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capabilities in complex spaces, offering a valid approach to problemssignment of values from its domain. The genetic algorithm simulta-
requiring efficient and effective searching. This is the case in mamgously carries out both tasks during the evolutive process. Further-
problems of learning attribute-valued rules. more, each structure has its own set of genetic operators.

The most well-known approaches in which GAs have been appliedThis new genetic representation establishes a general framework
to learning processes are the Michigan [19] and the Pittsburgh [34ith different possible alternatives and in this paper, we explore
approaches. In the first of these, each chromosome correspond§a@e of them. In the first approach, we encode the relevance of each
only one rule and the population represents the complete set of ruk@&iable (variable chromosome) through a zero-one array, with one
whereas in the Pittsburgh approach, each chromosome encoddddigating that the variable is relevant and with zero that it is not
complete set of rules. In the first case, the solution is the compléfievant. Although this initial alternative significantly improves the
population and in the second one, only the best chromosome i9&havior of the original SLAVE, it does not take advantage of the
solution for the problem [7]. A third way has been presented as HH{ormation given by the distribution of examples in the training set.
alternative to these models: the iterative approach [13], [17] whef&is information can be used to establish the degree of relevance of
each chromosome represents only one rule but now the populatf§¢h variable to determine a class in a similar way to the generation of

does not represent the complete set of rules since this set is obtaifi@éiSion trees [32]. In the second approach, we explore the use of this
by different runnings of the GA. information to improve the feature selection mechanism.

o Lo In the following section, we provide a general description of the basic
Th binat f GA and soft It der to devel . . . . s
© combination o and So computing In orger o devero LAVE algorithm. Section Il describes the main characteristics of the

learning algorithms is particularly interesting. See, for example, [ ew genetic learning algorithm and explains how this new version of
6], [28], and [29], where different algorithms for fuzzy logic control . . .
(61, [28], [29], 9 y log LAVE can select the relevant variables in a problem. Section IV ex-

'filgi F;ri)stﬁg;fg, and [11], {20] which proposes algorithms for ClaSSIfICp ores the use of information about the relevance degree of each vari-

. L ) _able. Finally, the last section shows the behavior of the different pro-
An example of this combination is the structural learning algorlthrﬁosed alternatives on several problems.

on vague environment (SLAVE) [15], [16], which is a genetic learning
algorithm previously developed by the authors that uses the iterative
approach and a fuzzy description of the rules and examples. SLAVE

uses an attribute-value language based on the use of linguistic variablesAs have been used widely to develop learning algorithms. The
[38]. Since SLAVE is based on the genetic iterative approach, it lear@@||-known Michigan and Pittsburgh approaches have been the basis
only one fuzzy rule in each execution of the GA. It fixes a class angr learning algorithms such as the classifier systems [18], GABIL [9],
selects the best antecedent for this class. The complete set of rulesyig|L [21]. An alternative to these is the iterative approach described
obtained through a sequence of repeated executions of the GA.  jn [13] and [17] and used in systems like SLAVE [15], [16], SIA [36],
The selection of relevant features, and the elimination of irrelevaot MOGUL [5].
ones, is a very important point for many learning problems. In severalThe iterative approach attempts to reduce the search space of pos-
problems the number of possible variables to be considered is vsilple solutions by searching for only one rule at a time. The main idea
large, and in this case, the search space for the learning algorithnisito reduce the original problem of obtaining a complete set of rules to
big enough. In order to solve many practical problems, it is therefosesimpler problem which consists in obtaining only one rule atatime. In
essential to consider the feature selection in a learning algorithm. this approach, as in the Michigan one, each chromosome in the popula-
Because of the particular type of rule used in SLAVE, the irreldion representsasir_lgle rule, but now, on_Iythe bestind_ividual isnconsid-
vant variables in a rule can be eliminated during the learning proce§&d. and the remaining chromosomes in the population are discarded.
The computational cost of eliminating a variable in a rule, however, f1erefore, in the iterative model, one execution of the GA provides a
high, and we therefore want to modify SLAVE by including a powerfuPa”'a| solution _(a ru_Ie) to the learning pro_blem. In order to obtain a
mechanism for feature selection. The idea is to modify the genetic &t Of rules, which will be a complete solution to the problem, the GA
gorithm of SLAVE so that it can learn efficiently when dealing with™ust be placed within an iterative scheme similar to the following.
problems in which the training examples have a high number of vari- 1) Use a GA to obtain ONE RULE for the system.
ables and/or a high number of values in each variable. In the literature2) Incorporate the rule into the final set of rules.
on this subject, different approaches have been proposed which com3) Penalize this rule.
bine feature selection and GA, such as [3], [22], [27], [33], and [35]. 4) If the current set of rules adequately represents the examples in
In our case, we are interested in designing an embedded model of fea- the training set, the system returns the set of rules as the solution.
ture selection [26] for SLAVE; and in particular, an embedded modelin ~ Otherwise, go to step 1.
which the feature selection is made for each particular rule (because of very easy way to penalize the rules already obtained (step 3), and
the iterative process followed in SLAVE), i.e., the learning algorithrthus be able to learn new rules, consists in eliminating from the training
must select the appropriate set of variables and values for each paggs-all those examples that are covered by the set of rules previously
ular rule. In this process, each rule (with a particular class value) mabtained. When all the examples have been eliminated, the algorithm
have a different subset of variables to identify the class. has detected an adequate set of rules. This process does not need to

