable MSE

Training set Test set Training set Test set

1 Al 0.22 0.23 12 Cr 0.24 0.26
2 Ca 0.32 0.34 13 Cu 0.23 0.26
3 Fe 0.28 0.31 14 K 0.19 0.20
4 Mg 0.24 0.26 15 Mn 0.37 0.39
5 Na 0.16 0.17 16 Ni 0.28 0.31
6 P 0.39 0.41 17 Pb 0.29 0.32
7 S 0.50 0.53 18 Sr 0.28 0.31
8 Si 0.27 0.29 19 V 0.24 0.26
9 Ti 0.22 0.23 20 Zn 0.20 0.21
10 Ba 0.25 0.27 21 D50 0.27 0.30
11 Co 0.16 0.17 22 LOI 0.31 0.33
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Table 2
Average accuracy of multi-MISO models derived by plain knowledge extraction

MISO models MSE MISO model MSE

Training set Test set Training set Test set

1 Al 0.20 0.20 12 Cr 0.27 0.28
2 Ca 0.30 0.34 13 Cu 0.14 0.23
3 Fe 0.11 0.32 14 K 0.24 0.18
4 Mg 0.21 0.22 15 Mn 0.27 0.22
5 Na 0.11 0.11 16 Ni 0.11 0.29
6 P 0.32 0.32 17 Pb 0.40 0.34
7 S 0.35 0.45 18 Sr 0.24 0.24
8 Si 0.22 0.23 19 V 0.15 0.10
9 Ti 0.14 0.12 20 Zn 0.27 0.22
10 Ba 0.26 0.28 21 D50 0.20 0.12
11 Co 0.23 0.15 22 LOI 0.25 0.26

Table 3
Comparison between different predictive models

Approach Training set Test set

MIMO models 5.91 6.36
Multi-MISO models 4.99 5.22
Empirical models 6.14 7.09

However, to enable a fair comparison between the obtained results, the predictive errors resulting from
MIMO and multi-MISO approaches have been evaluated in terms of Global Mean Squared Error (GMSE),
i.e. the sum of 22 MSEs computed for each output variable:

GMSE=
22∑
j=1

MSEj = 1

N

22∑
j=1

N∑
t=1

(yj (t) − ŷj (t))
2.

The comparative results are reported in Table3. It is evident that, in this particular problem, the multi-
MISO strategy leads to an improvement in terms of accuracy with respect to the single MIMO model.
Moreover the table reports also the predictive results obtained by a specific model usually employed
by ENEL to estimate the output values in this predictive problem. Such model, referred to as Empirical
model, estimates the most likely value for each output variable taking essentially into account the chemical
composition of the fuel used in the combustion process. Not only such model performs worse than the
MIMO and multi-MISO models in terms of GMSE, but it does not exhibit the powerful knowledge
representation capabilities which are characteristic of fuzzy rule-based models. For fair comparison, in
all the above-described simulations the pre- and post-processing stages of the KDD methodology have
not been executed.

To verify the effectiveness of whole methodology in obtaining from data such a knowledge that could
prove to be not only accurate, but also understandable, the variable selection and output granulation steps
have been integrated with the knowledge extraction procedure. In this second simulation, we followed
only the multi-MISO strategy, which seems to be more appropriate for the problem at hand.
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Table 4
Accuracy of MISO models derived by integration of variable selection and knowledge extraction

MISO model # # MSE MISO model # # MSE

Input var. Rules Training set Test set Input var. Rules Training set Test set

1 Al 4 10 0.05 0.06 12 Cr 11 14 0.10 0.26
2 Ca 9 11 0.29 0.14 13 Cu 10 10 0.13 0.16
3 Fe 8 16 0.05 0.17 14 K 2 10 0.06 0.47
4 Mg 6 13 0.10 0.11 15 Mn 6 9 0.33 0.21
5 Na 3 11 0.03 0.21 16 Ni 10 8 0.06 0.26
6 P 11 12 0.16 0.19 17 Pb 9 12 0.26 0.26
7 S 4 11 0.17 0.32 18 Sr 8 11 0.25 0.23
8 Si 3 16 0.1 0.23 19 V 3 7 0.03 0.08
9 Ti 3 12 0.05 0.07 20 Zn 10 11 0.06 0.06
10 Ba 10 12 0.13 0.20 21 D50 8 8 0.18 0.17
11 Co 8 10 0.02 0.03 22 LOI 10 9 0.16 0.27

Firstly, before extracting the multi-MISO models by neuro-fuzzy learning, the variable selection stage
was applied to define a set of significant input variables for each output variable, as described in Section
4.1. It should be noted that no information about the relationships between the input and output data
was available. Therefore no assumption could be made about the relevance of each input variable for
the prediction of a specific output variable. Then, the ensemble of MISO fuzzy models was derived by
the knowledge extraction process: while the application of plain knowledge extraction keeps unchanged
the number of input variables (32 values) and the structure of each rule base, the integration with the
pre-processing phase produced rule bases differing in the number of input variables and in the number
of rules, providing simpler MISO models. Table4 reports the accuracy values of the derived models in
terms of MSE, together with the resulting numbers of input variables and rules. As an additional feature,
the integration with variable selection improved accuracy of most final models, compared with the results
reported in Table2.

