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TABLE II
TC PATTERN RECOGNITIONRESULT FOR120 EIR SATELLITE IMAGE CASES

the Elastic Graph Dynamic Link Model (EGDLM). Results are chal-
lenging, with an overall correct recognition rate of more than 95%.

The promising results can be explained in two ways. First, the
Dvorak technique provides a high precision and scientific scheme for
TC pattern classification and identification through pattern matching
technique [5], [6]. However, due to the high variation of cloud patterns
in satellite pictures, subjective human vision matching is being used
so far by trained meteorological analysts. By using EGDLM, the
human matching problem can be automated by a computer matching
process using the “elastic graph matching” scheme. Second, another
vital obstacle for the automation of the satellite interpretation task
is the problem of scene analysis. In the paper, the active contour
model (ACM) provides a feasible and efficient solution by “contour”
extraction to “isolate” the cloud systems into groups which will
efficiently reduce the tedious time-consuming matching process.

Another vital finding is to make use of both visible and EIR images
to improve the recognition rate. By using the EIR satellite images in
the recognition process, the vorticity contour features of the TC cloud
bands for different temperatures can be made easily distinguishable and
the recognition rate is improved. Nevertheless, visible images still play
a vital role, as the main function of scene analysis in satellite interpre-
tation is to “extract” the weather system for further analysis, which also
resembles the human vision-processing scheme.

ACKNOWLEDGMENT

The authors wish to thank NOAA for the provision of satellite pic-
tures (both visible and EIR) for TC cases from 1990 to 1998.

REFERENCES

[1] E. Bienenstock and C. von der Malsburg, “A neural network for invariant
pattern recognition,”Europhys. Lett., no. 4, pp. 121–126, 1987.

[2] V. Caselleset al., “Geodesic active contours,”Int. J. Comput. Vision,
vol. 22, no. 1, pp. 61–79, 1997.

[3] L. D. Cohen, “NOTE on active contour models and balloons,”CVGIP:
Image Understanding, vol. 53, no. 2, pp. 211–218, 1991.

[4] T. F. Cooteset al., “Multi-resolution search with active shape models,”
Proc. IEEE Int. Conf. Comput. Vision Image Process., pp. 610–612,
1994.

[5] V. F. Dvorak, “A technique for the analysis and forecasting of tropical cy-
clone intensities from satellite pictures,” U.S. Dept. Commerce, Wash-
ington, D.C., NOAA Tech. Memo. NESS 45, 1973.

[6] , “Tropical cyclone intensity analysis and forecasting from satellite
imagery,” Mon. Weather Rev., no. 103, 1975.

[7] , “Tropical cyclone intensity analysis using satellite data,” NOAA
Tech. Rep., Washington, DC, NESDIS 11, 1984.

[8] R. Goldenberget al., “Fast geodesic active contours,” inScale-Space
Theories in Computer Vision. ser. Lecture Notes in Computer Science
1682, M. Nielsenet al., Eds. New York: Springer-Verlag, 1999, pp.
34–45.

[9] M. Kass and A. Witkin, “Snakes: Active contour models,” inProc. Int.
Conf. Comput. Vision, 1987, pp. 259–268.

[10] N. Kruger, “An algorithm for the learning of weights in discrimination
functions using prior constant,”IEEE Trans. Pattern Anal. Machine In-
tell., vol. 19, pp. 764–768, July 1997.

[11] M. Lades, “Distortion invariant object recognition in the dynamic link
architecture,”IEEE Trans. Comput., vol. 42, pp. 300–311, Mar. 1993.

[12] R. S. T. Lee and J. N. K. Liu, “An automatic satellite interpretation of
tropical cyclone patterns using elastic graph dynamic link model,”Int.
J. Pattern Recognit. Artif. Intell., vol. 13, no. 8, pp. 1251–1270, 1999.

[13] F. Leymarie and M. D. Levine, “Tracking deformable objects in the
plane using an active contour model,”IEEE Trans. Pattern Anal. Ma-
chine Intell., vol. 15, pp. 617–634, June 1993.

[14] J. N. K. Liu and R. S. T. Lee, “Invariant character recognition in dy-
namic link architecture,” inProc. KDEX, Newport Beach, CA, 1997,
pp. 188–195.

[15] J. N. K. Liu and R. S. Lee, “Invariant handwritten Chinese character
recognition by dynamic link architecture,” inProc. ICONIP/JNNS, vol.
1, Kitakyushu, Japan, pp. 275–278.

[16] C. von der Malsburg, “The correlation theory of brain theory,” MPI Bio-
phys. Chem., Int. Rep. 81-2, 1981.

[17] , “Nervous structures with dynamical link,”Ber. Bunsenges. Phys.
Chem., vol. 87, pp. 703–710, 1985.

[18] W. Neuenschwanderet al., “Initializing snakes,” inProc. CVPR, Seattle,
WA, 1994, pp. 658–663.

[19] C. S. Veldenet al., “Tropical cyclone center-fixing using DMSP SSM/I
data,” inProc. Fourth Conf. Satellite Meteorol., San Diego, CA, 1989,
pp. J36–J39.

[20] C. S. Veldenet al., “Objective Dvorak technique (ODT),” Weather
and forecasting, regional and mesoscale meteorology branch,
NOAA/NESDIS, U.S. Dept. Commerce, Washington, DC, Mar. 1998.