In order to include the feature selection in the genetic learning algh¢ & Priori the number of rules or the number of necessary GA runs in
rithm of SLAVE, the main idea is to use a genetic representation wheder to obtain the final set of rules. _
each individual is composed of two structures: one structure codes th&-AVE [15], [16] is an inductive learning algorithm based on the
relevance of the predictive variables involved in the learning problefi§rative approach. SLAVE uses a set valued model of the rule
and the other one codes the assignments variable/value. Consequently,
each one of the two structures. has a different task assoc.iated inside ;p Xy is Ay and - and X, is A, THEN Y is B
the rule selection module. The first structure (called the variable chro-
mosome) attempts to find the most appropriate set of features for the
antecedent of the rule, while the second one (called the value chromdrere the value assigned to each antecedent variableAi.eis al-
some) attempts to find for each predictive variable the most appropri&ieved to be a subset of simple fuzzy values of the domain. For example,

Il. GENERAL DESCRIPTION OFSLAVE
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let AGE be the variable with fuzzy domain wheren ™ (R) is the number of positive examples to the rifl@ndn s
is the number of examples in the training set of the cBswith this
D = {YOUNG, YOUNG-ADULT, ADULT, OLD, number being calculated by using the membership fungtien

The soft consistency degree [15] is based on the possibility of ad-
mitting some noise in the rules. Thus, in order to define this degree, we

. . I use the following set:
and the semantics of these labels those described in Fig. 1. An assign-

ment to thedG E variable such as

VERY-OLD}

AF = {R|n"(R) < k x nT(R)}

AGE = {YOUNG, YOUNG-ADULT, ADULT}

wherex is the product operator aride [0, 1]. This last equation rep-

resents the set of rules having a number of negative exampléR)

strictly less than a fractioh of the positive examples™ (R).
Definition 2: The degree to which a rule with™ (R) > 0 satisfies

the soft consistency condition is

is equivalent to

{AGE is YOUNG or AGE is YOUNG-ADULT or AGE

is ADULT}.
. . . . . Ciiry (R) =
Using the formulation proposed in [15], where the disjunction of 1 it B Ak
adjacent values is considered to be the convex hull of the fuzzy labels, ’ N i
the previous assignment is equivalent to kon™(R) —n"(R) . AL Ake
B =) if R¢ andR €
{AGE is less than or equal to ADULT 0, otherwise

With this rule model and using the formulation described in [L5}vherek,, k2 € [0, 1] are two fixed parameters such that< k2 and
when the value of a variable coincides with its whole domain, the vari-' (R), »~ (R) are the number of positive and negative examples to
able is irrelevant for describing the particular class in the rule and mthe ruleR.
be eliminated. Definition 2 uses two parameters; is a lower bound of the noise

With respect to the implementation of the fuzzy if-then systenthreshold and:: is an upper bound of the noise threshold.
the inference model used for these rules is similar to the modelsThe iterative approach of SLAVE fixes a class and the GA selects
used for rules with simple values. Thus, given an exampkerule that simultaneously verifies the completeness and the soft con-
e = (e1,ea,...,e,), the associated class for this example isistency condition to a high degree. The rule selection in SLAVE can
that which corresponds to the rule with the biggest match betwetherefore be solved by the following optimization problem:
the example and the antecedent of the rule. In order to calculate a
measure of this match, we usé-aorm to combine the partial matches y ,
betweene; and 4;. Since A; is now a subset of fuzzy values, this gxleag{‘x(RB(A)) X Thurs (R (A))}
match was defined in [15] using a normalized maximum operator
on the different valuesi;. When these values are consecutive, thizhereD = P(D,) x P(D-) x --- x P(D,,) with D, being the fuzzy
operator is equivalent to calculating the membership functian oh  domain ofX; variable, 5 (A) represents a rule with antecedent value
the convex hull of the different values df;. A= (44, ..., A,) € D and consequent valug, with B being fixed

Taking into account this rule model and its associated inferengethe optimization problem. The iterative approach will change this
process, SLAVE selects a set of rules that describe a training set. Tadsequent value to obtain the different values.
most important component of SLAVE is the rule selection process. Details of the GA used in this optimization process can be found in
This consists in obtaining the best rule in each execution of the GM4]. The GA of SLAVE can eliminate a variable in a rule by chance
depending on the examples of the training set. The concept of iteen the complete domaib; is assigned to a variable, but this process
best rule is based on the notion of consistency and completeness.i¥\ieither systematic nor efficient. In the next section, we propose a
propose a degree of completeness and a degree of consistency feiodification of the GA of SLAVE that includes a selection of relevant
rule where both definitions use the concept of number of positive afehtures for each learned rule.
negative examples for a rule defined in [15] and improved in [16].

