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Abstract—Standard fuzzy systems suffer the “curse of 

dimensionality” which has become the bottleneck when 
applying fuzzy systems to solve complex and high 
dimensional application problems. This curse of 
dimensionality results in a lager number of fuzzy rules 
which reduces the transparency of fuzzy systems. 
Furthermore too many rules also reduce the 
generalization capability of fuzzy systems. Hierarchical 
fuzzy systems have emerged as an effective alternative to 
overcome this curse of dimensionality and have attracted 
much attention. However, research on learning methods 
for hierarchical fuzzy systems and applications is rare. In 
this paper, we propose a scheme to construct general 
hierarchical fuzzy systems based on the gradient-descent 
method. To show the advantages of the proposed method 
(in terms of accuracy, transparency, generalization 
capability and fewer rules), this method is applied to a 
function approximation problem and the result is 
compared with those obtained by standard (flat) fuzzy 
systems.   
  

I. INTRODUCTION 

Standard fuzzy systems have been applied in many fields, 
such as approximation [1, 2, 3], control [4, 5], classification 
[6] and clustering [7]. Indeed, fuzzy systems are universal 
approximators which can approximate arbitrary continuous 
functions to any accuracy [1, 2, 3, 4, 8]. The success of these 
applications is due to the flexibility and expressive ease of 
fuzzy systems, and the related theoretical results [1, 2, 4, 8] 
for fuzzy logic obtained during the last four decades.  

However, as fuzzy systems have been applied to more 
complex and high dimensional systems, the “curse of 
dimensionality” has become increasingly apparent as the 
bottleneck to wider application. The curse of dimensionality 
of fuzzy systems is that the total number of rules and  
parameters, and the data required to identify it increase 
exponentially with the number of input variables. 

In addition, as is well known, an important advantage of 
fuzzy  systems   is   their   transparency  and  interpretability. 
Unfor tunately,  as a  consequence of the cur se of 
dimensionality, transparency and interpretability are reduced    
as humans are incapable of understanding hundreds or  
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thousands of fuzzy rules and parameters. Further, as there is 
often only limited data available in an application, a large 
number of rules and parameters result in over-fitting, which 
reduces the generality of fuzzy systems.  

To overcome the curse of dimensionality of fuzzy systems, 
hierarchical fuzzy systems were proposed in the early 90s by 
Raju, Zhou and Kisner [9] and have attracted much attention 
in recent years. In hierarchical fuzzy systems, instead of 
using a standard (flat) high-dimensional fuzzy system, a 
number of lower-dimensional Sub-Fuzzy Systems (SFS) are 
linked in a hierarchical manner.  

In this paper, a learning algorithm based on the gradient-
descent method is proposed to identify general hierarchical 
fuzzy systems. The algorithm avoids the curse of 
dimensionality problem and shows advantages in accuracy, 
transparency and generalization capability. This paper only 
considers the case of Multiple Inputs and Single Output 
(MISO). This is without loss of generality as systems with 
Multiple Inputs and Multiple Outputs (MIMO) can be 
represented as several MISO systems and solved by using 
the methods and results based on MISO systems.  

This paper is organized as follows: Section II analyses the 
curse of dimensionality problem in standard fuzzy systems; 
Section III gives an introduction to hierarchical fuzzy 
systems; Section IV introduces the proposed hierarchical 
structure for fuzzy systems and the learning algorithm; 
Section V applies the proposed learning algorithm to a 
function approximation problem to show its advantages; 
Section VI discusses  existing difficulties in hierarchical 
structure design for hierarchical fuzzy systems; finally 
Section VII presents conclusions. .  

II. EXPONENTIAL GROWTH PROBLEMS IN STANDARD FUZZY 
SYSTEMS 

In a standard fuzzy system, a grid-based definition of 
fuzzy terms and their membership functions is usually used 
to partition the input space and all possible combinations of 
these fuzzy terms and their membership functions form the 
fuzzy rule base. As a consequence, the total number of rules 
grows exponentially as the number of input variables 
increases. Fig.1. shows a grid-based definition of the 
membership functions with two input variables, X1 and X2, 
each having m fuzzy values (A1

1, A1
2, …, A1

m and A2
1, 

A2
2, …, A2

m). A fuzzy rule can be defined as:   
IF X1 is A1

iand X2 is A2
j, THEN Y is Bij 

where i=1…m and j=1…m  
Then the total number of fuzzy rules is m2.  
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Fig. 1. An example of grid definition for rules and 
membership functions with two input variables 

This set of fuzzy rules covers the entire definition domain 
and is termed a complete rule set [10]. Assume that there are 
n variables, and each variable has m membership functions 
(fuzzy terms), a complete set of rules should have mn 
different fuzzy rules. For a problem with 10 input variables 
each of which has 10 membership functions, there will be 
1010 fuzzy rules altogether.  