[21] L. Wiskott and C. von der Malsburg, “Recognizing faces by dynamic
link matching,” inProc. ICANN, Paris, France, pp. 347–352.

[22] R. P. Wurtz, “Object recognition robust under translations, deformations
and changes in background,”IEEE Trans. Pattern Anal. Machine Intell.,
vol. 19, pp. 769–775, July 1997.

Selection of Relevant Features in a Fuzzy Genetic Learning
Algorithm

Antonio González and Raúl Pérez

Abstract—Genetic algorithms offer a powerful search method for a va-
riety of learning tasks, and there are different approaches in which they
have been applied to learning processes. Structural learning algorithm on
vague environment (SLAVE) is a genetic learning algorithm that uses the
iterative approach to learn fuzzy rules. SLAVE can select the relevant fea-
tures of the domain, but when working with large databases the search
space is too large and the running time can sometimes be excessive. We pro-
pose to improve SLAVE by including a feature selection model in which the
genetic algorithm works with individuals (representing individual rules)
composed of two structures: one structure representing the relevance status
of the involved variables in the rule, the other one representing the assign-
ments variable/value. For this general representation, we study two alter-
natives depending on the information coded in the first structure. When
compared with the initial algorithm, this new approach of SLAVE reduces
the number of rules, simplifies the structure of the rules and improves the
total accuracy.

Index Terms—Feature selection, fuzzy rules, genetic algorithms (GAs),
machine learning.

I. INTRODUCTION

Genetic algorithms (GAs) are search algorithms that use operations
found in natural genetics to guide the trek through a search space. GAs
have been theoretically and empirically proven to provide robust search
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capabilities in complex spaces, offering a valid approach to problems
requiring efficient and effective searching. This is the case in many
problems of learning attribute-valued rules.

The most well-known approaches in which GAs have been applied
to learning processes are the Michigan [19] and the Pittsburgh [34]
approaches. In the first of these, each chromosome corresponds to
only one rule and the population represents the complete set of rules,
whereas in the Pittsburgh approach, each chromosome encodes a
complete set of rules. In the first case, the solution is the complete
population and in the second one, only the best chromosome is a
solution for the problem [7]. A third way has been presented as an
alternative to these models: the iterative approach [13], [17] where
each chromosome represents only one rule but now the population
does not represent the complete set of rules since this set is obtained
by different runnings of the GA.

The combination of GA and soft computing in order to develop
learning algorithms is particularly interesting. See, for example, [4],
[6], [28], and [29], where different algorithms for fuzzy logic control
are presented, and [11], [20] which proposes algorithms for classifica-
tion problems.

An example of this combination is the structural learning algorithm
on vague environment (SLAVE) [15], [16], which is a genetic learning
algorithm previously developed by the authors that uses the iterative
approach and a fuzzy description of the rules and examples. SLAVE
uses an attribute-value language based on the use of linguistic variables
[38]. Since SLAVE is based on the genetic iterative approach, it learns
only one fuzzy rule in each execution of the GA. It fixes a class and
selects the best antecedent for this class. The complete set of rules is
obtained through a sequence of repeated executions of the GA.

The selection of relevant features, and the elimination of irrelevant
ones, is a very important point for many learning problems. In several
problems the number of possible variables to be considered is very
large, and in this case, the search space for the learning algorithm is
big enough. In order to solve many practical problems, it is therefore
essential to consider the feature selection in a learning algorithm.

Because of the particular type of rule used in SLAVE, the irrele-
vant variables in a rule can be eliminated during the learning process.
The computational cost of eliminating a variable in a rule, however, is
high, and we therefore want to modify SLAVE by including a powerful
mechanism for feature selection. The idea is to modify the genetic al-
gorithm of SLAVE so that it can learn efficiently when dealing with
problems in which the training examples have a high number of vari-
ables and/or a high number of values in each variable. In the literature
on this subject, different approaches have been proposed which com-
bine feature selection and GA, such as [3], [22], [27], [33], and [35].
In our case, we are interested in designing an embedded model of fea-
ture selection [26] for SLAVE; and in particular, an embedded model in
which the feature selection is made for each particular rule (because of
the iterative process followed in SLAVE), i.e., the learning algorithm
must select the appropriate set of variables and values for each partic-
ular rule. In this process, each rule (with a particular class value) may
have a different subset of variables to identify the class.

In order to include the feature selection in the genetic learning algo-
rithm of SLAVE, the main idea is to use a genetic representation where
each individual is composed of two structures: one structure codes the
relevance of the predictive variables involved in the learning problem
and the other one codes the assignments variable/value. Consequently,
each one of the two structures has a different task associated inside
the rule selection module. The first structure (called the variable chro-
mosome) attempts to find the most appropriate set of features for the
antecedent of the rule, while the second one (called the value chromo-
some) attempts to find for each predictive variable the most appropriate

assignment of values from its domain. The genetic algorithm simulta-
neously carries out both tasks during the evolutive process. Further-
more, each structure has its own set of genetic operators.

This new genetic representation establishes a general framework
with different possible alternatives and in this paper, we explore
some of them. In the first approach, we encode the relevance of each
variable (variable chromosome) through a zero-one array, with one
indicating that the variable is relevant and with zero that it is not
relevant. Although this initial alternative significantly improves the
behavior of the original SLAVE, it does not take advantage of the
information given by the distribution of examples in the training set.
This information can be used to establish the degree of relevance of
each variable to determine a class in a similar way to the generation of
decision trees [32]. In the second approach, we explore the use of this
information to improve the feature selection mechanism.

