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Abstract

A new method of rule generation for the hierarchical collaborative fuzzy system, HCFS, is proposed. This HCFS is
structured like various parallel fuzzy subsystems and it overcomes the dimensionality problem and the lack of interpret-
ability of most of the traditional fuzzy systems, when dealing with complex real-world problems. An association process of
different fuzzy systems is presented in this work, through the use of a relevance concept of a fuzzy system. The result of this
aggregation is a collaborative structure where all sub-models have the ability to gradually improve the overall accuracy of
approximation by adding their own contributions. For this structure we propose a new algorithm to be used in the pro-
cedures of the three learning phases: the structure building, the parametric identification and the division of the learning
data among the various levels of the hierarchical structure. This new fuzzy modelling technique automatically generates
and tunes the sets of fuzzy rules in the hierarchical collaborative structure (HCS). The effectiveness of the proposed HCFS
model in handling high-dimensional and complex problems is demonstrated through various numerical simulations.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Fuzzy modelling is one of the currently used techniques for modelling non-linear, uncertain and complex
systems. An important characteristic of fuzzy models, FM, is the partitioning of the space of system variables
into fuzzy regions using fuzzy sets [1]. In each region, the characteristics of the system can be simply described
using a rule. Typically, a fuzzy model consists of a rule base with rules associated to particular regions, where
the information available is transparent and easily readable. This characteristic of fuzzy systems has been lar-
gely exploited in pattern recognition [2], control [3], image processing [4] and other fields.

However, as the complexity of the described systems increases, the number of rules of a standard fuzzy sys-
tem also increases exponentially with the number of variables involved [5–9] or with the complexity of the rela-
tionships in the samples patterns [10]. The aforementioned exponential growth of the total number of fuzzy
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rules implies that a fuzzy system is always a trade-off between accuracy and dimensionality. The interpretabil-
ity of the resulting rules by the human operator, one of most important features on the fuzzy system descrip-
tion, is also reduced.

An alternative to solve the curse of dimensionality is the hierarchical fuzzy modelling [11–15]. By arranging
the inputs in hierarchical ways and allowing the consequent part of a rule to be an antecedent to another rule,
the number of fuzzy rules would be a linear or nearly-linear function of the number of inputs. In this case, the
input space is decomposed into subspaces of lower dimension, and each input variable is considered only at a
certain level of the hierarchy. Another approach defines the hierarchy as a prioritisation of rules [16]. With this
kind of hierarchy, the higher levels contain more specific rules and the lower levels contain the generic rules,
which are applied only when no applicable specific rule is available. However, given a set of high-dimensional
training data, for these hierarchical modelling it is not easy to determine an appropriate, if not optimal, net-
work structure. Very few methods have yet been proposed to automatically generate rules for such hierarchical
systems, most of them by the use of genetic algorithms (GA) [17,18]. As it is well known, GA is a very time-
consuming searching process and, sometimes, it is computationally prohibitive when a very high-dimensional
problem is being considered.

The division of the input space is one of the most important aspects of fuzzy modelling. This division is a
coarse setting of model complexity, thus determining the performance of the model fine-tuning. For an appro-
priate division of input space, several methods have been reported [19–22]. Some of these methods have reg-
istered the division by merging similar membership functions or inserting new ones. Other authors [23–25]
have proposed clustering algorithms to obtain fuzzy rules from the given input–output data.

These strategies have been applied on the conventional flat fuzzy system, where all rules were on the same
level (rule base) and used by a common inference engine, which was identified from single data training. This
structure of fuzzy system and these strategies are therefore inadequate in many real applications, which have
different relationships with distinct complexities to be modelled. This problem suggests the use of a hierarchi-
cal structure of fuzzy rule bases to make a convenient organisation of fuzzy information in the fuzzy subsys-
tems of the hierarchical structure.

The aim of this paper is to propose an efficient methodology that automatically generates fuzzy rules from
real data, organized in a Hierarchical Collaborative Structure (HCS) of fuzzy systems, and to make the opti-
misation of its fuzzy sets membership parameters by combining various algorithms. The HCFS model f(x) is
a hierarchical structure containing a set of n fuzzy subsystems, where each fuzzy subsystem
f1ðxÞ; f2ðxÞ; . . . ; fnðxÞ contributes with its particular description to the response of the overall system. Each
subsystem may contain information related with particular aspects of the input–output region or merely col-
laborate to the performance of f(x), and whose contribution is measured by its relevance. This structure was
shown very useful to split the inside greenhouse air temperature and humidity flat fuzzy models into fuzzy
sub-models [26].

In this work the HCFS model is obtained directly from the data set. In general, this approach involves two
major steps: structure identification and parameter identification. Moreover, a third step is developed to make
the partitioning of the input–output space through various hierarchical sub-models, each part being used in the
training process of the corresponding level. We propose a new learning strategy for these tasks, combining
the unsupervised and supervised learning algorithms to create and adapt the fuzzy rules, by the ability to make
automatically a partition of the data set that will be used by each subsystem in the learning process. In the cor-
responding procedure, the model parameters, initially found by forward RLS algorithm, are recurrently
adapted by the backward RLS algorithm. The final set of rules (of each sublevel) is appropriately determined
by removing the useless fuzzy rules.

The paper is organized as follows. In Section 2, the flat fuzzy system is described and HCFS structure is
presented. The concepts of relevance of a set of rules and the relevance of the fuzzy system are defined. Section
3 describes how a HCFS is evaluated in the modelling process. Also, a new hierarchical collaborative fuzzy
system algorithm, HCFSA, is proposed, which automatically generates rules to the hierarchical fuzzy system.
For this we use a set of methods: Cluster Rule Generation; Recursive Least-Square; Data Rejection Algorithm
and Backward Fuzzy Rule Selection algorithm. Next, the HCFSA is tested on a benchmark of non-linear
model identification and on a computer image processing problem. Finally, Section 5 concludes and gives
some suggestions for future work.
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2. The relevance of the fuzzy system

2.1. The fuzzy system

A generic fuzzy model is defined as a collection of fuzzy rules Rl of the form of (1):
Rl : If x1 is Al1 and � � � and xn is Aln then y ¼ zlð~xÞ; ð1Þ

where~x ¼ ðx1; . . . ; xnÞT 2 U and y 2 V are linguistic variables, Ali are fuzzy sets of the universes of discourse
U i 2 R with membership function lliðxiÞ, and zið~xÞ is a function of the input variables. Typically, z can take
one of the following three forms: fuzzy set (Mamdani type fuzzy systems), singleton (Takagi–Sugeno) or poly-
nomial function (Takagi–Sugeno–Kang, TSK) type fuzzy systems. Takagi–Sugeno fuzzy systems with centre
average defuzzification, product-inference rule and singleton fuzzification are in the following form:
zð~xk; hÞ ¼
XM

l¼1

plð~xkÞ � hl ¼ pTð~xkÞ � h; ð2Þ
where pð~xÞ ¼ ½p1ð~xÞ; . . . ; plð~xÞ; . . . ; pMð~xÞ�
T are the vector of fuzzy basis functions (FBF) of fuzzy system. The

FBF’s are given by
plð~xÞ ¼ llð~xÞ
XM

l¼1

llð~xÞ
,

; ð3Þ
where M represent the number of rules, llð~xÞ ¼
Qn

i¼1lliðxiÞ is the firing strength of rule l and
h ¼ ½h1; . . . ; hl; . . . ; hM �T is the vector of h’s parameters, where the hl is the point at which the output fuzzy
set l achieves its maximum value (for TS systems they are the consequent constants). The defuzzified output
y of the fuzzy model is calculated as a weighed average [27,28] of the outputs of all fuzzy rules.