The number of parameters also increases exponentially 
corresponding to the number of input variables. Assume p 
parameters are needed for each fuzzy rule, a problem with 
10 input variables and 10 membership functions for each 
input variable needs p ×1010 parameters. 

The data needed to train standard fuzzy systems also 
increases exponentially corresponding to the number of 
input variables [11, 12]. The number of training samples in 
the training dataset should at least be the same as the number 
of parameters. As has been discussed that the number of 
parameters increases exponentially corresponding to the 
number of input variables; hence the data needed increases 
exponentially corresponding to the number of input variables 
as well.  

It is infeasible to design a standard fuzzy system for a 
complex application with a large number of input variables. 
This exponential growth of fuzzy rules, parameters and data 
is termed the “curse of dimensionality” problem [9]. In 
addition, this curse of dimensionality results in several 
negative consequences: 
• Transparency and interpretability (important advantages 

when fuzzy systems are applied) is reduced as humans 
are incapable of understanding hundreds or thousands of 
fuzzy rules and parameters. 

• Over-fitting learning often occurs. As there is often only 
limited data available to an application, a large number 
of rules and parameters result in over-fitting, which 
reduces the generality of fuzzy systems. In other words, 
learning from data becomes difficult or impossible. 

• The requirements for more computation and more 
memory become excessive [12]. 

 

III. HIERARCHICAL FUZZY SYSTEMS 

To overcome the curse of dimensionality, hierarchical 
fuzzy systems were proposed in the early 90s by Raju, Zhou 
and Kisner [9]. In hierarchical fuzzy systems, instead of 
using a flat high-dimensional fuzzy system, a number of 
lower-dimensional Sub-Fuzzy Systems (SFS: defined in 
terms of standard fuzzy systems) are linked in a hierarchical 
manner. A general structure for hierarchical fuzzy systems is 
shown in Fig. 2. There may be multiple levels, and multiple 
sub-fuzzy systems in each level. The outputs of lower 
levelled sub-fuzzy systems are used as the inputs to their 
neighbouring upper levelled sub-fuzzy systems. The inputs 
to the lowest level are all original input variables. The inputs 
to the lth (l>1) level are the combination of its lower levelled 
outputs and some (or none) of the original input variables. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. A general structure for hierarchical fuzzy systems 

Some research has focused on the design and analysis of 
hierarchical fuzzy systems. Wang and colleagues [13] had 
analyzed the relative importance of input variables and 
concluded that the most important input variable should be 
assigned to the lowest level, and that the lest important input 
variables should be assigned to the highest level. Similar 
work was also done by Chung and Duan [14]. Another key 
problem for hierarchical structure design is that correlated or 
coupled input variables should be assigned to the same sub-
fuzzy system. Chung and Duan [14] designed a method to 
determine the correlated or coupled input variables by 
introducing a correlation matrix.  

Schemes for constructing hierarchical fuzzy systems have 
been investigated as well. Wang and colleagues [8, 13] 
proposed a hierarchical structure for fuzzy systems with 
triangular membership functions, which was proven to be a 
universal approximator. However, even though Wang and 
colleagues managed to decrease the exponential growth of 
fuzzy rules, the exponential growth problem of parameters 
remains inherent. Campello and Amarel [15] proposed a 
method to construct hierarchical fuzzy systems by using 
Gaussian membership functions. In Joo and Lee’s work [16], 
they proposed a general hierarchical fuzzy structure, in 
which the outputs of the lower levels are used as the THEN 
part instead of the IF part (the inputs) of the upper levels. 
However, their scheme involved more parameters to 
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compute in the THEN part for each sub-fuzzy system, which 
to some degree reduced the transparency of fuzzy systems. 