In the following section, we provide a general description of the basic
SLAVE algorithm. Section III describes the main characteristics of the
new genetic learning algorithm and explains how this new version of
SLAVE can select the relevant variables in a problem. Section IV ex-
plores the use of information about the relevance degree of each vari-
able. Finally, the last section shows the behavior of the different pro-
posed alternatives on several problems.

II. GENERAL DESCRIPTION OFSLAVE

GAs have been used widely to develop learning algorithms. The
well-known Michigan and Pittsburgh approaches have been the basis
for learning algorithms such as the classifier systems [18], GABIL [9],
or GIL [21]. An alternative to these is the iterative approach described
in [13] and [17] and used in systems like SLAVE [15], [16], SIA [36],
or MOGUL [5].

The iterative approach attempts to reduce the search space of pos-
sible solutions by searching for only one rule at a time. The main idea
is to reduce the original problem of obtaining a complete set of rules to
a simpler problem which consists in obtaining only one rule at a time. In
this approach, as in the Michigan one, each chromosome in the popula-
tion represents a single rule, but now, only the best individual is consid-
ered, and the remaining chromosomes in the population are discarded.
Therefore, in the iterative model, one execution of the GA provides a
partial solution (a rule) to the learning problem. In order to obtain a
set of rules, which will be a complete solution to the problem, the GA
must be placed within an iterative scheme similar to the following.

1) Use a GA to obtain ONE RULE for the system.
2) Incorporate the rule into the final set of rules.
3) Penalize this rule.
4) If the current set of rules adequately represents the examples in

the training set, the system returns the set of rules as the solution.
Otherwise, go to step 1.

A very easy way to penalize the rules already obtained (step 3), and
thus be able to learn new rules, consists in eliminating from the training
set all those examples that are covered by the set of rules previously
obtained. When all the examples have been eliminated, the algorithm
has detected an adequate set of rules. This process does not need to
fix a priori the number of rules or the number of necessary GA runs in
order to obtain the final set of rules.

SLAVE [15], [16] is an inductive learning algorithm based on the
iterative approach. SLAVE uses a set valued model of the rule

IF X1 is A1 and � � � and Xn is An THEN Y is B

where the value assigned to each antecedent variable, i.e.,Ai, is al-
lowed to be a subset of simple fuzzy values of the domain. For example,
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letAGE be the variable with fuzzy domain

D = fYOUNG; YOUNG-ADULT; ADULT ; OLD;

VERY-OLDg

and the semantics of these labels those described in Fig. 1. An assign-
ment to theAGE variable such as

AGE = fYOUNG; YOUNG-ADULT; ADULTg

is equivalent to

fAGE is YOUNG or AGE is YOUNG-ADULT or AGE

is ADULTg:

Using the formulation proposed in [15], where the disjunction of
adjacent values is considered to be the convex hull of the fuzzy labels,
the previous assignment is equivalent to

fAGE is less than or equal to ADULTg:

With this rule model and using the formulation described in [15],
when the value of a variable coincides with its whole domain, the vari-
able is irrelevant for describing the particular class in the rule and may
be eliminated.

With respect to the implementation of the fuzzy if–then system,
the inference model used for these rules is similar to the models
used for rules with simple values. Thus, given an example
e = (e1; e2; . . . ; en), the associated class for this example is
that which corresponds to the rule with the biggest match between
the example and the antecedent of the rule. In order to calculate a
measure of this match, we use at-norm to combine the partial matches
betweenei andAi. SinceAi is now a subset of fuzzy values, this
match was defined in [15] using a normalized maximum operator
on the different valuesAi. When these values are consecutive, this
operator is equivalent to calculating the membership function ofei on
the convex hull of the different values ofAi.

Taking into account this rule model and its associated inference
process, SLAVE selects a set of rules that describe a training set. The
most important component of SLAVE is the rule selection process.
This consists in obtaining the best rule in each execution of the GA
depending on the examples of the training set. The concept of the
best rule is based on the notion of consistency and completeness. We
propose a degree of completeness and a degree of consistency for a
rule where both definitions use the concept of number of positive and
negative examples for a rule defined in [15] and improved in [16].
The basic idea is to use the fuzzy cardinal of fuzzy sets “positive
examples” and “negative examples” for a rule. The membership
function of an example to the fuzzy set “positive examples” is defined
by combining the match between the antecedent and the example and
the match between the value of the class of the rule and the class of
the example. The membership function of an example to the fuzzy set
“negative examples” uses the same matching measure for antecedents,
but for the consequent it computes the match between the class of the
example and the set of values of all consequent variables except that
of the value of the class of the rule. A complete description can be
found in the references [15] and [16].

Definition 1: The degree of completeness of a ruleR is defined as

�(R) =
n+(R)

nB

wheren+(R) is the number of positive examples to the ruleR andnB
is the number of examples in the training set of the classB, with this
number being calculated by using the membership function�B .