The basic idea is to use the fuzzy cardinal of fuzzy sets “positive Ill. PROPOSAL EOR THEINCLUSION OF A FEATURE

examples” and “negative examples” for a rule. The membership SELECTION IN SLAVE

function of an example to the fuzzy set “positive examples” is defined ) ] ) ]

by combining the match between the antecedent and the example ant’€ main component of the SLAVE learning algorithm is the module
the match between the value of the class of the rule and the clasbfule extraction. Once a class has been fixed, a GA attempts to find
the example. The membership function of an example to the fuzzy the best combination of value assignment to the antecedent variables
“negative examples” uses the same matching measure for anteced&ht@,ule within the class.

but for the consequent it computes the match between the class of thehe new GA for SLAVE is described by means of the following five
example and the set of values of all consequent variables except fffPonents:

of the value of the class of the rule. A complete description can be 1) a genetic representation of solutions to the problem;

found in the references [15] and [16]. 2) away to create an initial population of solutions;
Definition 1: The degree of completeness of a ridlés defined as 3) an evaluation function which gives the fitness of each chromo-
some;
+ 4) a set of genetic operators;
A(R) = n"(R) ) g p

e 5) atermination condition for the genetic algorithm.
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YOUNG  YOUNG-ADULT  ADULT OLD VERY-OLD component changes its relevance status. This coding therefore reduces

the computational cost associated with the detection of the irrelevant
variables.

By considering this process for all the antecedent variables, we
have two structures to represent the complete antecedent of a rule
(see Fig. 2): One codifies the relevance of the variables and the other
codifies the assignments variable/value. With this decomposition,

0 25 s0 75 100 the GA representation has a complex chromosome composed of two
structures: a variable chromosome and a value chromosome. This
Fig. 1. Fuzzy domain of Example 1. division allows us to clearly distinguish between the two different
tasks that are simultaneously carried out in the genetic algorithm
(search for the appropriate variables and search for the appropriate
A. Representing the Population value assignments) and we can associate the most appropriate set of

The most important change with respect to the original version 8gnetic operators and set these operators on each structure.

SLAVE is the representation of the population, since it must allow us We can now define both structures precisely. Let us suppose we have
to obtain the relevant variables for a particular rule easily. n possible antecedent variabls, ..., X, eachX; having an asso-

The representation of the genetic population in the original SLAVEiated fuzzy domaid); with 1; components. The genetic code needs
contains a set of candidate antecedents for each class. Each candiffgemation about the relevance of the variables and the value of these
antecedent (i.e., each individual in the population) is composed of tf@/iables. The genetic code therefore has the following two structures:
sequence of assignments to the predictive variables, where each assign- a variable chromosome;
ment variable/value is represented by a binary string. An individual of * a value chromosome.
the population is composed by concatenation of the binary strings thaThe variable chromosom#&AR) consists of a binary array of length
represent the assignments variable/value on each predictive variable (the number of variables) with 1 indicating that the variable is rele-

For example, the representation of Aa/E variable (with the do- vant (or is active) and 0 indicating that the variable is irrelevant (or is
main shown in Fig. 1) needs a binary string with five componenisactive). The value chromosomea(.) keeps the same binary coding
(one for each label), where each component represents the absesda SLAVE [17] and which was described above. In order to encode
or presence of the label in the assignment of the variable. The binary elements aP(D,)x- - -x P(D,, ) we use avector of.; +- - -+m,,
string 10 010associated to thelGE variable, represents the assignzero-one components (active or inactive values), with
mentAGE = {YOUNG, OLD}, and the binary strind1 111rep-

resents the irrelevance of the7 E' variable (since the convex hull of 1, if the sth element
all the labels of the domain is equivalent to the complete domain). in the domainD,
Let us suppose thalGE is a predictive variable involved in a component(my 4 -+ m,_y +5) = is a value of

learning problem, and thatGE is an irrelevant variable for the
current class. Assuming that an individual of the population has the
correct assignments on all variables excefgt £, which has the

current assignmeMGE = {OLD}, i.e., the binary strin@0010.In .
order to obtain the best antecedent in this case, the genetic opera\f\()I
should transform the assignment dfZE from 00010to 11111.

the X, variable
0, otherwise

ths € {1---m.}andr € {1---n}.
Example 1: Let us suppose that we have three variahés, X,
aqu3, with the associated fuzzy domain shown in Fig. 3. In this case,

This transformation toward the correct configuration of the anteced Fe code

requires that the genetic operators do not affect the rest of the variables

but make the correct change in tHé E variable. Therefore, when ir- VAR 110 VAL ((111)(11000)(10))
relevant variables appear, the GA of SLAVE has a high computational

cost in the process of obtaining the best antecedent. represents the following antecedent:

In general, the task of changing relevant variables to irrelevant vari-
ables in the genetic algorithm depends on the size of the binary coding
of each variable and the number of predictive variables involved in the
learning problem. We can say that the genetic algorithm of SLAVE
eliminates irrelevant variables. However, with the current genetic repinceX ranges over all the elements in the dom&in the antecedent
resentation of the information it is more difficult to eliminate a variabl@bove is equivalent to
than to add it, and the system might take a long time to find a good so-
lution. Xy is {Aa1, Aoz}

Consequently, if we want to improve the detection of the irrelevant
variables, we first need to change the genetic representation. So,
goal consists in obtaining a better representation of the genetic sq
tions to make a feature selection for each rule possible.

The idea is to include a new binary value associated to each an-
tecedent variable in order to discover if the variable will be considered
as part of the antecedent of the rule or not. The representation of an
individual in the genetic population of théG E example is encoded  The variableX; was eliminated from the antecedent by the variable
using a binary string with + 1 components, where one of these valueshromosome since it was irrelevant, but the variakle was elimi-
determines the relevance or irrelevance of the variable, and the otheated by the chromosome value as it covers all the domain and we use
determine the values assigned to the variable if it is considered todeaormalized maximum operator equivalent to the convex hull of the
relevant. With this new coding, a simple mutation on the new zero-odéferent labels.

}(1 is {4411, A1~27 r’hg} anng is {4421 . 1422}.

luélternatively, if the referential set of variahlg, is an ordered set,
2 previous antecedent is equivalent to

X, is less than or equal td5.
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Genetic Population Individual
Individual 1 | e e e Genetic operators of
; A \ .
Individual 2 I Variable chromosome 1 variable chromosome
ividual '
'
H Var 1| Var 2| Var 3 Varn
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1 < .
— - ; ; \\ % Genetic
Individual i ' ! S N
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'
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1
. . H
Individual m : Value chromosome E Genetic operators of

value chromesome

Fig. 2. Genetic population with two structures in each individual.

Dy Dy operator. Using the previous definitions for a rédl@nd a set of training
Al A2 A3 A3t A3 examplest, we can define the evaluation function as

fitness(R) = A(R) X Ty 1, (R).

D. Genetic Operators

Both structures of the GA use an elitist model, the calculation of
the selection probabilities follows a linear ranking [1] and the sam-
pling algorithm is the roulette wheel selection [18]. The variable and
\/ value chromosome uses the following well-known standard operators

(8], [18]:
Fig. 3. Domains of variableX ;, X, X5 in Examples 1, 2, and 3. * two point crossover operator;
« uniform mutation operator.
Moreover, in order to increase the diversity of the population, two

) ) o _additional operators have been considered for the value chromosome:
We define a different procedure to generate the initial information in .
» the AND and OR operators;

each structure. The variable chromosome is built usingigial acti- « the rotation operator.

vation probabilityp € [0, 1]. The meaning op is the probability of . Lo .
considgring a vgiable[as n]elevant. This p?obability isF:)nIy usec)i/to ge _The AND and OR operators exchange genetic |nformat|op N & sim-
erate the initial values and it is the population evolution which mu gr way to the crossover operator. These opgrat_ors try to smul_ate_the
configure the most convenient structure for the antecedent. In the havior of the classical operators of_generallzatlon and s_pemallzatlon.
periments, we will use an activation probabiljiy= 0.5. The value he performance of these operators is as follows: Two points from two
IoI‘LI[erent chromosomes are selected at random and the two segments of

chromosome is obtained by selecting examples of the training se tic cod bined using the AND ¢ the OR
random from the class that must be learned and by assigning the n%BStge”e Ic code are combined using the operalororthe &K oper-
(both of them gene to gene). The transformation only modifies the

specific antecedent that best covers it. This antecedent consists ofgafg t selected. which i laced by the offspri ted. |
one label for each antecedent variable. The label for each anteced® Eparen selected, which IS replaced by the olispring generated. In a
gﬂllar way to the crossover operator, the processes on the variable and

B. Generating the First Population

variable is the one that gives the highest degree of membership for edl . ) .
component in the example. value levels are carried out independently. The rotation operator [14]

Example 2: Let X1, X andX; be the variables with the associatecjs a modified version of the traditional inversion operator that we pro-
domain shown in Fig’_ 3,‘and let (r1, 2, r3) be the randomly select sed in order to include a higher diversity in the searching problem.

example from the training set of a class. The most specific anteced 5 operator takes a (.:UtOﬁ point in an element of the population and
that best represents this example is interchanges the position of the two segments.