Investigation on learning methods for general hierarchical 
fuzzy systems and applications is rare. In Section IV, we 
propose a learning algorithm for general hierarchical fuzzy 
systems based on the gradient-descent method. In our 
scheme, we use triangular membership functions, each of 
which intersects the central point of its neighbouring 
membership functions. This helps to retain the transparency 
of fuzzy systems. To show the advantages of the proposed 
scheme, its result for function approximation is compared 
with that of standard (flat) fuzzy systems. 

IV. LEARNING ALGORITHM FOR HIERARCHICAL FUZZY 
SYSTEMS 

The structure of a hierarchical system should be carefully 
considered before parameter optimization. Firstly, the input 
variables should be grouped into sub-groups. Zeng and 
Keane [17] introduced the concept of a natural hierarchical 
structure when a function can be decomposed as a 
composition of several lower dimensional functions or a 
system consists of several lower dimensional components. If 
there is a natural hierarchical structure for the function to be 
approximated, the model hierarchical structure should be 
consistent with this natural hierarchical structure. Otherwise, 
the structure of the hierarchical fuzzy system should be 
analysed by using human knowledge or by the grouping 
method proposed by Chung and Duan [14].   

A major advantage of fuzzy systems is transparency. 
However, when the number of fired rules increases, the final 
output is less understandable. We wish fewer rules to fire at 
one time to keep the fuzzy rules transparent. Reducing the 
overlaps of different membership functions is an effective 
method. Gaussian and triangular functions are two popular 
membership functions used in fuzzy systems. By using 
Gaussian membership functions more rules fire due to the 
overlap of different membership functions. Triangular 
membership functions have comparatively better 
performance to overcome these overlaps if carefully 
designed. Specially, if the edge of one triangular 
membership function does not go across to the middle point 
of its neighbouring triangular membership functions, then 
only 2n rules fire each time, where n is the number of input 
variables. In this case, the fuzzy rules are quite easy to 
understand.  

A. Formulation for Hierarchical Fuzzy Systems    

Based on the discussion above, we use triangular 
membership function based on Mamdani reasoning  [18] in 
our algorithm. The edge of one triangular membership 
function intersects to the middle point of its neighbouring 
triangular membership functions (as shown in Fig. 3).  

We consider a function RVRUf n ∈→⊂: . 

nUUUU ×××= ...21  is the definition domain, where 
RUi ⊂ , and RV ⊂ . Specially, we define ],[ iiiU βα= , 

where i = 1, 2…n. If each variable is evenly partitioned 

with iN , then ],...,,[],[ 10 iN
iiiiii eeeU == βα . 

iii
j

i
j

i Nee /)(1 βα −=−+ .  
 
 
 
 
 
 
 
 
 
 

Fig. 3 . An example of triangular membership function 

The triangular membership function for the ith input 
variable of the pth sub-fuzzy system in the lth level, iplx ,, , is 
defined as follows.  
If 0< ji < iplN ,, , 
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where iplN ,,  is the number of partitions for iplx ,, . ij

iple ,,  is 

the central point of the  ji–th fuzzy term for iplx ,,  and ij
ipl ,,µ  

is the membership for this fuzzy term.  
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Else if ji = iplN ,, , 
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In our algorithm, a commonly used defuzzifier, centre-

average, is applied as follows.  
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(4) 
By using the triangular membership function shown in Fig. 

3, the edge of one triangular membership function is the 
central point of its neighbouring membership functions, 
hence we can conclude that given an input, only 2n rules fire 

)(0
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each time, where n is the number of input variables. In 

Equation (4), we have 1
,21

,

... 1
,, =∑ ∏
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Then, Equation (4) can be written as:  
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where for the pth sub-fuzzy system in the lth level, 

ipli Nj ,,...1= , iplx ,,  is the ith input, and plnjjj
ply ,21 ...

, is the 

THEN part of the 
plnjjj

,21 ... th fuzzy rule. The triangular 
membership function can be represented by 

),,,( 1
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+−∆ j
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j
ipl

j
iplipl eeex . ply ,  is the model output of the 

pth sub-fuzzy in the lth level. 
Then the final output is computed by: 

),...,,ˆ,...,ˆ,ˆ(ˆ
,11 ,11,1,12,11,1 pLL QLLPLLLLL xxyyyfy

−− −−−−−=  

where L is the total number of levels, Lŷ is the final model 
output (the output for the Lth level), jLy ,1ˆ − is the jth output 
from the (L-1)th level (PL-1 is the total number of output 
from the (L-1)th level),  jLx ,1− is the jth original input 
variable from the (L-1)th level (QL-1 is the total number of 
original inputs to the Lth level).  