The soft consistency degree [15] is based on the possibility of ad-
mitting some noise in the rules. Thus, in order to define this degree, we
use the following set:

�k = fRjn�(R) < k � n+(R)g

where� is the product operator andk 2 [0; 1]. This last equation rep-
resents the set of rules having a number of negative examplesn�(R)
strictly less than a fractionk of the positive examplesn+(R).

Definition 2: The degree to which a rule withn+(R) > 0 satisfies
the soft consistency condition is

�k k (R) =

1; if R 2 �k

k2n
+(R)� n�(R)

n+(R)(k2 � k1)
; if R =2 �k andR 2 �k

0; otherwise

wherek1; k2 2 [0; 1] are two fixed parameters such thatk1 < k2 and
n+(R), n�(R) are the number of positive and negative examples to
the ruleR.

Definition 2 uses two parameters:k1 is a lower bound of the noise
threshold andk2 is an upper bound of the noise threshold.

The iterative approach of SLAVE fixes a class and the GA selects
a rule that simultaneously verifies the completeness and the soft con-
sistency condition to a high degree. The rule selection in SLAVE can
therefore be solved by the following optimization problem:

max
A2D

f�(RB(A))� �k k (RB(A))g

whereD = P (D1)�P (D2)�� � ��P (Dn) withDi being the fuzzy
domain ofXi variable,RB(A) represents a rule with antecedent value
A = (A1; . . . ; An) 2 D and consequent valueB, withB being fixed
in the optimization problem. The iterative approach will change this
consequent value to obtain the different values.

Details of the GA used in this optimization process can be found in
[14]. The GA of SLAVE can eliminate a variable in a rule by chance
when the complete domainDi is assigned to a variable, but this process
is neither systematic nor efficient. In the next section, we propose a
modification of the GA of SLAVE that includes a selection of relevant
features for each learned rule.

III. PROPOSAL FOR THEINCLUSION OF A FEATURE

SELECTION IN SLAVE

The main component of the SLAVE learning algorithm is the module
of rule extraction. Once a class has been fixed, a GA attempts to find
the best combination of value assignment to the antecedent variables
of a rule within the class.

The new GA for SLAVE is described by means of the following five
components:

1) a genetic representation of solutions to the problem;
2) a way to create an initial population of solutions;
3) an evaluation function which gives the fitness of each chromo-

some;
4) a set of genetic operators;
5) a termination condition for the genetic algorithm.
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Fig. 1. Fuzzy domain of Example 1.

A. Representing the Population

The most important change with respect to the original version of
SLAVE is the representation of the population, since it must allow us
to obtain the relevant variables for a particular rule easily.

The representation of the genetic population in the original SLAVE
contains a set of candidate antecedents for each class. Each candidate
antecedent (i.e., each individual in the population) is composed of the
sequence of assignments to the predictive variables, where each assign-
ment variable/value is represented by a binary string. An individual of
the population is composed by concatenation of the binary strings that
represent the assignments variable/value on each predictive variable.

For example, the representation of anAGE variable (with the do-
main shown in Fig. 1) needs a binary string with five components
(one for each label), where each component represents the absence
or presence of the label in the assignment of the variable. The binary
string 10 010associated to theAGE variable, represents the assign-
mentAGE = fY OUNG; OLDg, and the binary string11 111rep-
resents the irrelevance of theAGE variable (since the convex hull of
all the labels of the domain is equivalent to the complete domain).

Let us suppose thatAGE is a predictive variable involved in a
learning problem, and thatAGE is an irrelevant variable for the
current class. Assuming that an individual of the population has the
correct assignments on all variables exceptAGE, which has the
current assignmentAGE = fOLDg, i.e., the binary string00010.In
order to obtain the best antecedent in this case, the genetic operators
should transform the assignment ofAGE from 00 010 to 11 111.
This transformation toward the correct configuration of the antecedent
requires that the genetic operators do not affect the rest of the variables
but make the correct change in theAGE variable. Therefore, when ir-
relevant variables appear, the GA of SLAVE has a high computational
cost in the process of obtaining the best antecedent.

In general, the task of changing relevant variables to irrelevant vari-
ables in the genetic algorithm depends on the size of the binary coding
of each variable and the number of predictive variables involved in the
learning problem. We can say that the genetic algorithm of SLAVE
eliminates irrelevant variables. However, with the current genetic rep-
resentation of the information it is more difficult to eliminate a variable
than to add it, and the system might take a long time to find a good so-
lution.

Consequently, if we want to improve the detection of the irrelevant
variables, we first need to change the genetic representation. So, our
goal consists in obtaining a better representation of the genetic solu-
tions to make a feature selection for each rule possible.

The idea is to include a new binary value associated to each an-
tecedent variable in order to discover if the variable will be considered
as part of the antecedent of the rule or not. The representation of an
individual in the genetic population of theAGE example is encoded
using a binary string with5+1 components, where one of these values
determines the relevance or irrelevance of the variable, and the others
determine the values assigned to the variable if it is considered to be
relevant. With this new coding, a simple mutation on the new zero-one

component changes its relevance status. This coding therefore reduces
the computational cost associated with the detection of the irrelevant
variables.

By considering this process for all the antecedent variables, we
have two structures to represent the complete antecedent of a rule
(see Fig. 2): One codifies the relevance of the variables and the other
codifies the assignments variable/value. With this decomposition,
the GA representation has a complex chromosome composed of two
structures: a variable chromosome and a value chromosome. This
division allows us to clearly distinguish between the two different
tasks that are simultaneously carried out in the genetic algorithm
(search for the appropriate variables and search for the appropriate
value assignments) and we can associate the most appropriate set of
genetic operators and set these operators on each structure.