Our approach is to develop a fuzzy model for an unknown function f : Rn! R simply from the data set.

2.2. The relevance of the fuzzy system

Fuzzy logic systems, FLS, are based on a set of rules that map regions in an input space, U, to regions in an
output space, V, describing a region in a product space S = U · V. The fuzzy rules are fuzzy relations in the
product space S. These relationships are realized by a set of rules I, which create a power set of fuzzy ruleseP ðIÞ. In this context, the contributions of the different rules in the behaviour of the fuzzy system will be
unequal, i.e., with different relevance. Moreover, in a hierarchical fuzzy system, for different parts of the input
space the fuzzy subsystems will have a variety of performances that we need to measure. The adoption of fuzzy
logic theory and the focus on the degree of relevance as an extended fuzzy measure seems to be an appropriate
approach to automating relevance perception of the rules and fuzzy systems. The relevance is a measure of the
relative importance of the rules that describe the region S. The relevance is a special fuzzy measure that
involves the relativity of a support region, which we see as a fuzzy measure only if the support of rules agrees
with region S.

Definition 1. The relevance of the rule R 2 eP ðIÞ on a region S can be characterized by a real, positive value.
The normalized relevance function maps the power set of fuzzy rules eP ðIÞ on the real interval [0,1], i.e.:
RSðRÞ 2 ½0; 1�.

A higher relevance on region S corresponds to more important fuzzy rules on describing the relationship in
the S regions and vice-versa. In Definition 2 we propose a relevance function.

Definition 2. The relevance of rule l of the fuzzy system (2) on point ð~xk; ykÞ 2 S is defined as
Rl
Sð~xk; yÞ ¼

plð~xkÞ; if Hð~xkÞP c

plð~xkÞðHð~xkÞ=cÞd; otherwise;

(
ð4Þ
where Hð~xkÞ ¼
PM

l¼1llð~xkÞ, c is a threshold value (less than or equal to one), and d > 0 is a real constant.



1162 P. Salgado / Applied Mathematical Modelling 32 (2008) 1159–1178
The d parameter controls the fuzziness of the relevance of the fuzzy rule and of the fuzzy system on the
input region. A small value of d corresponds to an enlargement of influence of the fuzzy rule and that of
the fuzzy system. On the other hand, for a large value of d the relevance falls drastically, similar to a crisp
set. This relevance function is associated with the firing of fuzzy rules through the fuzzy basis functions
(FBF) plð~xkÞ. The relevance function has two parts, which correspond to: (1) high firing values, i.e.
Hð~xkÞP c, with its relevance approaching the unitary value, and (2) low relevance values (Hð~xkÞ < cÞ.

The relevance of fuzzy system (2) will be obtained by the aggregation of the relevance of the individual
rules. The aggregation operation must obey a set of axioms [29]. For the fuzzy system whose relevance of fuzzy
rule is measured according to Definition 2, its relevance on point ð~xk; ykÞ 2 S is expressed in Definition 3.

Definition 3. The relevance of fuzzy system (2) in ð~xk; ykÞ 2 S is defined as
RSð~xk; yÞ ¼
1; if Hð~xkÞP c

ðHð~xkÞ=cÞd; otherwise

(
ð5Þ
This relevance function is defined for the well-known region S, where the fuzzy system establishes its input–
output relationships. Therefore, the relevance of one rule or set of rules simultaneously characterizes the level
of relevance of the rule in its region and the degree of region coverage by the fuzzy system. This new proposal
enables the aggregation of different fuzzy systems, with a different set of rules and different or shared covered
regions.

Fig. 1 represents a hierarchical collaborative fuzzy system, HCFS, with n sub-models. Each ith sub-model
has two outputs: the first is the output response of this fuzzy subsystem and the other output is the relevance of
the fuzzy subsystem, which represents its contribution to the final system description.

Therefore, the output of the aggregation of one model i with the previous sub-models is the weighed sum of
the current contribution with the aggregated previous sub-models (6)
Y ið~xÞ ¼ yið~xÞ � Rið~xÞ þ Y i�1ð~xÞ �Ri�1ð~xÞ; ð6Þ
Fig. 1. The hierarchical collaborative fuzzy system, HCFS.
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where Rið~xÞ represents the relevance function of the ith fuzzy subsystem covering the point xi of the universe of
discourse. The relevance Rið~xÞ reveals the effective contribution (or belief of contribution) of the correspond-
ing fuzzy system up to the ith level and according to the axiomatic defined in [29]. For HCFS the relevance
aggregation is here defined as:
Rið~xÞ ¼ T ðRið~xÞ; Ri�1ð~xÞÞ; ð7Þ
where T is a t-conorm operation, as for example the max operation. The t-conorm operation is commutative,
which implies the structure to be a collaborative one.

3. Generating rules for the hierarchical collaborative fuzzy system

The HCFS fuzzy model is a hierarchical fuzzy model where each sub-model is a flat FLS (here assumed the
type of Eq. (2)) with an extra output: the relevance of fuzzy subsystem (see Fig. 1). Each fuzzy sub-model iden-
tification method follows the three generic steps: structure identification, data selection and parameter estima-
tion. Unsupervised learning can be used to obtain the initial fuzzy rule base from sample data while supervised
learning is effective in the FLS parameters fine-tuning. In the proposed method the determination of the num-
ber of fuzzy rules and the positioning of fuzzy sets in the domain of input space is done by a Cluster Rule
Generation algorithm, CRG. Model parameters are generally associated with rule conclusion, whose estima-
tion is performed by the recurrent (forward or backward) least squares optimization algorithm, RLS [30]
(supervised method). The CRG identification method consists of establishing a volume of cluster influence
V in each zone. This influence is applied on regions of the space where the multivariable cluster membership
functions have high values (typically above 0.5). Volume V determines the granularity of the adaptive fuzzy
model. The shape and position of clusters are adjusted by considering the statistical property of points that
belong to the cluster. This method will be adapted for learning process on HCFS structure.