Similarly, the output for the pth sub-fuzzy system in the 
lth level is: 

),...,,ˆ,...,ˆ,ˆ(ˆ
,11 ,,11,,1,,12,,11,,1,, plL QplplPplplplplpl xxyyyfy

−− −−−−−=

The output for the pth sub-fuzzy system in the 1st level is: 
),...,(ˆ

,1,,11,,1,1,1 pQpppp xxfy =  

B. Learning based on gradient-descent algorithm  

For a standard fuzzy system the Least Square Method 
(LSM) is usually used to gain an optimal result. If the 
expected intermediate variables (outputs of the lower level 
and inputs to the upper level) are known, LSM could be 
applied for training a hierarchical fuzzy system (as done in a 
standard fuzzy system). However, it is not easy to apply the 
LSM when developing a hierarchical fuzzy system because 
in most cases the intermediate variables have no actual 
meaning and are unexpected. A possible solution is for an 
expert to supply the required knowledge needed to develop 
such a hierarchical fuzzy system. Alternatively, machine 

learning or optimization techniques can be used to design 
such a system.  

In our work, the gradient-descent algorithm is used to 
optimize the parameters in the hierarchical fuzzy system 
described in the previous section. The error of the final 
output is propagated back from the upper level to the lower 
level. The updating of the parameters of the lower levels is 
based on these errors propagated back from the upper level.  

The error between the actual output )(ky  and the model 
output )(kyL  at time k: )(keL , is defined as:  

)()()( kykyke LL −=  
and the errors propagated back is defined as: 
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where )(kep  is the error of sub-fuzzy system p, which is 
propagated form its neighbouring upper level sub-fuzzy 
system q. )(keq  is the propagated error of sub-fuzzy system 
q. 

Because from Equation (1)-(3) we have, 
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The formula to update the parameters )(
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Then Equation (5) can be represented by:  
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(6) 
where η is the learning rate. 

C. Learning Algorithms   

In this section the learning algorithm is given as follows:  
Step 1) Choose the membership functions for each input 

variables: both the original input variables and the 
intermediate variables (the output of the lower level sub-
fuzzy systems which are inputted to the upper level sub-
fuzzy systems). To do this, we assign an even partition for 
each input variable on their corresponding definition 
domain. The definition domain for the original input 
variables can be directly gained from the training set. The 
definition domain for the intermediate variables might 
have no actual meaning and no explicit definition domain; 
we could just simply assign the definition domain for the 
intermediate variables as [0, 1].  

Step 2) Choose initial parameters qnjjj
ply

...
,

21  for the pth sub-
fuzzy system of the lth level randomly. These parameters 
will be adjusted in the following steps. 

Step 3) In one learning iteration k, for a given input-output 
pair (xr, yr), where r is the index of training data items, 

update the parameters qnjjj
ply

...
,

21  using Equation (6). 
Step 4) If r<N, go to Step 3) with r=r+1, where N is the total 

number of data items in the training set.  
Step 5) Compute the accumulated error 

∑ −×=
=

N

r

rr yyE
1

2)ˆ(
2
1 . If E is less than a prespecified 

small value ε , or the iteration k is larger than the 
prespecified maximal iterations K, then end the training 
process. Else, go to Step 3 with k = k + 1. 

Remark: it should be noted that, triangle membership 
functions are not differential at their apex and edge. 
However, in the gradient descent learning process, the 
optimisation process is based on gradient descent 
computing, so we can still get the parameters adjusted to 
their optimal values.    

V. SIMULATION 

In this section we apply our algorithm to a function 
approximation problem. Here we consider a function with 
three input variables (x1, x2, x3): 

25.1
3

1
2

5.0
1321 )1(),,( −− +++== xxxxxxfy  on 3]6,1[=U . 

We compare our result with that from standard (flat) fuzzy 

system to show the advantages of our algorithm for 
hierarchical fuzzy systems.  