E. Termination Condition
X175 A1z and X5 is Az and X3 is Az . .
The GA must finish the process of searching for the best rule when

we have a good reason to believe that this rule has been obtained given

with t_he binary repr_e;_entathn (901)(0010(.)).(10)' the current training set. In the implementation of the termination con-
Using 0.5 as the initial activation probability, let us suppose that we

btain 101 for th iable ch h i de i tion, we distinguish between the extraction of rules from a class in
obtain orthe variable chromosome, So the genetic code IS which we have at least one learned rule and a class in which we have

‘ no rules. We make a wider search when we wish to find the first rule of
VAR 101 VAL ((001)(00100)(10)). a class and relax this search process when we already have some rules
for a class. The GA will return the best rule from the last population if

The process is repeated to initialize each individual of the genetic pame of the following conditions is satisfied.

ulation, selecting examples from the training set at random. « The number of iterations is greater than a fixed limit.

» The fitness value of the best rule in the population does not in-
crease for at least a fixed number of iterations and rules with this
The aim of the GA is to find the best rule. The best rule is defined  consequent have already been obtained in previous runs.

here as the one which simultaneously has the highest degrees of cone No rules with this value of the consequent have previously been

sistency and completeness and combines both factors using a product obtained; but the fitness value does not increase for a fixed

C. Evaluation Function (Fitness)
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number of iterations and the current best rule can eliminate where
least one example from the training set. X predictive variable;
The complete learning algorithm that uses a genetic algorithm based” classification variable;
on the representation described in this section will be called 2SLAVE.C' particular class.
The experiments performed will be presented in Section V. However,Like 7(X, Y), 7«(X) measures the dependence or independence
the variable chromosome is initially generated randomly without takiriegree between th¥ variable and th€” value of the consequent vari-
into account the information provided by the training set. To account fable. We interpret this value as the relevance value of éaehriable
this information, it is necessary to investigate an alternative assignmuith respect to clasé’ of theY” variable.
for the initial code in the variable chromosome. The main idea is to When using linguistic variables, we must define the calculation of
replace the binary code (active or inactive) by a real code reflecting tHés value. In [12], a general methodology of belief calculation using
relation between each variable and the class of the training examplészzy information was proposed. With this formulation, the probability
of X taking a valuer; on its domain{ai, as, ..., a,} is defined as

IV. USING INFORMATION IN THE FIRST POPULATION

The initial code of a chromosome variable for each individual has L (e)
been assigned through a default activation probability. This initializa- p(X =a;) = = Z ”“—]
tion assumes that we have no information about the relevance of the mia Z#at(ﬁj,)
variables. The aim of this section is to find a way to assign the initial t

values of relevance for each predictive variable in the first population

depending on the information provided by the training set. where .
m number of examples from the training get
A. Information Measures € example fromE;

«  membership function to the fuzzy set

The Ldtea IS totgsel a measur;s thttr;]e rsle\{anf:e Offet?‘Ch variable ¢ Hﬁhis formula, we assume that all the examples are crisp. The bidi-
respect o a particuiar concept. € béginning of the process, nsional probability is similar to the previous formula but requires

measure will determine the capacity of the variable to represent & information on two variables to be combined usingreorm (de-
values of each class. Later on, the genetic process, using a set of ORgLRsy by the symbot)

tors, will modify these values and will therefore modify the criterion to
determine the set of variables that must be activated to represent each

class. m
Given the variableX andY’, we use the following information mea- p(X=a, Y =0b)= 1 a;(ex) * v, (er)
sure [25], [37] T e (en) sy (ex)
t, h
- vy o p(z, y)
I Y) =20 ) pla y)log, <p(_r)p(y)) where the domain of variabl¥ is {:, b, ..., b,}. From now on,
v we will use the minimuni-norm @ % b = min {a, b}) in the previous
formula.

wherex andy are particular values of the variahle andY’, respec- . N
Y P P Thus, we can usec(X;) as a measure of the initial relevance of

tively, the sum ranges over the values of the domain of each vana%eriableXi for the clasg”'. This relevance measure will be included in
andp() is a probability measure.

. ) . . . tpe initial code for the variable chromosome on each individual of the
This measure defines a different range for each pair of variables. In oo .
population instead of a 0 or 1 default value. In this new approach, the

order to facilitate the comparison of the results in all the variables, itis o .
. value chromosome keeps the same description. When compared with
necessary for all measures to be in the same range. In order to ach{ ve . o . .
: . o e previous approach, the main difference is the code for the variable
this, we use the following normalization: . . .
chromosome. In the previous section, the code of this substructure of
an element of the population consisted of a binary array, where a value
1 in the variableX; implies the activation of the variable and 0 the
nonactivation of the variable. In this section, we use a variable chro-
S ) ] mosome with a real value containing (X;), which has a value be-
whereH (X, ') is the Shannon entropy over two variables, defined ageen 0 and 1. This value allows us to make smoother changes between
relevance and irrelevance, i.e., during the execution, the evolutionary
HX,Y)= ZZ[J(J:, y) log, p(x, y). process must define the tendency toward the relevance or irrelevance
c oy of the variables. The problem lies in the interpretation of this new real

code. For example, what does(X,;) = 0.7 mean?