In the hierarchical structure HCFS, each sub-model has selective and limited abilities of learning context,
defined here by modelling clusters with a predefined volume in each level. In the modelling task, each sub-
model competes with the others in adequately modelling the training data set.

The process starts with the first subsystem in the HCFS structure trying to model the initial training set. For
that it uses the CRG method to create clusters (rules) and to adequately position their centers; subsequently it
tries to optimize the consequent parameters through the RLS method, most often without much success. The
next task will be to exclude from the training set those points that mostly hinder the model’s performance.
This removal of unfit data is accompanied by the adaptation of both the model’s structure and parameters.
The excluded points make the training data set for the next higher hierarchical fuzzy system, where the pre-
viously described learning methods are now applied. At the end of the entire process we have a fuzzy system
organized as one hierarchical structure.

So, the distribution of training data by different levels of the hierarchical structure is the main task of the
proposed algorithm, together with the selection of the minimum number of rules that are sufficient for its
description. These processes involve the use of recursive techniques for removing data patterns from the train-
ing data set, based on the criterion of minimizing the square error. The Data Rejection Algorithm, DRA,
implements this strategy. After this training process, we use a Backward Selection Algorithm to remove the
useless fuzzy rules.

In the following sections these techniques are detailed.

3.1. Fuzzy rules extracted from partitioned numerical data

As mentioned earlier, a self-constructing rule generator obtains initial fuzzy rules during the structure iden-
tification phase. Initially, we propose a novel approach for the flat FM system, the Cluster Rule Generation
algorithm, CRG. Our goal is to cluster the given data set into several groups such that similar points are
grouped into the same cluster while dissimilar points are in different clusters. Later, we adapt this algorithm
in order to be used in the HCFS structure.

A FM system for a given set of input–output data is obtained in an iterative process consisting of two steps.
First, the data is partitioned into a set of fuzzy clusters based on the conjugation of two similarity tests (input
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and output) and, if the result is positive, by weighing its membership degree to the cluster. When new training
data is considered, the existing clusters with some degree of similarity are adjusted. In this case, membership
functions associated with each cluster are defined according to statistical means and variances of data points
included in the cluster. Furthermore, when the degree of similarity is not enough a new clustering can be cre-
ated, without the necessity of restarting the identification process.

For a system with n inputs and one output, we define a fuzzy cluster j as a pair ðmjð~xÞ; �yjÞ, where mjð~xÞ is in
agreement with Definition 2, i.e.
mjð~xÞ ¼
ljð~xkÞPM
i¼1lið~xkÞ

RSð~xk; yÞ; ð8Þ
with
ljð~xÞ ¼
Yn

i¼1

ljiðxiÞ ¼
Yn

i¼1

expð�ðxi � �xjiÞ2=r2
jiÞ ð9Þ
and RS as defined in (5), where~x ¼ ðx1; . . . ; xnÞT, �xj ¼ ð�xj1; . . . ;�xjnÞT, and ~rj ¼ ðrj1; . . . ; rjnÞT denote the input
vector, the mean vector, and the standard deviation vector, respectively, and �yj denotes the height of cluster j.
The Gaussian [31] multivariate membership function (9) defines the domain of influence of the cluster.

Let M be the number of existing fuzzy clusters and Bj be the size of cluster j. Initially M and B’s have null
value. This algorithm uses clusters with the same volume V.

For an input–output instance Pk, ð~xk; ykÞ, where~xk ¼ ðx1;k; . . . ; xn;kÞT, we perform the input–output similar-
ity test on cluster j, by conjugation (10):
mjð~xkÞ > q and jyk � �yjj < s � d; ð10Þ
where q and s, 0 6 q; s 6 1, are predefined thresholds and d is the output range of variable y, i.e.,
d ¼ ymax � ymin being ymax and ymin the maximum output and the minimum output, respectively, of the given
data set.

When the instance Pk has passed both the input- and output-similarities tests with respect to cluster j, this
cluster should be modified to include instance Pk as its member, i.e.:
�x
ðkþ1Þ
j ¼ ðBðkÞj �x

ðkÞ
j þ mjð~xkÞ �~xkÞ=ðBðkÞj þ mjð~xkÞÞ; ð11Þ

�yðkþ1Þ
j ¼ ðBðkÞj �yðkÞj þ mjð~xkÞ � ykÞ=ðB

ðkÞ
j þ mjð~xkÞÞ; ð12Þ

sðkþ1Þ
ji ¼

BðkÞj

BðkÞj þ mjð~xkÞ
sðkÞji þ

ðxki � �xðkÞji Þ
2

BðkÞj þ mjð~xkÞ

" #
for i ¼ 1; . . . ; n; ð13Þ

Bðkþ1Þ
j ¼ BðkÞj þ mjð~xkÞ: ð14Þ
This process is repeated for all data points (k ¼ 1; 2; . . . ; np) and for all clusters j ¼ 1; . . . ;M . Note that M is
not changed in this case and sji is the recursive equation of the statistically variances of the data points
included in the cluster. Eq. (11) is the mean value of cluster j.

On the other hand, if no cluster has satisfied the similarity criterions, i.e. for 8j we have
mJ ð~xkÞ ¼ max
j
ðmjð~xkÞÞ < q or jyk � �yJ j > s � d; ð15Þ
then a new cluster with volume V is created. For this case, we assume that instance Pk is not close enough to
any existing cluster and a new fuzzy cluster N = M + 1 is placed in the space region centred in point Pk, i.e.
�xN ¼~xk; �yN ¼ yk; ~rN ¼~r0; BN ¼ 1; ð16Þ
where~r0 ¼ ðr0; . . . ; r0ÞT is a user-defined constant vector. Note that the new cluster N contains only one mem-
ber with maximum degree, mN ð~xkÞ ¼ 1.
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The deviation vector ~rj is collinear with vector~sj, i.e.:
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Fig. 2.
ellipso
rji ¼ sji

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VQn

r¼1sjr

n

s
i ¼ 1; . . . ; n: ð17Þ
The result of the previous method is a set of ellipsoidal clustering, with the main axis parallel to the axis
coordinates of the input space and with constant volume. The process is iterated (k ¼ 1; . . . ; np) until all
input–output instances have been processed. At the end, the clusters with low B value will be removed:
Clusters removed : Bj < g; j ¼ 1; . . . ;M ; ð18Þ

where g is a user-defined constant that represents the minimum support of cluster. The removal occurs for
clusters that do not cover enough ‘‘territory’’ of the input space. This process prevents the growth of the num-
ber of clusters, by removing overlapped clusters and clusters positioned away from the region to be modelled.