For simulation, 341 samples are uniformly created on the 
definition domain 3]6,1[=U , 216 of which are for training 
and the remaining 125 are for testing.  These three input 
variables are grouped as ((x1, x2) x3)), then 

)),,(( 32112 xxxffy = . The hierarchical structure is shown 
in Fig. 4.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The hierarchical structure for the function approximation of 

25.1
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5.0
1321 )1(),,( −− +++== xxxxxxfy  

We train the hierarchical fuzzy system by setting different 
values of partitions and learning rate. The result comparison 
is shown in Table 1. The error is reported and also referred 
to in the following discussion in terms of APE%.  

Firstly, we partition each variable into 5 subspaces (for 
both the original input variables: x1, x2 and x3, and the 
intermediate variable: x12), and then there are 6 membership 
functions for each variable defined by Equation (1)-(3). The 
learning rate is set as: 0004.0=η . The training error is 
0.8655173％ , and the testing error is 1.4829928% from 
using 6×6+6×6=72 rules. If the learning rate is set as: 

0005.0=η , the training error is 0.86328％, and the testing 
error is 1.4932056% by using 72 rules. If we use a standard 
(flat) fuzzy system, by partitioning each variable into 5 
subspaces, the number of rules is 6×6×6=216, and the 
training error is quite low: 0.076629606％ . Theoretically 
speaking, the training error should be zero (for 216 samples 
are used to train the model with 216 parameters), but it is 
infeasible to always find the optimal solution, and it is 
almost the optimal one with error 0.076629606％. The testing 
error is 6.5011896% from using a standard fuzzy system, 
which is much larger than the testing result from the 
hierarchical fuzzy system. 

When we partition each variable into 4 subspaces (for both 
the original input variables: x1, x2 and x3, and the 
intermediate variable: x12), and then there are 5 membership 
functions for each variable defined by Equation (1)-(3).   
The learning rate is set as: 0004.0=η . The training error is 
1.1753109％ , and the testing error is 1.7112675% from 
using 5×5+5×5=50 rules. When the learning rate is set as: 

0005.0=η . The training error is 1.1867441％ , and the 
testing error is 1.7046347%. Similarly, if we use a standard 
(flat) fuzzy system, by using partition each variable into 4 
subspaces, the number of rules is 5×5×5=125, and the 

SFS2 

SFS1 

x1     x2                 x3   

x12 
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training error is: 0.5859885 ％  and the testing error is 
6.379889%, which is much larger than the testing result from 
the hierarchical fuzzy system.   

We can conclude from the above that hierarchical fuzzy 
systems have a better generalization capability than standard 
fuzzy systems. The reason for this is analyzed in detail in the 
next section.  

Hierarchical fuzzy systems also obtain higher accuracy by 
using a similar number of fuzzy rules to standard fuzzy 
systems. By using 72 rules (the 4th and 5th row), a 
hierarchical fuzzy system gains a training accuracy of 0.86, 
which is a litter worse than a standard fuzzy system (0.58) 
with about double (125) the number of rules. In addition,  
from the comparison of the 6th and 7th row and the 3th row, 

we find that the hierarchical fuzzy system obtains better 
accuracy (1.17) by using fewer fuzzy rules (50) than a 
standard fuzzy system (the 3th row, 1.4 accuracy for training 
and 2.98 accuracy for testing by using 64 rules). So we can 
say that hierarchical fuzzy systems have higher accuracy and 
fewer rules than standard fuzzy systems. 

Fig. 5 and Fig. 6 show the comparison between the model 
output and the actual output for the training data and the 
testing data respectively by using the partition of (5, 5, 5) 
and the learning rate is set as 0.0004. We can see that the 
hierarchical fuzzy systems constructed by our algorithms 
approximate the objective function quite well.   

Fig. 7 and Fig. 8 show the error for each sample in the 
training set and the testing set respectively.    