For illustrative purpose, we considered the multi-MISO model that provided the best trade-off between
accuracy and model complexity (number of rules and inputs). Fig.5 depicts the testing error of some
MISO models of such collection, specifically the models that predict output variablesAluminum, Calcium,
Magnesium, Titanium, Barium, Cobalt, Vanadium and Zinc. In the plots dashed lines indicate the test
errors of the model derived by plain knowledge extraction, while solid lines provide the errors of the
model resulting from the integration of the knowledge extraction core with variable selection. Also, the
extremes of the derived prediction intervals are plotted in dotted lines.

It can be seen that the models derived with the application of variable selection exhibit a better accuracy
in comparison to models derived without variable selection. Also, after variable selection, each derived
model provided output values that fall mostly within the prediction interval computed for the related
output variable.

Finally, to show how the application of the pre- and post-processing stages leads to an improvement
in readability of the extracted knowledge, in Fig.6 we report the fuzzy rule base related to a specific
output variable (Vanadium). Only three input variables (Cu, V and DRAWING point) are involved in the
prediction of the Vanadium. Each input variable in rule antecedents is expressed by 0.5-cuts of fuzzy
sets. In the case of DRAWING variable, the 0.5-cut produces a set of discrete values since this particular
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Fig. 5. Test prediction errors obtained by the application of plain knowledge extraction (dashed line) and knowledge extraction
with variable selection (solid line) concerning the output variables Al (a), Ca (b), Mg (c), Ti (d), Ba (e), Co (f), V (g), Zi (h). The
horizontal lines represent the prediction intervals for each output variable.

variable is characterized by categorical attributes. The output variable is expressed by a prediction interval
in the rule consequent.

In conclusion, as shown by experimental results, the produced fuzzy rule-based models have a simple
structure and satisfactory prediction accuracy, despite the high complexity of the prediction problem. The
achieved results in terms of prediction accuracy are quite encouraging, taking into account that the few
training samples used in this study do not provide a good coverage of the problem domain.

6. Conclusions

In this paper we have described a KDD methodology to construct fuzzy representations of knowledge
from numerical data. The core of the proposed strategy consists in automatically capturing the unknown
dependencies among data by adaptively clustering the input space, so as to obtain an initial fuzzy rule
base that is subsequently refined to improve its accuracy. This knowledge extraction process is arranged
into a neuro-fuzzy framework that performs a profitable integration between the neural network learning
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(1) If Cu is in [240, 540], V is in [0, 1100], DRAWING is in {Source1, Source2, Source3},
Then V is in [0, 711];

(2) If Cu is in [220, 350], V is in [1700, 3400], DRAWING is in {Source2, Source3, Source4, Source5},
Then V is in [2720, 3890];

(3) If Cu is in [260, 540], V is in [1600, 3300], DRAWING is in {Source2, Source3},
Then V is in [1640, 2800];

(4) If Cu is in [0, 210], V is in [1100, 2900], DRAWING is in {Source1, Source2},
Then V is in [1140, 2310];

(5) If Cu is in [0, 260], V is in [0, 1400], DRAWING is in {Source2, Source3, Source4, Source5},
Then V is in [0, 877];

(6) If Cu is in [290, 590], V is in [950, 1710], DRAWING is in {Source4, Source5},
Then V is in [1590, 2750];

(7) If Cu is in [0, 290], V is in [0, 1400], DRAWING is in {Source1, Source2, Source3},
Then V is in [0, 690].

Fig. 6. The obtained fuzzy rule base related to the output variable Vanadium.

and the powerful knowledge representation of fuzzy rule-base models. In contrast to most existing fuzzy
modeling approaches, no a priori knowledge is assumed on the process underlying the data: the only
required information is represented by a finite set of input/output observations. The proposed framework
provides for two further steps, intended to enhance the reliability and the comprehensibility of the extracted
knowledge. On one side, a pre-processing stage performing variable selection is applied to simplify
the task we are dealing with, thus improving both accuracy and readability of the obtained models.
On the other side, a post-processing phase realizes an output granulation to estimate an uncertainty
measure of the final results. As a case study, the proposed framework has been applied to a real-world
prediction problem, involving prediction of chemical compounds present in ashes resulting from industrial
combustion processes. This study confirms the effectiveness of the proposed KDD methodology and it
contributes to the understanding of the possibilities to extract and represent knowledge about the toxicity
of ashes derived from industrial combustion processes.
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