The aforementioned algorithm will be executed for a predefined number of iterations, niter. At the beginning
of each iteration, v, parameters B are weakened by multiplying them by a scalar parameter value a, with
0 6 a 6 1, so that the clusters are more easily adapted to the new learning process:
Bðvþ1Þ
j ¼ aBðvÞj ; j ¼ 1; . . . ;M : ð19Þ
Note that, at each iteration, when the training data is considered once again, the existing clusters can be
adjusted and news clusters can be created.

The strong similarity between the cluster representation and the antecedent set of fuzzy rule (1), both with
membership Gaussian function, as well as between the consequent parameters h’s and �yj, suggest us the con-
struction of fuzzy rules based on clusters. At the end we have a set of M initial fuzzy rules for the given input–
output data set. In example 1, the CRG algorithm is automatically used to identify a grey cross image.

Example 1. A cross image represented in Fig. 2a is used to illustrate the previous approach. The grey-level,
50 · 50 pixels image originates a set of R3 points, (x1,x2, I), where I is the intensity in the x ¼ ðx1; x2Þ spatial
coordinates. In the context of image processing, the fuzzy system is a static function map Ix ¼ f ðx1; x2Þ that
makes the correspondence between the pixel coordinates (x1,x2) and the value of its colour intensity, Ix.
Fig. 2b shows the image generated by the flat fuzzy system identified by the proposed CRG algorithm. Fig. 2c
shows the image partition by fuzzy memberships, represented by the ellipse level line lð~xÞ ¼ expð�1Þ (ellipsoid
lines) and the correspondent centre of rules (asterisk point). We can see that the cluster have horizontal and
vertical orientation and all clusters have the same volume. The cross is described by five ellipsoidal fuzzy rules,
while the remaining 25 rules describe the image background.

The CRG algorithm will also be used to the structural identification of each hierarchical level of the HCFS
fuzzy model, with little adaptations of the previous algorithm that will be related afterwards, by defining sup-
plementary criterions to create and removing clusters.

The identification process begins with the first model and with the entire available data set. The CRG
algorithm is used to find the best cluster from that data, by adapting the number, the centre and the shape
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(a) Grey cross image (50 · 50 pixels); (b) image representation by a fuzzy system, with 30 rules; (c) fuzzy set repartition (the
ids corresponds to the exp(�1) level and the asterisks to the centres).
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of clusters. However, in the HCFS fuzzy model, a selection of data training points could be excluded from the
training set in order to improve the quality criterion of the sub-model. This removal can be due to two pro-
cesses: exclusion of one single point from the training data set, or a set of points is excluded due to the removal
of its cluster (fuzzy rule); each algorithm is proposed in Sections 3.2 and 3.3, respectively. This rejected data set
from the identification process of one hierarchical level is reused as the training data set of the next hierarchi-
cal model. For a sufficient number of hierarchical levels, all training data is used in the identification process.

Let X ¼ f~x1;~x2; . . . ;~xk; . . .g be the set of all training data, X �i be a subset of the initial training data X,
X �i � X , used in the identification of level i, and Ki be the index set defined by
Ki ¼ fkj~xk 2 X �i � Xg: ð20Þ
This subset of training data will be used new criterions to create and remove clusters. The generation of a
new cluster is now restricted to the following condition:
mJ ð~xkÞ ¼ max
j
ðmjð~xkÞÞ < q or jyk � �yJ j < s � d for k 2 Ki ð21Þ
This supplementary condition confines the new clusters centres in the space region defined by X �i . However,
the adaptation process continues to be done by Eqs. (11)–(14) and it is performed for all point in X.

For the cluster removal process a new measure is also necessary. To implement this strategy an additional
variable C is defined. Associated with each clusters, Cj contains the sum of membership functions of all points
of X �i in cluster j (note that Bj is the sum of the membership functions (or values) of all points of X in the clus-
ter), i.e.
Cj ¼ Cj þ mjð~xkÞ for k 2 Ki: ð22Þ
This new variable is used in the cluster removal test, by replacing the B variable in test Eq. (18) (note that,
Cj 6;Bj). This condition assures that cluster covers an important region with points of X �i .

In the iterative process of the CRG algorithm, this variable is weakened at the beginning of a new iteration,
in a similar way to what happened to variable B (Eq. (19)):
Cðvþ1Þ
j ¼ aCðvÞj ; j ¼ 1; . . . ;M : ð23Þ
So, cluster that do not satisfactorily cover the X �i data set are certainly removed through test (21). At the
end of the CRG algorithm, clusters are created that are strongly linked to region of data set X �i .

3.2. The recursive least squares training of fuzzy systems

In Section 3.1, a rough fuzzy model for the ith level is automatically generated from the given training data
by using the proposed algorithm. From (2), it is clear that the performance of the constructed fuzzy model that
approximates the behaviour of the given data set will be influenced by consequent parameters. Consequently,
in the parameter identification process, a parameter learning procedure is used such that the procedure can
further use the given training data to fine-tune the parameters of the constructed fuzzy model [30]. Addition-
ally, if it can supply information about data points that where rejected from the data training set then the
model performance can be improved. For that to occur, an efficient method for adjusting parameters must
be done.

If we constrain the fi’s to be linear functions of the h’s parameters, then the problem becomes a least square
error (LSE) problem. For our RLS adaptive fuzzy system we have the following problem: each ordered
sequence of points ð~xk; yið~xkÞÞ, k ¼ 0; 1; 2; . . . ;N determines an adaptive fuzzy model of Eq. (2) such that
Ei ¼ 1

N

PN
k¼0ðdk � yið~xkÞRið~xkÞÞ2 is minimized, where dk is the desired output for the system when the input

is ~xk and Ri is the relevance of the ith level. In the following, index ‘‘i’’ is omitted for notational convenience.
Consider the design matrix P 2 IN�M that stores the description of all training points, that is
P ¼

pT
1 ð~x1Þ

..

.

pT
Nð~xN Þ

2664
3775 ¼

p1ð~x1Þ � � � pMð~x1Þ
..
. . .

. ..
.

p1ð~xN Þ � � � pMð~xN Þ

2664
3775; ð24Þ
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where M is the number of rules and N the number of training data points. Matrix P is often called regressor

matrix and each column correspond to a FBF function.
Using (2), the training data can be rewritten as y ¼ Phþ e, where y ¼ ½y1 � � � yN �

T regroups all data out-

puts and e ¼ ½e1 � � � eN �T stores the corresponding residuals representing modelling errors, additive noise and
further uncertainties. Parameter vector h can be determined by minimizing the Euclidean norm of the residual
vector that characterizes the LSE problem, with a solution expressed by
ĥ ¼ SPTy; ð25Þ
where S ¼ ðPTPÞ�1 is the inverse of variance matrix. Therefore, the error vector between the predictions of the
fuzzy system from the training set inputs and the actual outputs observed in the training set is e ¼ Qy, where
Q ¼ IM � PSPT is the projection matrix.