TABLE I 
RESULT COMPARISON BETWEEN HIERARCHICAL FUZZY SYSTEM AND STANDARD FUZZY SYSTEM 

Method partitions Rules Parameters Learning rate APE % training APE% testing 
standard (5,5,5) 216 216 LSM 0.076629606 6.5011896 
standard (4,4,4) 125 125 LSM 0.5859885 6.379889 
standard (3,3,3) 64 64 LSM 1.4044434 2.9811306 

hierarchical (5,5,5) 72 72 0.0004 0.8655173 1.4829928 
hierarchical (5,5,5) 72 72 0.0005 0.86328 1.4932056 
hierarchical (4,4,4) 50 50 0.0004 1.1753109 1.7112675 
hierarchical (4,4,4) 50 50 0.0005 1.1867441 1.7046347 
hierarchical (3,3,3) 32 32 0.0005 1.9707694 2.6047569 
hierarchical (3,3,3) 32 32 0.0004 1.9702787 2.5857594 
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Fig. 5. Comparison between the model output and the actual 

output for the training set 
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Fig. 6. Comparison between the model output and the actual 
output for the testing set 
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Fig. 7. Error for the training set 
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Fig. 8. Error for the testing set 

 

VI. DISCUSSION ON HIERARCHICAL FUZZY SYSTEMS 

A. Intermediate variables  

Hierarchical structures introduce intermediate variables, 
which are the outputs of the lower level sub-fuzzy systems, 
and are propagated to the upper level sub-fuzzy systems. If a 
task can be decomposed into sub-tasks, the application itself 
has a natural hierarchical structure. The resultant hierarchical 
fuzzy system should have the same hierarchical structure as 
the problem structure. In this case, the intermediate variables 
possess some actual meaning and it is easy to design such a 
hierarchical fuzzy system. Unfortunately, in most 
applications, it is difficult to decompose a main task into 
sub-tasks. In these applications, the intermediate variables 
usually do not possess any actual meaning and consequently 
make hierarchical fuzzy systems hard to design. 

In addition, these intermediate variables without ‘actual 
meaning’ also reduce the transparency of fuzzy systems. 
Hierarchical fuzzy systems give a set of multi-stage rules as:  

IF X1 is A1 and …and Xn is An, THEN Y1 is B1 
and …and Ym is Bm 
IF Y1 is B1 and …and Ym is Bm, THEN Z is C 

If the intermediate variables: Y1 … Ym have no actual 
meaning, the multi-stage reasoning becomes less 
understandable. Furthermore, fewer partitions of the 
intermediate variables will cause information loss. 

The defuzzification process in a standard fuzzy system 
transforms the fuzzy conclusion into a crisp (usually 
numerical) output value. Some information is lost during this 
dufuzzification process [19]; in the design of a hierarchical 
fuzzy system, defuzzification of lower sub-fuzzy systems 
causes some information loss. This information loss will be 
propagated to the upper sub-fuzzy systems. This information 
loss introduced by the intermediate variables is termed the 
spread of fuzziness or fuzzy explosion [19]. The spread of 
fuzziness in multi-stage (hierarchical) fuzzy systems has 
been extensively studied by Maeda and colleagues [19] and 
Babuska [20]. This propagation of the fuzzy explosion in 
hierarchical fuzzy systems makes the final solution less 
understandable. The more modules are considered, the more 
uncertainty it is likely.   

Unfortunately, to date little work has been done 
investigating the intermediate variables in hierarchical fuzzy 
structures.  Such developments should enable hierarchical 
fuzzy systems to be used in wide areas. 

B. Generalization capability 

Hierarchical fuzzy systems have better generalization 
performance than standard fuzzy systems for which, as 
shown in Section 2, the data needed increases exponentially 
corresponding to the number of input variables. The reason 
is that the number of parameters increases exponentially 
corresponding to the number of input variables and 
meanwhile the data needed is proportional to number of 
parameters.   

In real world applications, it is hard to obtain a sufficient 
data set with many input variables that cover the whole input 
space. In most cases there are limited samples to train the 
fuzzy systems. Given a fixed number of training samples and 
a fixed number of membership functions for each input 
variable, the number of parameters needed by a hierarchical 
fuzzy system (polynomial growth corresponding to the 
number of input variables) is much smaller than for a 
standard fuzzy system (exponential growth corresponding to 
the number of input variables). A standard fuzzy system 
(supported by more parameters) is more liable to over-fit 
than a hierarchical fuzzy system (supported by fewer 
parameters). In other words, hierarchical fuzzy systems 
reduce the number of fuzzy rules and parameters and this 
reduction prevents the whole model from over-fitting. 
Therefore, the obtained fuzzy systems have better 
generalization capability. 