I(X,Y)

XY =gy

The T measure estimates the dependence between varisbéesl
Y in the following way: Values of (X, Y') close to zero determine a B. Activation Threshold

high degree of independence of both variables, whereas values closg possible interpretation is obtained if we include an activation

tﬁ one demonstrate a high degree of functional dependency betw?r?r@shold inside the variable chromosome. The inclusion of relevance
t ‘Tm'h | ) lorithm SLAVE h | d rules fixi measures and activation thresholds has previously been used in feature
n the learning algorithm » We have selected rules fiXing 8goction processes, such as [23], but in our case, a different activation

class of the consequent variable. We therefore need to restrict the RSashold will be assigned to each chromosome and learned during
vious measure for the particular class that is being learned, and we H’Fe' evolution process

fine Thus, a variableX; will be considered to be a component of the an-
I(X, Y =(C) tecedent of the rule for a classif: (X;) > T, whereT; represents the

To(X) = HX,Y=0C) activation threshold for the differer¥; variables of thg individual of
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the population. Otherwise, the variable will be considered to be irrele- V. EXPERIMENTAL STUDIES
vant for the antecedent.
Example 3: Using the same variables as in the previous exampl%

the code

In this section, we consider the performance of the new proposals
r learning algorithms. We have carried out empirical studies on this
different proposal where we have the following:
» SLAVE is the original system without feature selection criterion.
» 2SLAVE-1 isthe modified system described in Section Il (binary
code).
» 2SLAVE-2 is the modified system described in Section I1V-B (ac-
tivation threshold).
The following databases have been obtained from the UCI repository
of machine learning databases and domain theories [31]:

» The IONOSPHERE Datarhis radar data was collected by a
system in Goose Bay, Labrador. The system consists of a phased
array of 16 high frequency antennas with a total transmitted
power to the order of 6.4 kW. The targets were free electrons
in the ionosphere. There are two classes and 34 continuous
attributes plus the class variable, using 351 examples.

* SOYBEAN Databas@ hese data correspond to the information

The valued; are affected by the genetic operators during the evolution ~ used to develop an expert system for soybean disease diagnosis.

of the GA and therefore the activation thresholds are learned by the There are 19 classes and 35 categorical attributes, some nominal

VAR (0.5, 0.7, 0.1) Tthreshota 0.6 VAL ((001)(11000)(10))
represents the following antecedent:

Xyis {Azr, Aoz}

A different threshold is considered in each chromosome. Initially,
the activation threshold is randomly defined for each element of the
population.T; takes a value in the interval

[min 7¢(X;), max 7o (X))

algorithm. and some ordinal. The number of instances is 307 and there are
The composition of the genetic operators will be introduced in the ~ Missing values.
next section. * WINE Recognition Datar hese data are the results of a chemical

analysis of wines from the same region but with different types
of grapes, using 13 continuous variables and 178 examples. This

The set of operators for the value chromosome is exactly the same as database contains three classes.
P y *» SONAR Databasé& he task is to train a network to discriminate

the one we described in the previous section (genetic operators based between sonar signals bounced off a metal cylinder and those

on binary coding). The operatqrs that modify the variable ch_romo- . bounced off a roughly cylindrical rock. There are two classes, 60
some and the threshold (genetic operators based on real coding) are

C. Genetic Operators

the nonuniform mutation [30] and tH®L X, crossover operator [10].
e Nonuniform mutation: Let us suppose thatC =

" continuous inputs, and one enumerated output and 208 examples.
« DERMATOLOGY Databasdhe problem is the differential di-

agnosis of erythemato-squamous diseases. This database contains

(¢1, ..., ¢iy ..., cs) is a chromosome. The nonuniform

i ] - six classes, 34 attributes, 33 of which have linear values, one of
mutation alters a gens in the following way:

them is nominal, and there are 366 examples.

* PIMA DatabaseThe problem is the Pima Indians diabetes classi-
fication. This database contains two classes, eight attributes, and
768 examples.

Furthermore, we have used fuzzy domains on the different variables
of each database, with each fuzzy domain being composed of seven
fuzzy labels, uniformly distributed on its definition range.

We have run SLAVE and the different versions of 2SLAVE using the
parameters described in Table | for each database.

For the different databases, we have used five training-test partitions
(70% and 30%, respectively) obtained from the original database. For
each training-test partition, we have calculated the following values:

if 3=0

, ci + A, by — i),
B if =1

’ —A(t, b; —a;),

whereg is a binary random valugy;, b;] is the set of values that
can be taken by the genrg, and

INTR T R

where
r random number in [0,1]; * A: the accuracy (correct classification result on test sets);
L maximum number of iterations; * B:the number of rules; )
+ current iteration:  C: the average of variables in the different rules;
b parameter selected by the user that determines the depen-" D: the percentage of variables unused in none of the final sets of

dency degree with the number of iterations. rules with respect to the total number of variables.