If a single example is added (removed) from the training set, then the design matrix acquires (loses) a new
row and it is the projection matrix what expands (contracts) while the regressor matrix maintains the same
size. Generally, the number of training data N is large and greater than the number of rule output parameters
M, and the use of the forward RLS algorithm proved to be computationally more adequate. So, vector h can
be updated using the RLS algorithm by using the following recursive equations [32]:
hr ¼ hr�1 þ Srprðdr � pT
r hr � Rð~xrÞÞ; ð26Þ

Sr ¼ Sr�1 �
Sr�1prp

T
r Sr�1

1þ pT
r Sr�1pr

; ð27Þ
where r ¼ 1; 2; . . . is the iteration number, that is, vector h is adapted recursively for each new sample of data r.
At the beginning, S0 ¼ f � I where f is a parameter with high value, I is the identity matrix and h0 ¼ 0, a null
vector. At the rth iteration Eqs. (26) and (27) minimize the sum of square errors of the ordered data points
with index from 1 to r. So, after the learning process with r points, the system has a sum of square error given
by
EJ ;J ¼
Xr

j¼0

ðdj � pT
j hrRð~xjÞÞ2 ð28Þ
and mean square error given by
EJ ;J ¼
1

r
EJ ;J ð29Þ
Let EI ;J be the sum of square errors of the system in set I ¼ fð~xj; yjÞjj ¼ 1; . . . ; sg with s data points, which has
been trained with set J ¼ fð~xj; yjÞjj ¼ 1; . . . ; rg with r data points.

On the other hand, the exclusion on point k from the training set is dealt by the backward RLS algorithm
with the adaptation of matrix S and vector h given by
hr�1 ¼ hr � Srprðdk � pT
k hrRð~xkÞÞ; ð30Þ

Sr�1 ¼ Sr þ
SrpkpT

k Sr

1� pT
k Srpk

: ð31Þ
The removal of the kth point also affects the sum of square errors, whose value will be recalculated through
Eq. (28). This new calculus involves determining the error in all r � 1 remaining points and the computation of
the corresponding matrix Sr�1 and vector hr�1. A more efficient way to express the square error is through the
incremental method of the relation given by
EI ;I ¼ EJ ;J � bk; ð32Þ
where I ¼ J n fð~xk; ykÞg and bk represent the reduction of the sum of square errors by exclusion of the kth
point. It is easy to prove that bk results from the product of the square error of fuzzy system at the kth point
with the scalar (1 + nk), that is
bk ¼ ð1þ nkÞðdk � pT
k hrRð~xkÞÞ2; ð33Þ
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where nk is a positive scalar, with magnitude less than one, where
nk ¼ pT
k Sr�1pk: ð34Þ
So, the exclusion of point k from the data training set leads to the reduction of the sum of square errors by a
bk value, which is the square error of the model at the kth point weighed by the (1 + nk) coefficient. However,
Eq. (34) shows to be computationally hard because it requires a previous determination of the Sr�1 matrix.
This problem is solved if the Sr�1 matrix is replaced by an expression of Sr matrix. So, with some algebraic
manipulations, nk can be expressed by
nk ¼
pT

k Srpk

1� pT
k Srpk

; ð35Þ
where Sr is a previously obtained matrix.
Note that the sum of square errors E is always reduced when a data point is excluded from the training data

set. The choice of kth point to be removed is based on finding the greatest decrease in the sum of squared
errors E (Eq. (32)). A selected criterion is monitored to decide when to stop the removing process. In this
work, the Data Rejection Algorithm, DRA, is stopped according to the following definition:

Definition 4. The Data Rejection Algorithm stops when the mean square error E is reduced to a value lower
than the predefined maximum error, v, i.e.,
EJ ;J < v; ð36Þ

or when the mean square error E starts to grow. This last situation corresponds to a bk value for which the
following inequality is true:
bk <
1

k
EJ ;J ¼ EJ ;J : ð37Þ
The rejection of these points or regions of the training data set are due to the intrinsic fault of capacity of
the actual structure in describing its contained information. Generally, the conventional learning methods
force the model to fit the description of all the training data, which usually yields a bad model for all data.
So, here we propose an algorithm that chooses the data points to exclude from the training data. Naturally,
the rejected points are now placed in the training data set of the next level of the hierarchical fuzzy system to
participate into the identification process of its system.

The Data Rejection Algorithm, DRA, is summarized as follows:

Step 1: After the forward RLS algorithm, where we applied all training data J ¼ fð~xj; yjÞjj ¼ 1; . . . ; rg and
r = N, the parameter vector hN and the variance matrix SN are obtained. The mean square error of
the system is EJ ;J , given by Eq. (29).

Step 2: If EJ ;J < v or EJ�1;J�1 > EJ ;J then stop the data rejection process.
Step 3: Find point k at which value bk is higher, i.e. k ¼ argmaxðbj; j ¼ 1; . . . ; rÞ, where bj is given by Eq. (33).

This point k will be removed from the data training set J.
Step 4: Update the parameter vector and its variance matrix due to the exclusion of point k from training data

by using Eqs. (30) and (31).
Step 5: Reduce the set J  J n fð~xk; ykÞg, r  r � 1 and update the error EJ ;J  EJ ;J � bk. Go to Step 2.

In conclusion, the DRA algorithm rejects from the data set all points that, though their removal, reduce the
modelling error. The result is a fuzzy sub-model perfectly adequate for data set points (or regions) that are
modelled by the current hierarchical level.

3.3. Adding and removing a fuzzy rule

After training with the previous algorithms, the final system represents a set of patterns that contains
important information with regard to the HCFS fuzzy sub-model. The h parameters reflect a least square
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means of these patterns. However, the number of rules will be shown as excessive to represent the identified
patterns and some of them can be removed without a significant increase of square error. This situation
requires a new algorithm to remove the useless fuzzy rules. Although in the present work there is no need
for the task of adding fuzzy rules, its study is important for a better understanding of the process of removing
fuzzy rules. So, next we propose two recursive techniques for adding and removing fuzzy rules.

The philosophy of the Forward (Backward) Fuzzy Rule Selection Algorithm, FFRS (BFRS) algorithm, is
to sequentially add (remove) from the fuzzy system, one at a time, those rules that cause the largest decrease
(smallest increase) in the residual or in the prediction error function. This decrease (increase) in residual can be
efficiently calculated as described in the following.