The better generalization capability of hierarchical fuzzy 
systems can be explained in another way. The accuracy of 
the approximation for the testing data depends on the density 
of the observed data samples in the input space. Suppose 
there are n input variables, each of which has m membership 
functions. Then the whole input space will be partitioned 
into nm )1( − sub-spaces for a complete fuzzy set. There 
should be at least one input sample (or more to gain better 
performance) located in each sub-space. That is, the number 
of training samples should be proportional to nm . Otherwise, 
if the number of training samples is less than nm ,  there will 
be some sub-input spaces with no training samples . An 
unexpected result will be obtained if the testing sample is 
located in these sub-input spaces with no training data. On 
the contrary, in hierarchical fuzzy systems, suppose each 
intermediate variable also has m membership functions, the 
whole input space will be partitioned into 1)1( nm − sub-
spaces for a complete fuzzy set in the first (lowest) level, and 
will be partitioned into 2)1( nm − sub-spaces for a complete 
fuzzy set in the second level, and so on, where n1 and n2 are 
the number of inputs to the first and second level. The whole 
input space will be partitioned into inm )1( − sub-spaces for a 
complete fuzzy set in the ith level. Altogether, for a 
hierarchical fuzzy system with L level, the whole input space 
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is partitioned into  in
L

i
m )1(max

1
−

=
 sub-spaces for a complete 

fuzzy system? for all levels, which is much smaller than 
nm )1( − . The probability of a sub-space having no training 

data in a hierarchical fuzzy system is much smaller than the 
associated probability in a standard fuzzy system given the 
training set and partitions for each input variable. Therefore, 
when using hierarchical fuzzy systems, less data is needed 
for description of the input-output relationships in the 
subspace.  

Hierarchical fuzzy systems reduce the number of fuzzy 
rules and parameters used in standard fuzzy systems and this 
reduction prevents the whole model from over-fitting. The 
obtained fuzzy systems therefore have better generalization 
capability.   

VII. SUMMARY 

In this paper, we first reviewed the “curse of 
dimensionality” problem in standard fuzzy systems. That is, 
in complex applications with a large number of input 
variables, the number of rules, parameters and data need to 
increase exponentially according to the number of input 
variables; hence it is simply often infeasible to define a 
standard fuzzy system for such a complex problem. During 
recent years, hierarchical fuzzy systems have been 
investigated and validated both theoretically and practically 
as an effective alternative in overcoming the “curse of 
dimensionality” in many areas.  

Despite this progress, research on learning methods for 
hierarchical fuzzy systems and their applications is rare. In 
this paper, we propose a scheme to construct general 
hierarchical fuzzy systems based on the gradient-descent 
technique.  

From the function approximation application in Section 5, 
we conclude that hierarchical fuzzy systems are an effective 
alternative to solve this curse of dimensionality problem. 
Hierarchical fuzzy systems gain better performance than 
standard fuzzy systems in terms of accuracy by using the 
same number of, or fewer fuzzy rules and parameters to gain 
the same accuracy.  

Hierarchical fuzzy systems have better performance than 
standard fuzzy systems in terms of their generalization 
capability. The reason is discussed theoretically in Section 
6.2. In addition, from the result in Section 5, we also observe 
that hierarchical fuzzy systems have better performance in 
this aspect.  

In our research, to retain the transparency advantage of 
fuzzy logic, we apply triangular membership functions. 
Triangular membership functions have comparatively better 
performance to overcome the overlaps between different 
membership functions if carefully designed. Specifically, if 
the edge of one triangular membership function does not go 
across to the middle point of its neighbouring triangular 
membership functions, then only 2n rules fire each time, 
where n is the number of input variables. The fewer rules 
fire, the more understandable a fuzzy system is. In this case, 
the fuzzy rules are quite easy to understand.  

However, there are many open problems which require 
further investigation for hierarchical fuzzy systems, such as 
how to determine the hierarchical structure for fuzzy systems; 
how to handle intermediate variables; and how to train 
hierarchical fuzzy systems efficiently. Developments in each 
of these areas should result in wider application of 
hierarchical fuzzy systems and, in turn, help to extend fuzzy 
systems to address more complicated and high dimensional 
problems. 