We can now define both structures precisely. Let us suppose we have
n possible antecedent variablesX1; . . . ; Xn eachXi having an asso-
ciated fuzzy domainDi with mi components. The genetic code needs
information about the relevance of the variables and the value of these
variables. The genetic code therefore has the following two structures:

• a variable chromosome;
• a value chromosome.

The variable chromosome (VAR) consists of a binary array of length
n (the number of variables) with 1 indicating that the variable is rele-
vant (or is active) and 0 indicating that the variable is irrelevant (or is
inactive). The value chromosome (VAL) keeps the same binary coding
as in SLAVE [17] and which was described above. In order to encode
any elements ofP (D1)�� � ��P (Dn)we use a vector ofm1+� � �+mn

zero-one components (active or inactive values), with

component(m1 + � � �+mr�1 + s) =

1; if the sth element
in the domainDr

is a value of
theXr variable

0; otherwise

with s 2 f1 � � � mrg andr 2 f1 � � � ng.
Example 1: Let us suppose that we have three variables,X1, X2,

andX3, with the associated fuzzy domain shown in Fig. 3. In this case,
the code

VAR 110 VAL ((111)(11000)(10))

represents the following antecedent:

X1 is fA11; A12; A13g andX2 is fA21; A22g:

SinceX1 ranges over all the elements in the domainD1, the antecedent
above is equivalent to

X2 is fA21; A22g

or alternatively, if the referential set of variableX2 is an ordered set,
the previous antecedent is equivalent to

X2 is less than or equal toA22:

The variableX3 was eliminated from the antecedent by the variable
chromosome since it was irrelevant, but the variableX1 was elimi-
nated by the chromosome value as it covers all the domain and we use
a normalized maximum operator equivalent to the convex hull of the
different labels.
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Fig. 2. Genetic population with two structures in each individual.

Fig. 3. Domains of variablesX ,X ,X in Examples 1, 2, and 3.

B. Generating the First Population

We define a different procedure to generate the initial information in
each structure. The variable chromosome is built using aninitial acti-
vation probabilityp 2 [0; 1]. The meaning ofp is the probability of
considering a variable as relevant. This probability is only used to gen-
erate the initial values and it is the population evolution which must
configure the most convenient structure for the antecedent. In the ex-
periments, we will use an activation probabilityp = 0:5. The value
chromosome is obtained by selecting examples of the training set at
random from the class that must be learned and by assigning the most
specific antecedent that best covers it. This antecedent consists of only
one label for each antecedent variable. The label for each antecedent
variable is the one that gives the highest degree of membership for each
component in the example.

Example 2: LetX1; X2 andX3 be the variables with the associated
domain shown in Fig. 3, and let (r1, r2, r3) be the randomly selected
example from the training set of a class. The most specific antecedent
that best represents this example is

X1 is A13 and X2 is A23 and X3 is A31

with the binary representation (001)(00100)(10).
Using 0.5 as the initial activation probability, let us suppose that we

obtain 101 for the variable chromosome, so the genetic code is

VAR 101 VAL ((001)(00100)(10)):

The process is repeated to initialize each individual of the genetic pop-
ulation, selecting examples from the training set at random.

C. Evaluation Function (Fitness)

The aim of the GA is to find the best rule. The best rule is defined
here as the one which simultaneously has the highest degrees of con-
sistency and completeness and combines both factors using a product

operator. Using the previous definitions for a ruleR and a set of training
examplesE, we can define the evaluation function as

fitness(R) = �(R)� �k k (R):

D. Genetic Operators

Both structures of the GA use an elitist model, the calculation of
the selection probabilities follows a linear ranking [1] and the sam-
pling algorithm is the roulette wheel selection [18]. The variable and
value chromosome uses the following well-known standard operators
[8], [18]:

• two point crossover operator;
• uniform mutation operator.

Moreover, in order to increase the diversity of the population, two
additional operators have been considered for the value chromosome:

• the AND and OR operators;
• the rotation operator.

The AND and OR operators exchange genetic information in a sim-
ilar way to the crossover operator. These operators try to simulate the
behavior of the classical operators of generalization and specialization.
The performance of these operators is as follows: Two points from two
different chromosomes are selected at random and the two segments of
the genetic code are combined using the AND operator or the OR oper-
ator (both of them gene to gene). The transformation only modifies the
first parent selected, which is replaced by the offspring generated. In a
similar way to the crossover operator, the processes on the variable and
value levels are carried out independently. The rotation operator [14]
is a modified version of the traditional inversion operator that we pro-
posed in order to include a higher diversity in the searching problem.
This operator takes a cutoff point in an element of the population and
interchanges the position of the two segments.

E. Termination Condition

The GA must finish the process of searching for the best rule when
we have a good reason to believe that this rule has been obtained given
the current training set. In the implementation of the termination con-
dition, we distinguish between the extraction of rules from a class in
which we have at least one learned rule and a class in which we have
no rules. We make a wider search when we wish to find the first rule of
a class and relax this search process when we already have some rules
for a class. The GA will return the best rule from the last population if
one of the following conditions is satisfied.