The forward selection algorithm increases the fuzzy system by adding a new FBF that has great contribu-
tion to the fuzzy system performance as measured by the error function. Adding a new fuzzy rule to the fuzzy
system which already has m rules results in a ðmþ 1Þth regressor model. Applying it to a trained set with p
patterns has the effect of adding an extra column to the regressor matrix. If the old regressor matrix is Pm

and the new FBF function is qmþ1ð~xÞ ¼ ½pmþ1ð~x1Þ; . . . ; pmþ1ð~xpÞ�T, then the new design matrix is
Pmþ1 ¼ Pm qmþ1½ �: ð38Þ
The new variance matrix is Smþ1, where
S�1
mþ1 ¼ PT

mþ1Pmþ1 ¼
S�1

m PT
mqmþ1

qT
mþ1Pm qT

mþ1qmþ1

" #
: ð39Þ
Applying the formula for the inverse of a partitioned matrix yields
Smþ1 ¼
Sm 0

0T 0

� �
þ 1

qT
mþ1Qmqmþ1

SmPT
mqmþ1

�1

" #
SmPT

mqmþ1

�1

" #T

; ð40Þ
where Qm ¼ I � PmSmPT
m is the projection matrix for the original fuzzy system with m fuzzy rules. With this

result we can calculate the new projection matrix Qmþ1, which will contain the contribution of ðmþ 1Þth fuzzy
rule
Qmþ1 ¼ Qm �
Qmqmþ1qT

mþ1Qm

qT
mþ1Qmqmþ1

: ð41Þ
The sum-squared-error, can be conveniently written in terms of Qm, for the mth rule fuzzy system, and y by
Em ¼ yTQmy. After the addition of the fuzzy rule, the equivalent cost function is increased (negatively) by
DEm ¼ Emþ1 � Em ¼ �yT Qmqmþ1qT
mþ1Qm

qT
mþ1Qmqmþ1

y: ð42Þ
Eq. (42) shows that rule m + 1 has an individual contribution to the sum-squared-error. The forward selec-
tion algorithm therefore aims to select a new rule (new FBF function) for which jDEmj is maximum.

The process of removing fuzzy rules is similar to the explained for the addition of fuzzy rules. We are inter-
ested in knowing the new regression matrix Sm�1 and the new projection matrix Qm�1, after the jth fuzzy rule
has been removed from the fuzzy system with m fuzzy rules and for which we know the old regression matrix
Sm and the old projection matrix Qm. The present algorithm has a main difference from the previous algo-
rithm: any column can be removed from the Pm while in the adding rule algorithm the new column is always
inserted to the right of Pm, just after the mth column.

The projection matrix is invariant to permutation of the columns of the regression matrix, and for this rea-
son we put it at the end column position. From Eq. (41), but now with Qm in place of Qmþ1, Qm�1 in place of
Qm, qj in place of qmþ1, the result is
Qm�1 ¼ Qm �
Qmqjq

T
j Qm

qT
j Qmqj

: ð43Þ
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The removal of one fuzzy rule from a fuzzy system results always in an increase of the cost function, given
by
DEm�1 ¼ Em�1 � Em ¼ �yT
Qmqjq

T
j Qm

qT
j Qmqj

y: ð44Þ
The proposed Backward Fuzzy Rule Selection algorithm has as its main objective to choose the fuzzy rules
to be removed from the fuzzy system, one in each iterative cycle, that lead to a smaller increment in the error,
jDEmj.

In this reduction rules process, the new regression matrix Sm�1, obtained by removal of the jth fuzzy rule,
has a smaller dimension than the knowledge of the old regression matrix, Sm, with less one row and less one
column. Without loss of generality, in the first place we assume that the jth rule to be removed corresponds to
the last column of Pm. In this case, the relation between Sm�1 and Sm can be obtained through Eq. (40), by
replacing index m with m � 1 and index m + 1 with m, and by rewriting it as in the following:
Sm ¼
C d

dT e

� �
¼

Sm�1 0

0T 0

� �
þ 1

a
Sm�1bbTSm�1 �Sm�1b

�bTSm�1 1

" #
; ð45Þ
where a ¼ qT
mQm�1qm and b ¼ PT

m�1qm. The relationship between the sub-matrix of both sides of Eq. (45) results
in an equation system, whose solution is
Sm�1 ¼ C � 1

e
dTd: ð46Þ
The removal of jth rule (which is not the last rule) from the fuzzy system is equivalent to the removal of a
column j in the middle of matrix Pm. Despite that, matrix Sm�1 can be calculated in a way similar to that pre-
viously related in Eq. (45): matrix C is obtained from Sm by removing the jth row and the jth column; and
vector d is equal to the previously removed column, but without the jth element.

The final element of the fuzzy rules selection is a method to stop the selection procedure, therefore to seek a
compromise between complexity and accuracy. Several metrics have been introduced to measure this compro-
mise at a model with linear parameters [32], since the output of the fuzzy system is linear with respect to the h
parameters, these metrics can be applied here. In this work, a particular metric is used: the Akaike final pre-
diction error (FPE, criterion [33]).
F ¼ 1þ mðm=NÞ
1� mðm=NÞ

Em

N
; ð47Þ
where m is the number of rules (equal to the number of parameters) and m is a weighing factor, equal to 2 in
this research. This equation penalization makes a compromise between accuracy (Em/N term) and complexity
of models, by taking into account the number of m fuzzy rules.

The above algorithm provides a method for optimally add/remove fuzzy rules from a fuzzy system, with
less decrease/increase in the final prediction error, FPE. The Backward Fuzzy Rule Selection (BFRS) algo-
rithm is summarized as follows:

Backward Fuzzy Rule Selection (BFRS) algorithm:

Step 1: Let the fuzzy system with m M rules and the initial values Em and the FPE, respectively of the cost
function (square error) and of the final prediction error.

Step 2: Compute the increase on the cost function DEj, if rule j is removed by using Eq. (44). Repeat this com-
putation for all fuzzy rules of the fuzzy system, j ¼ 1; . . . ;m.

Step 3: Set k ¼ argminðDEjÞ and compute the FPE for the smallest decrease in the FPE function, FPEk.
Step 4: If FPEk < FPE then remove the kth rule from the fuzzy system and its support regions goes to the

upper hierarchical model. Calculate S by (46) and set m m� 1. Go to Step 2.
Step 5: Stop the removing rules process and compute the optimal weights in the final fuzzy system from Eq.