 
REFERENCES 

[1] H. Ying, “Sufficient conditions on general fuzzy systems as function 
approximators”, Automatica, Vol.30, pp.521-525, 1994.  

[2] X. J. Zeng and M. G. Singh, “Approximation theory of fuzzy systems 
─ SISO case”, IEEE Transaction on Fuzzy Systems, Vol.2, No.2, 
pp.162-176, 1994. 

[3] X. J. Zeng and M. G. Singh, “Approximation accuracy analysis of 
fuzzy system as function approximators”, IEEE Transactions on Fuzzy 
Systems, Vol.4, No.1, pp.44-63, 1996. 

[4] J. J. Buckley, “Universal fuzzy controller”, Automatica, Vol.28, 
pp.1245-1248, 1992.  

[5] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its 
applications to modelling and control”, IEEE Transactions on Systems 
Man and Cybernetics, Vol.15, pp.116-132, 1985. 

[6] G. Tsekourasa, H. Sarimveisb and E. K. George, “ Ahierarchical 
fuzzy-clustering approach to fuzzy modelling”, Fuzzy Sets and 
Systems, Vol.150, pp.245–266, 2005. 

[7] Y. EI-Sonbaty and M. A.,Ismail, “Fuzzy clustering for symbolic data”, 
IEEE Transactions on Fuzzy Systems, Vol.6, No.2, pp.195-204, 1998.  

[8] L. X. Wang, “Fuzzy systems are universal approximptors”, in 
Proceedings of Conference on Fuzzy Systems, pp.1163-1170, San 
Diego,1992.  

[9] G. V. S. Raju and J. Zhou, “Adaptive hierarchical fuzzy controller”, 
IEEE Transactions on System Man and Cybernetics,Vol.23, No.4, 
pp. 973-980, 1993.  

[10] X. J. Zeng and M. G. Singh, “Decomposition property of fuzzy 
systems and its applications”, IEEE Transactions on Fuzzy Systems, 
Vol.4, No.2, pp.149-165, 1996.  

[11] S. Nakayama, T. Furuhashi and Y. Uchikawa, “A proposal of 
hierarchical midelling”, Journal of Japan Society Fuzzy Theory 
Systems, Vol.1, No.5, pp.1155-1168, 1993. 

[12] W. Rattasiri and S. K. Halgamuge, “Computationally advantageous 
and stable hierarchical fuzzy systems for active suspension”, IEEE 
Transactions on Industrial Electronics, Vol.50, No.1, pp. 48-61, 2003.  

[13] L. X. Wang, “Analysis and design of hierarchical fuzzy systems”,  
IEEE Transactions on Fuzzy systems, Vol.7, No.5, pp.617-624, 1999. 

[14] F. L Chung and J. C. Duan, “On multistage fuzzy neural network 
modeling”, IEEE Transactions on fuzzy systems, Vol.8, No.2, pp.125-
142, 2000. 

[15] R. J. G. B. Campello and W. C. Amaral, “Optimization of hierarchical 
neural fuzzy models”, in Proceedings of the IEEE-INNS-ENNS 
International Joint Conference on Neural Networks, Vol.5, pp.8–13, 
Como, Italy, July 2000. 

[16] M. G. Joo and J. S. Lee, “A class of hierarchical fuzzy systems with 
constrains on fuzzy rules”, IEEE Transactions on Fuzzy Systems, 
Vol.13, No. 2, pp.194- 203, 2005. 

[17] X. J. Zeng and J. A. Keane, “Approximation capabilities of 
hierarchical fuzzy systems”, IEEE Transactions on Fuzzy Systems, 
Vol.13, No.5, pp. 659-672, 2005.  

[18] E. Mamdani “Advances in the linguistic synthesis of fuzzy 
controller,” Int. J. Man-Machine Studies, vol.8, no. 6, pp. 669-
678, 1976. 

[19] H. Maeda, “An investigation on the spread of fuzziness in multi-fold 
multi-stage approximation reasoning by pictorial representation ─ 
under sup-min composition and triangular type membership function”, 
Fuzzy Sets and Systems, Vol.80, pp.133-148, 1996.  

[20] R. Babuska, “Construction of fuzzy system interplay between 
precision and transparency”, in ESIT 2000, 12-15 Sep. Aachen, 
Genmany.  

 

99