• The number of iterations is greater than a fixed limit.
• The fitness value of the best rule in the population does not in-

crease for at least a fixed number of iterations and rules with this
consequent have already been obtained in previous runs.

• No rules with this value of the consequent have previously been
obtained; but the fitness value does not increase for a fixed
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number of iterations and the current best rule can eliminate at
least one example from the training set.

The complete learning algorithm that uses a genetic algorithm based
on the representation described in this section will be called 2SLAVE.
The experiments performed will be presented in Section V. However,
the variable chromosome is initially generated randomly without taking
into account the information provided by the training set. To account for
this information, it is necessary to investigate an alternative assignment
for the initial code in the variable chromosome. The main idea is to
replace the binary code (active or inactive) by a real code reflecting the
relation between each variable and the class of the training examples.

IV. USING INFORMATION IN THE FIRST POPULATION

The initial code of a chromosome variable for each individual has
been assigned through a default activation probability. This initializa-
tion assumes that we have no information about the relevance of the
variables. The aim of this section is to find a way to assign the initial
values of relevance for each predictive variable in the first population
depending on the information provided by the training set.

A. Information Measures

The idea is to use a measure of the relevance of each variable with
respect to a particular concept. At the beginning of the process, this
measure will determine the capacity of the variable to represent the
values of each class. Later on, the genetic process, using a set of opera-
tors, will modify these values and will therefore modify the criterion to
determine the set of variables that must be activated to represent each
class.

Given the variablesX andY , we use the following information mea-
sure [25], [37]

I(X; Y ) =
x y

p(x; y) log
2

p(x; y)

p(x)p(y)

wherex andy are particular values of the variableX andY , respec-
tively, the sum ranges over the values of the domain of each variable
andp() is a probability measure.

This measure defines a different range for each pair of variables. In
order to facilitate the comparison of the results in all the variables, it is
necessary for all measures to be in the same range. In order to achieve
this, we use the following normalization:

� (X; Y ) =
I(X; Y )

H(X; Y )

whereH(X; Y ) is the Shannon entropy over two variables, defined as

H(X; Y ) =
x y

p(x; y) log
2
p(x; y):

The� measure estimates the dependence between variablesX and
Y in the following way: Values of� (X; Y ) close to zero determine a
high degree of independence of both variables, whereas values close
to one demonstrate a high degree of functional dependency between
them.

In the learning algorithm SLAVE, we have selected rules fixing a
class of the consequent variable. We therefore need to restrict the pre-
vious measure for the particular class that is being learned, and we de-
fine

�C(X) =
I(X; Y = C)

H(X; Y = C)

where
X predictive variable;
Y classification variable;
C particular class.
Like � (X; Y ), �C(X) measures the dependence or independence

degree between theX variable and theC value of the consequent vari-
able. We interpret this value as the relevance value of eachX variable
with respect to classC of theY variable.

When using linguistic variables, we must define the calculation of
this value. In [12], a general methodology of belief calculation using
fuzzy information was proposed. With this formulation, the probability
of X taking a valueai on its domainfa1; a2; . . . ; asg is defined as

p(X = ai) =
1

m

m

j=1

�a (ej)

t

�a (ej)

where
m number of examples from the training setE;
ej example fromE;
�w membership function to the fuzzy setw.

In this formula, we assume that all the examples are crisp. The bidi-
mensional probability is similar to the previous formula but requires
the information on two variables to be combined using at-norm (de-
noted by the symbol�)

p(X = ai; Y = bj) =
1

m

m

k=1

�a (ek) � �b (ek)

t; h

�a (ek) � �b (ek)

where the domain of variableY is fb1; b2; . . . ; brg. From now on,
we will use the minimumt-norm (a � b = min fa; bg) in the previous
formula.

Thus, we can use�C(Xi) as a measure of the initial relevance of
variableXi for the classC. This relevance measure will be included in
the initial code for the variable chromosome on each individual of the
population instead of a 0 or 1 default value. In this new approach, the
value chromosome keeps the same description. When compared with
the previous approach, the main difference is the code for the variable
chromosome. In the previous section, the code of this substructure of
an element of the population consisted of a binary array, where a value
1 in the variableXi implies the activation of the variable and 0 the
nonactivation of the variable. In this section, we use a variable chro-
mosome with a real value containing�C(Xi), which has a value be-
tween 0 and 1. This value allows us to make smoother changes between
relevance and irrelevance, i.e., during the execution, the evolutionary
process must define the tendency toward the relevance or irrelevance
of the variables. The problem lies in the interpretation of this new real
code. For example, what does�C(Xi) = 0:7 mean?

B. Activation Threshold

A possible interpretation is obtained if we include an activation
threshold inside the variable chromosome. The inclusion of relevance
measures and activation thresholds has previously been used in feature
selection processes, such as [23], but in our case, a different activation
threshold will be assigned to each chromosome and learned during
the evolution process.

Thus, a variableXi will be considered to be a component of the an-
tecedent of the rule for a class if�C(Xi) � Tj , whereTj represents the
activation threshold for the differentXi variables of thej individual of
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the population. Otherwise, the variable will be considered to be irrele-
vant for the antecedent.