(25).
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3.4. The HCFS identification algorithm

The identification of the hierarchical collaborative Fuzzy System is made by Hierarchical Collaborative
Fuzzy System algorithm, BFRS. It uses the CRG, the RLS, the DRA and the BFRS algorithms as presented
in the following:

Hierarchical Collaborative Fuzzy System Algorithm, HCFSA

• Let P be the set of input–output training data of the HCFS model.
• For the 1st level, the index set is K ¼ K1 ¼ f1; 2; . . . ;Ng, where N is the total number of training data.
• Let Pi be the set of points to identify in the ith level of the HCFS. Pi is a subset of P: P i ¼ fð~xk; dkÞjk 2 Kig,

where Ki � K. For the first level we have d1ð~xkÞ ¼ yk with k 2 K1 and P1 = P.
Step 1: For the ith level, the data to be identified is the pairwise: ð~xk; dið~xkÞÞ, where k 2 Ki and
dið~xkÞ ¼ yk � Y i�1ð~xkÞRi�1ð~xkÞ. Y i�1ð~xkÞ is the fuzzy output of the HCFSA just at the ði� 1Þth level
and Ri�1ð~xkÞ is corresponding relevance value.

Step 2: Use the CRG algorithm, with appropriate volume Vi, to generate the appropriate FBF and the cor-
responding fuzzy rule that covers the Pi data set.

Step 3: Apply the RLS algorithm to estimate the h parameters by using Eqs. (26) and (27) with data points
that belong to Pi.

Step 4: While stop criterion of Definition 4 is not met, execute recursively Steps 5–6 (i.e., the DRA algorithm),
else go to Step 7.

Step 5: Reject from Pi the input–output pair of data ð~xj; yjÞ that minimize the most the sum of the square error
(Eq. (32)). This task corresponds to choosing the data point with maximum bj value, i.e.
j ¼ fjjbj > bk; 8k 2 Kig. The data point j is moved to the next level data set P iþ1: Ki  Ki n fjg and
Kiþ1  Kiþ1 [ fjg.

Step 6: Readjust the h parameters by using Eqs. (30) and (31).
Step 7: Use the BFRS algorithm to remove the useless relevant rules. All points connected to the removed

rules are placed in the training data of the next level.
Step 8: The response of the HCFS model at the ith level is done by
Y ið~xkÞ ¼ Y i�1ð~xkÞ �Ri�1ð~xkÞ þ yið~xkÞ � Rið~xÞ; ð48Þ

with relevance value
Rið~xÞ ¼ maxðRið~xkÞ; Ri�1ð~xkÞÞ 8~xk 2 P ð49Þ

Jump to the next level, i = i + 1. If i > n, then exit.
4. Application of HCFSA

Two examples are used to illustrate the HCFSA algorithm: the modelling of a non-linear system and the
identification of a cross image. In the first one, the output of the recurrent system has been corrupted by a
high value of noise, while the second has abrupt changes in image details, which makes these examples hard
tests for the HCFSA performance. The output of the hierarchical collaborative fuzzy system is a result of the
aggregation of its sub-models according to Eqs. (48) and (49), with R0ð~xÞ ¼ 0 and Y 0ð~xÞ ¼ 0. Each sub-model
employed is a multi-input single-output fuzzy logic system of the form of Eq. (2) with relevance given by Def-
inition 3. At the end of the aggregation of various sub-models, the output of the HCFSA is Y ð~xÞ ¼ Y nð~xÞ with
relevance Rð~xÞ ¼ Rnð~xÞ. The membership function used was the multivariable Gaussian membership (9).

The following data is valid for two examples: The CRG algorithm is used in the structural identification of
the HCFSA sub-models. The number of iteration was 50 with a = 0.8, in all sublevels. For each level i, a con-
stant volume Vi of the Gaussian membership functions is specified. The choice of the volume value has a
strong impact on the type of information that this level describes as well as on the number of rules that
are generated. Usually, the identification process begins with high volume value, in an attempt to describe
large regions of the input–output space, and is decreased from one sub-model to the next.
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After the structural identification made by CRG algorithms the parameters of the fuzzy models are iden-
tified by the forward RLS algorithm. After that, a removal of data points is made in order to exclude ‘‘unde-
sirable’’ data points from the training data set and its inclusion in the next level training data. Simultaneously,
the model parameters are backwards adapted. This task is made by the DRA algorithm. For both examples
we used parameter v = 0,001 and relevance parameters c = 0.7 and d = 2. Finally, the useless rules are
removed.

Note that, after the choice of the algorithms parameters, generation of the fuzzy rules for each sub-model,
input–output data partition through various hierarchical sub-levels, and tuning of its parameters is completely
automatic.

Example 2. Consider an illustrative benchmark non-linear system [34,35]:
yðkÞ ¼ 2:5yðk � 1Þyðk � 2Þ
1þ y2ðk � 1Þ þ y2ðk � 2Þ þ 0:3 cos

yðk � 1Þ þ yðk � 2Þ
2

� �
þ 1:2uðk � 1Þ þ eðkÞ;
where e(k) is a random number of a strong Gaussian noise sequence given by e � N(0,0.3162) and the system
input uðkÞ ¼ ð1=2Þðsinðp � k=20Þ þ sinðp � k=50ÞÞ, given the initial conditions yð0Þ ¼ yð�1Þ ¼ 0. Note that in-
put variable has a range value of 2 units while the white noise has a standard deviation of 0.316.

A data sequence of 1000 samples was generated and plotted in Fig. 3a. Fig. 3b represents a noise-free
response of the system, ~yðkÞ; k ¼ 1; 2; . . .. The first 500 data samples {u(k),y(k)} of corrupted noise data, from
k = 1 to k = 500 were used as an estimation set and the other 500 samples were used to validate the obtained
model. The regression sub-models employed are multi-input single-output fuzzy logic systems, with the input
vector given by ~xðkÞ ¼ ½yðk � 1Þyðk � 2Þuðk � 1Þ�T. All training data was used in the first phase of the
identification of the first sub-model of the HCFS. For a volume V1 = 0.5 and g = 10 we obtained a partition of
input space with 13 fuzzy rules. In the second phase (the parameter identification), only 35.7% of data points
were used for the identification of the consequent parameters of the fuzzy rules of the first sub-model. The
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Fig. 3. The output y(k)’s in Example 2. (a) Noisy response, y(k); (b) a noise-free response, ~yðkÞ.
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Fig. 4. Model predictions over the training data set (k ¼ 1; . . . ; 500) and over the validation data set (k ¼ 501; . . . 1000) (dotted line: noise-
free response, solid line: model prediction): (a) Model prediction by first sub-model of HCFS; (b) model prediction by HCFS.
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remaining data points are moved to the training data set to be used in identification of the second level of the
hierarchical structure. For the second level, we used a volume V2 that is equal to half of V1 and with g = 5. In
this manner, we obtained seven fuzzy rules.