« BLX, crossover Let us suppose that, = (cl, b, ..., cl!) The above parameters are calculated using the arithmetic mean of
andCy = (¢, ¢34, ..., ¢%) are two chromosomes selected fotthe five test results. Moreover, since SLAVE is not a deterministic algo-
the crossover process. TBHZX operator generates a new chroJithm, the results of Table Il correspond to the average of five different
mosome,H = (hy, ..., h.) where eachh; is a number ran- €xecutions of each algorithm and on each training-test partition. The
domly selected in the InterV@Imm — I, ¢max + Ia], where Parameters of Table Il therefore correspond to averages and standard
Cmax = max(cl, ¢?), cmin = min(cl, ¢2), I = cmax — cmin d€Viations (the number after tHesymbol indicates the standard devi-
and is a user-defined parameter to determine the spreading@fon of the reported average) on 25 different executions (five different
the previous interval. training-test partitions and five different executions on its partition).

Finally, the value of is recalculated whenever the algorithm ob-
tains a rule since when this happens, due to the architecture of SLAVE,

the examples covered by the rules are eliminated and the training set is5| AvE has been designed to work with missing values. Information about
changed. this feature can be found in [15].



424 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 3, JUNE 2001

TABLE | TABLE I
SLAVE’S PARAMETERS EXPERIMENTAL RESULTS OF THEDIFFERENTVERSIONS OFSLAVE WHERE A
IS THE ACCURACY, B THE NUMBER OF RULES, C THE AVERAGE OF VARIABLES
Parameter Value IN THE DIFFERENTRULES, AND THE PERCENTAGE OFVARIABLES UNUSED IN
maximum number of iterations 500 NONE OF THEFINAL SETS OF RULES WITH RESPECT TO THETOTAL
number of iterations allowed without change 100 NUMBER OF VARIABLES
population size 20 ]
. g IONOSPHERE | SOYBEAN WINE SONAR DERMATOLOGY PIMA
mutation probability 0.01 SLAVE E) 728143.93 | 04.42+0.16 | §7.40+3.03 | 48.7242.56 83.30£3.28 76.4620.00
crossover probability 0.6 B | 6724067 | 37.8+7.03 | 1234238 | 3.6 +0.43 53.4 +4.88 20.0 +4.15
C 30.42+0.04 32.42+0.07 | 12.13£0.30 | 49.9 £0.01 13.96+0.03 4,33 £0.12
AND operator 0.1 D] 294t001 | 5914002 | 532112 | 15014529 9.20 £5.02 0.00 £0.00
N 2SLAVE-1l | A 90.5812.92 98.73+£0.96 | 89.17£5.20 | 65.86+4.05 92.99+1.77 77.60+£0.95
OR OPEI‘atOI 01 B 14.2 +£1.52 33.2 £3.71 8.7 £1.38 12.4 £1.85 13.0 £1.41 9.8 £1.49
Rotation operator 0.05 C | 260£032 | 241013 | 2.24 £0.21 | 3.77 £0.49 2.56 £0.29 298 0.42
2 D 30.47£7.97 14.28+5.72 | 22.46+£9.33 | 44.33£7.49 41,76+7.00 7.50 £5.00
BLX, crossover probability 0.6 SSLAVEZ | A | 0001£2.34 | ORAZE1.75 | 0048%3.76 | 7483%3.55 94.43£1.06 78122114
Value of o parameter 0.15 B| 10.1%344 | 206+2.05 | 802137 | [1.6£1.62 11.2 £0.75 6.4 +2.18
k' O C 2.46 £0.63 2.35 £0.16 2.30 £0.32 2.67 £0.22 2.39 £0.07 2.05 £0.37
1 D 49.53+2.73 74.28+6.26 | 77.54+10.41 | 62.00+£4.26 47.06+2.63 20.00£7.79
ky 1
TABLE Il
Inspecting the results of the different versions of SLAVE tested ifXPERIMENTAL RESULTS OFOTHER LEARNING ALGORITHMS AND 2SLAVE-2
this experimental, we can see that the 2SLAVE-2 version obtained t* IONOSPHERE | SOYBEAN | WINE | SONAR | DERMATOLOCY | PIMA
best results since it presents the highest results in the four parame “** acearacy 8020 9780 980 I 9550 o
i CN2 ACCUTacy 83.96 98.6 89.76 70.70 94.80 74.50
studied. n.riles 16 32 9 21 14 38
- e . LV a racy 87.97 91.75 72.60 79.31 R6.60 67.71
« With respect to the parameter A (the correct classification resgwms ST B T i
sult), 2SLAVE-2 clearly improves upon the accuracy of SLAVE. average irules 10.1 296 80 | 16 1.2 b4

and slightly improves upon the accuracy of 2SLAVE-1. This

fact shows that overall the feature selection proposed in this

work (2SLAVE-1 and 2SLAVE-2) actually improves accuracy.