Example 3: Using the same variables as in the previous example,
the code

VAR (0:5; 0:7; 0:1) Tthreshold 0:6 VAL ((001)(11000)(10))

represents the following antecedent:

X2 is fA21; A22g:

A different threshold is considered in each chromosome. Initially,
the activation threshold is randomly defined for each element of the
population.Tj takes a value in the interval

[min
i

�C(Xi); max
i

�C(Xi)]:

The valuesTj are affected by the genetic operators during the evolution
of the GA and therefore the activation thresholds are learned by the
algorithm.

The composition of the genetic operators will be introduced in the
next section.

C. Genetic Operators

The set of operators for the value chromosome is exactly the same as
the one we described in the previous section (genetic operators based
on binary coding). The operators that modify the variable chromo-
some and the threshold (genetic operators based on real coding) are:
the nonuniform mutation [30] and theBLX� crossover operator [10].

• Nonuniform mutation: Let us suppose thatC =
(c1; . . . ; ci; . . . ; cs) is a chromosome. The nonuniform
mutation alters a geneci in the following way:

c
0

i =
ci +�(t; bi � ci); if � = 0

ci ��(t; bi � ai); if � = 1

where� is a binary random value,[ai; bi] is the set of values that
can be taken by the geneci, and

�(t; y) = y 1� r
(1�(t=L))

where
r random number in [0,1];
L maximum number of iterations;
t current iteration;
b parameter selected by the user that determines the depen-

dency degree with the number of iterations.
• BLX� crossover:Let us suppose thatC1 = (c11; c

1
2; . . . ; c

1
s)

andC2 = (c21; c
2
2; . . . ; c

2
s) are two chromosomes selected for

the crossover process. TheBLX� operator generates a new chro-
mosome,H = (h1; . . . ; hs) where eachhi is a number ran-
domly selected in the interval[cmin � I�; cmax + I�], where
cmax = max(c1i ; c

2
i ), cmin = min(c1i ; c

2
i ), I = cmax � cmin

and� is a user-defined parameter to determine the spreading of
the previous interval.

Finally, the value of�C is recalculated whenever the algorithm ob-
tains a rule since when this happens, due to the architecture of SLAVE,
the examples covered by the rules are eliminated and the training set is
changed.

V. EXPERIMENTAL STUDIES

In this section, we consider the performance of the new proposals
for learning algorithms. We have carried out empirical studies on this
different proposal where we have the following:

• SLAVE is the original system without feature selection criterion.
• 2SLAVE-1 is the modified system described in Section III (binary

code).
• 2SLAVE-2 is the modified system described in Section IV-B (ac-

tivation threshold).
The following databases have been obtained from the UCI repository

of machine learning databases and domain theories [31]:

• The IONOSPHERE Data: This radar data was collected by a
system in Goose Bay, Labrador. The system consists of a phased
array of 16 high frequency antennas with a total transmitted
power to the order of 6.4 kW. The targets were free electrons
in the ionosphere. There are two classes and 34 continuous
attributes plus the class variable, using 351 examples.

• SOYBEAN Database: These data correspond to the information
used to develop an expert system for soybean disease diagnosis.
There are 19 classes and 35 categorical attributes, some nominal
and some ordinal. The number of instances is 307 and there are
missing values.1

• WINE Recognition Data: These data are the results of a chemical
analysis of wines from the same region but with different types
of grapes, using 13 continuous variables and 178 examples. This
database contains three classes.

• SONAR Database: The task is to train a network to discriminate
between sonar signals bounced off a metal cylinder and those
bounced off a roughly cylindrical rock. There are two classes, 60
continuous inputs, and one enumerated output and 208 examples.

• DERMATOLOGY Database: The problem is the differential di-
agnosis of erythemato-squamous diseases. This database contains
six classes, 34 attributes, 33 of which have linear values, one of
them is nominal, and there are 366 examples.

• PIMA Database: The problem is the Pima Indians diabetes classi-
fication. This database contains two classes, eight attributes, and
768 examples.

Furthermore, we have used fuzzy domains on the different variables
of each database, with each fuzzy domain being composed of seven
fuzzy labels, uniformly distributed on its definition range.

We have run SLAVE and the different versions of 2SLAVE using the
parameters described in Table I for each database.

For the different databases, we have used five training-test partitions
(70% and 30%, respectively) obtained from the original database. For
each training-test partition, we have calculated the following values:

• A: the accuracy (correct classification result on test sets);
• B: the number of rules;
• C: the average of variables in the different rules;
• D: the percentage of variables unused in none of the final sets of

rules with respect to the total number of variables.
The above parameters are calculated using the arithmetic mean of

the five test results. Moreover, since SLAVE is not a deterministic algo-
rithm, the results of Table II correspond to the average of five different
executions of each algorithm and on each training-test partition. The
parameters of Table II therefore correspond to averages and standard
deviations (the number after the� symbol indicates the standard devi-
ation of the reported average) on 25 different executions (five different
training-test partitions and five different executions on its partition).

1SLAVE has been designed to work with missing values. Information about
this feature can be found in [15].
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TABLE I
SLAVE’S PARAMETERS

Inspecting the results of the different versions of SLAVE tested in
this experimental, we can see that the 2SLAVE-2 version obtained the
best results since it presents the highest results in the four parameters
studied.