Given the same initial condition of the real model, the HCFS model identified by the HCFSA algorithm
was used to iteratively generate the model output ŷðkÞ, with the input ~xðkÞ ¼ ½ŷðk � 1Þŷðk � 2Þuðk � 1Þ�T,
where the past system output terms y(k � 1) and y(k � 2), were replaced by model predictions ŷðk � 1Þ and
ŷðk � 2Þ, and system input u(k � 1) is assumed known. This free running fuzzy model tests the stability of the
obtained model. The iterative model outputs so generated are plotted in Fig. 4a and b for the response of the
first sub-model and for the HCFS, respectively. The mean square error between the fuzzy output model ŷðkÞ
and the noisy-free observations ~yðkÞ, k ¼ 1; 2; . . ., over both the training and testing sets was 7.902 · 10�3.
Note that the error of the response of the first sub-model when running alone was 2.782 · 10�2.

A second experience was realized by increasing the CRG parameter g value to 22, using the identification of
the first level. This change removes clusters that have a low index of data covering or cluster over-positioning.
The number of rules of the fist level is decreased to 5 rules and the second is increased to 10. Fig. 5 shows the
response of the first sub-model working alone and of the combined sub-models. The simulation mean square
error was 4.635 · 10�2 for the first model and 1.308 · 10�2 for the entire HCFS model. The number of points
used in this identification process was equal to the previous experience.

From these results we conclude that the HCFS algorithm is able to automatically model the dynamical
process into a two-level hierarchical HCFS, where the fundamental information is modelled by the first level
with fewer rules, while accuracy (the ‘‘last touch’’) is given by the second level.

In previous studies [35], this system was used to test other fuzzy model strategies. In all cases the noise
variance was much lower and the number of rules is significantly greater. The robustness of the algorithm was
also demonstrated with respect to the high level of noise, where it was capable of predicting the system output
free of noise.
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Fig. 5. Model predictions over the training data set (k ¼ 1; . . . ; 500) and over the validation data set (k ¼ 501; . . . 1000) for g = 22 (dotted
line: noise-free response, solid line: model prediction): (a) Model prediction by first sub-model of HCFS; (b) model prediction by HCFS.
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Example 3. The Abington Cross image (Fig. 2) is a critical image for recognition by a flat FLS (2), as proved
in Example 1. The main reasons are the variety of cues such as texture, intensity, edge, which are not adequate
to be partitioned by smooth membership functions. The HCFS model and the above algorithm were used to
model the cross image into five levels. The CRG algorithm is used interactively with levels with the following
parameters: s = 0.02, q = e�2, r = 0.02, g parameters: 100 (high value), 30, 2.5,1.6, 1, and with cluster volume:
200 (high value), 40, 5 and 0.5, from the first to the last level. The first value of volume allows us to cover all
the image range with only one rule, while the last volume is adequate to clustering a reduced number of pixels.
The intermediate volumes allows the generation of clusters of different sizes. The number of rules generated
for each sub-model was: 1, 6, 22, 9 and 106, respectively from level 1 to level 5. The percentage of rejected
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Fig. 6. Percentage of rejected points by the learning algorithm in each level.



Fig. 7. Results of the 1st sub-model. (a) Image description after Step 2; (b) final image of the level, (c) centre of rule (asterisk point); (d)
rejected points (white region).

Fig. 8. Results of the 2nd sub-model. (a) Image description after Step 2, (b) final image of hcfs, just second level, (c) relevance of fuzzy sub-
model (white = 1) and fuzzy rule placement (ellipses lines) and its centre (asterisk point), (d) rejected points (white region).
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Fig. 9. Results of the 3rd sub-model. (a) Image description after Step 2, (b) final image of HCFS, just third level, (c) relevance of fuzzy
sub-model (white = 1) and fuzzy rule placement (ellipses lines) and its centre (asterisk point), (d) rejected points (white region).

Fig. 10. Results of the 4th sub-model. (a) Image description after Step 2, (b) final image of HCFS, just 4th level, (c) relevance of fuzzy sub-
model (white = 1) and fuzzy rule placement (ellipses lines) and its centre (asterisk point), (d) rejected points (white region).
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Fig. 11. (a) Cumulative image generated by the hierarchical collaborative fuzzy system, HCFS, from levels 1–5; (b) relevance of fuzzy 5th
sub-model (white = 1) and fuzzy rule placement (ellipses lines) and its centre (asterisk point).
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points by the algorithm in each level is displayed in Fig. 6. So the first level of the HCFS model identified, with
only one rule, about 70% of image pixels, which correspond to the image background; the second level, with
only 6 rules, absorbed more than 15% of the pixels, and so on. 85% of image pixels were identified with only
seven rules.

Fig. 7 shows the results of the first level. The upper-left hand image is generated by the sub-model after the
RLS learning phase (Steps 2 and 3 of the HCFS algorithm), while the opposite right is after removing the
undesirable pixels, whose pixels positions are represented in white in Fig. 7d. The position of fuzzy rule is
represented in Fig. 7c by the asterisk point. As expected, all cross points are transferred to the next level and
the current level plays a part in the description of the background image.

The results of the HCFS algorithm in the second level of the HCFS are displayed in Fig. 8, where the upper
left and the upper right images are the image description just of level 2 of the HCFS model, respectively before
and after the use of BFRS algorithm. Fig. 8c shows the position and shape of fuzzy rules and its relevance on
the image while Fig. 8d shows the rejected data points. Note that the nine rules occupy the cross regions, two
overlapped in each arm of the cross and one in the cross centre. Figs. 9 and 10 display the results to the 3rd
and 4th levels, respectively. These last sub-models improved the border cross representation by the
hierarchical fuzzy model. Finally, the last sub-model, with small volume ellipsoids, refines small regions of the
image. Fig. 11a shows the image generated by the complete HCFS model while Fig. 11b displays the rules of
the last level. This example is illustrative of HCFS’s capability to describe complex images with a small
number of rules, where its sub-models have distinct modelling tasks within the hierarchical structure.
5. Conclusion and future work

In this paper we present the hierarchical collaborative fuzzy systems, HCFS, and propose a new learning
methodology for it. The presented approach is an efficient method for automatic generation of fuzzy rules for
HCFS. The present hierarchical structure of the fuzzy system and its associated algorithms spread out the uti-
lization of the fuzzy technical modelling to a complex modelling system, preserving its main advantages, such
as readability and transparency of the fuzzy systems.

Several aspects of the presented algorithm can be easily modified to include other types of relevance func-
tions and aggregations. These modifications have a great impact on the HCFS sub-models. In addition, dif-
ferent criteria can be used in the Data Rejection Algorithm, DRA, and in the Backward Fuzzy Rule Selection
(BFRS) algorithm. These alterations could produce a different partition of information into HCFS sublevels.
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