Moreover, the inclusion of information in the initial population

(2SLAVE-2) allows us to obtain the same or better accuracy

results. :

The parameter B (number of rules) is clearly reduced in the new

versions when compared to the previous version. Although this

number in 2SLAVE-2 is smaller than in 2SLAVE-1, there are no
important differences between both versions.

The analysis of the parameter C (average of used variables in the

rules) is similar to the previous parameter. With the exception of

the WINE database, the parameter is bigger in 2SLAVE-1 than in
2SLAVE-2 but the differences are not really important. The con-
clusion is that the new versions use a smaller number of variables
in each rule than the original version of SLAVE.

» The last parameter D (proportion of variables unused in the final
set of rules with respect to the total number of variables) is per-
haps the most important one in connection with the proposal of
this paper since it truly measures the feature selection capability
of the new system. In this case, 2SLAVE-2 is clearly better than
the other systems. The differences are very significant. For ex- . -

: . examples in the training set as the number of codevectors.
ample, in the WINE database, the original systems do not use_l_a

5.32% of the variables, 2SLAVE-1 does not use 22.46% of the ble Il shows the a_ccuracy obtained when these learning algo-
rithms are used on the five test sets.

variables, but 2SLAVE-2 does not use 77.54% of the variables. . .

. . Comparison of these results shows how the accuracy obtained by the
This means that only 22.46% of the variables were used by SOifterent versions of SLAVE is competitive with the accuracy obtained
rule of the final set of rules. The average unused number of vayi- . P . Y

. . : o y other well-known learning algorithms. In this case, the different ver-
ables in the different databases is 55%. ; - .
o . . . sions of SLAVE obtain the best accuracy in three databases (IONO-
From this discussion, we can deduce that the inclusion of the feat

. L . - ; : léISHERE, SOYBEAN, and PIMA), and in the other three databases,
selection proposed in this paper and the inclusion of information aqu}e results are not very different in terms of the best result

the initial relevance measure of the different variables in relation to the
class, clearly produces very good results since it does not make the ac-
curacy results worse (in fact, they are improved), it reduces the number
of variables used in all the rules (eliminating irrelevant variables), andwe have proposed a modification of the GA of SLAVE that allows
simplifies the description of the final set of rules. us to select the appropriate features for a problem. This modification
We have also experimented with a simplified version of 2SLAVE-Zlynamically explores the set of possible variables in order to find the
in which a random initialization has replaced to the information-basenost useful rule and the most interesting variables for this rule.
initialization, but we have obtained worse results. The basic schema consists in modifying the representation of a rule
Furthermore, we have used three well-known learning algorithmsthe search mechanism of SLAVE in such a way that in the new ver-
(C4.5, CN2, and LVQ) to compare the accuracy results. These algien, the learning algorithm can search for not only the best rule but
rithms represent three different learning methodologies. also the best set of variables for each rule. The experimentation with

¢ C4.5: This is an implementation of the well-known C4.5 classifi-

cation algorithm based on classification trees and it is described

in [32].

CN2: This algorithm inductively learns a set of propositional

rules from an example set. The algorithm, which was proposed

in , is based on the methodology of the learning algorithm of the

AQ family, and attempts to improve the behavior when the ex-

ample set is affected by noise. The implementation used in this

work was developed by Boswellin 1990 and can be obtained from
http://www.cs.utexas.edu/users/pclark/software.html.

* LVQ: This is an adaptive learning method based on Ko-
honen self-organizing maps [24]. The implementation used
in this work is version 3.1 of the LVQ-PAK, available at
ftp://cochlea.hut.fi/pub/lvg-pak. This software contains all the
necessary programs for the application of the algorithm learning
vector quantization (LVQ) in statistical classification or pattern
recognition. Among the different programs included in the dis-
tribution we have used LVQ1 software without the initialization
process because it has shown the best behavior on the databases
used. Furthermore, we have selected a third of the number of

VI. CONCLUDING REMARKS
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the databases considered has shown that the feature selection of {li@] J. H. Holland and J. S. Reitman, “Cognitive systems based on adaptive
new genetic learning algorithm has clearly improved. Moreover, the

new learning algorithms (2SLAVE-1 and 2SLAVE-2) obtain better ac-
curacy results and simpler rules. The experimentation has also sho

how the inclusion of information about the initial relevance of the vari-
ables (2SLAVE-2) obtains a clear improvement in relation to the fea-

ture selection.

It is important to point out that the feature selection studied in thi

paper has been carried out on a rule-to-rule basis unlike the classical
methods that obtain a set of variables for all the rules. Thus, if we were
to include in a set all the variables that appear in any rule, this set woul®3]
contain all the used variables, as in other feature selection models. The
proposed model is however more general since it can obtain a set ?14]
rules but moreover, only the useful information for each class is used

in each particular rule.
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