• With respect to the parameter A (the correct classification re-
sult), 2SLAVE-2 clearly improves upon the accuracy of SLAVE
and slightly improves upon the accuracy of 2SLAVE-1. This
fact shows that overall the feature selection proposed in this
work (2SLAVE-1 and 2SLAVE-2) actually improves accuracy.
Moreover, the inclusion of information in the initial population
(2SLAVE-2) allows us to obtain the same or better accuracy
results.

• The parameter B (number of rules) is clearly reduced in the new
versions when compared to the previous version. Although this
number in 2SLAVE-2 is smaller than in 2SLAVE-1, there are no
important differences between both versions.

• The analysis of the parameter C (average of used variables in the
rules) is similar to the previous parameter. With the exception of
the WINE database, the parameter is bigger in 2SLAVE-1 than in
2SLAVE-2 but the differences are not really important. The con-
clusion is that the new versions use a smaller number of variables
in each rule than the original version of SLAVE.

• The last parameter D (proportion of variables unused in the final
set of rules with respect to the total number of variables) is per-
haps the most important one in connection with the proposal of
this paper since it truly measures the feature selection capability
of the new system. In this case, 2SLAVE-2 is clearly better than
the other systems. The differences are very significant. For ex-
ample, in the WINE database, the original systems do not use
5.32% of the variables, 2SLAVE-1 does not use 22.46% of the
variables, but 2SLAVE-2 does not use 77.54% of the variables.
This means that only 22.46% of the variables were used by some
rule of the final set of rules. The average unused number of vari-
ables in the different databases is 55%.

From this discussion, we can deduce that the inclusion of the feature
selection proposed in this paper and the inclusion of information about
the initial relevance measure of the different variables in relation to the
class, clearly produces very good results since it does not make the ac-
curacy results worse (in fact, they are improved), it reduces the number
of variables used in all the rules (eliminating irrelevant variables), and
simplifies the description of the final set of rules.

We have also experimented with a simplified version of 2SLAVE-2,
in which a random initialization has replaced to the information-based
initialization, but we have obtained worse results.

Furthermore, we have used three well-known learning algorithms
(C4.5, CN2, and LVQ) to compare the accuracy results. These algo-
rithms represent three different learning methodologies.

TABLE II
EXPERIMENTAL RESULTS OF THEDIFFERENTVERSIONS OFSLAVE WHERE A

IS THE ACCURACY, B THE NUMBER OFRULES, C THE AVERAGE OFVARIABLES

IN THE DIFFERENTRULES, AND THE PERCENTAGE OFVARIABLES UNUSED IN

NONE OF THEFINAL SETS OFRULES WITH RESPECT TO THETOTAL

NUMBER OF VARIABLES

TABLE III
EXPERIMENTAL RESULTS OFOTHER LEARNING ALGORITHMS AND 2SLAVE-2

• C4.5:This is an implementation of the well-known C4.5 classifi-
cation algorithm based on classification trees and it is described
in [32].

• CN2: This algorithm inductively learns a set of propositional
rules from an example set. The algorithm, which was proposed
in , is based on the methodology of the learning algorithm of the
AQ family, and attempts to improve the behavior when the ex-
ample set is affected by noise. The implementation used in this
work was developed by Boswell in 1990 and can be obtained from
http://www.cs.utexas.edu/users/pclark/software.html.

• LVQ: This is an adaptive learning method based on Ko-
honen self-organizing maps [24]. The implementation used
in this work is version 3.1 of the LVQ-PAK, available at
ftp://cochlea.hut.fi/pub/lvq-pak. This software contains all the
necessary programs for the application of the algorithm learning
vector quantization (LVQ) in statistical classification or pattern
recognition. Among the different programs included in the dis-
tribution we have used LVQ1 software without the initialization
process because it has shown the best behavior on the databases
used. Furthermore, we have selected a third of the number of
examples in the training set as the number of codevectors.

Table III shows the accuracy obtained when these learning algo-
rithms are used on the five test sets.

Comparison of these results shows how the accuracy obtained by the
different versions of SLAVE is competitive with the accuracy obtained
by other well-known learning algorithms. In this case, the different ver-
sions of SLAVE obtain the best accuracy in three databases (IONO-
SPHERE, SOYBEAN, and PIMA), and in the other three databases,
the results are not very different in terms of the best result.

VI. CONCLUDING REMARKS

We have proposed a modification of the GA of SLAVE that allows
us to select the appropriate features for a problem. This modification
dynamically explores the set of possible variables in order to find the
most useful rule and the most interesting variables for this rule.

The basic schema consists in modifying the representation of a rule
in the search mechanism of SLAVE in such a way that in the new ver-
sion, the learning algorithm can search for not only the best rule but
also the best set of variables for each rule. The experimentation with
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the databases considered has shown that the feature selection of the
new genetic learning algorithm has clearly improved. Moreover, the
new learning algorithms (2SLAVE-1 and 2SLAVE-2) obtain better ac-
curacy results and simpler rules. The experimentation has also shown
how the inclusion of information about the initial relevance of the vari-
ables (2SLAVE-2) obtains a clear improvement in relation to the fea-
ture selection.

It is important to point out that the feature selection studied in this
paper has been carried out on a rule-to-rule basis unlike the classical
methods that obtain a set of variables for all the rules. Thus, if we were
to include in a set all the variables that appear in any rule, this set would
contain all the used variables, as in other feature selection models. The
proposed model is however more general since it can obtain a set of
rules but moreover, only the useful information for each class is used
in each particular rule.
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