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Abstract. In this paper, we demonstrate that simple fuzzy rule-based classifica-
tion systems with high interpretability are obtained through multiobjective ge-
netic rule selection. In our approach, first a prespecified number of candidate 
fuzzy rules are extracted from numerical data in a heuristic manner using rule 
evaluation criteria. Then multiobjective genetic rule selection is applied to the 
extracted candidate fuzzy rules to find a number of non-dominated rule sets 
with respect to the classification accuracy and the complexity. The obtained 
non-dominated rule sets form an accuracy-complexity tradeoff surface. The per-
formance of each non-dominated rule set is evaluated in terms of its classifica-
tion accuracy and its complexity. Computational experiments show that our ap-
proach finds simple fuzzy rules with high interpretability for some benchmark 
data sets in the UC Irvine machine learning repository. 

1   Introduction 

Evolutionary multiobjective optimization (EMO) is one of the most active research 
areas in the field of evolutionary computation [2], [3], [7]. The main advantage of 
EMO algorithms over classical approaches is that a number of non-dominated solu-
tions can be obtained by a single run of EMO algorithms. EMO algorithms have been 
successfully applied to various application areas [2], [3], [7]. In the application to 
fuzzy logic, EMO algorithms have been used to find accurate, transparent and com-
pact fuzzy rule-based systems [6], [16]-[18]. That is, EMO algorithms have been used 
to maximize the accuracy of fuzzy rule-based systems and minimize their complexity. 

In this paper, we clearly demonstrate that simple fuzzy rule-based classification 
systems with high interpretability can be obtained by multiobjective fuzzy rule selec-
tion. We also demonstrate that a number of non-dominated fuzzy rule-based classifi-
cation systems along the accuracy-complexity tradeoff surface can be obtained by a 
single run of an EMO-based fuzzy rule selection algorithm. Fuzzy rule selection for 
classification problems was first formulated as a single-objective combinatorial opti-
mization problem [13], [14]. A standard genetic algorithm was used to optimize a 
weighted sum fitness function, which was defined by the number of correctly  
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classified training patterns and the number of fuzzy rules. A two-objective combinato-
rial optimization problem was formulated in [10] as an extension of the single-
objective formulation. An EMO algorithm was used to find a number of non-
dominated fuzzy rule-based classification systems with respect to the two objectives: 
maximization of the number of correctly classified training patterns and minimization 
of the number of selected fuzzy rules. The two-objective formulation was further 
extended in [11], [15] to a three-objective combinatorial optimization problem by 
introducing an additional objective: minimization of the total number of antecedent 
conditions (i.e., minimization of the total rule length). A number of non-dominated 
fuzzy rule-based systems with respect to the three objectives were found by an EMO 
algorithm. 

This paper is organized as follows. First we explain an outline of multiobjective 
fuzzy rule selection in Section 2. Next we explain heuristic rule extraction for extract-
ing candidate rules in Section 3. Then we show experimental results on some bench-
mark data sets in the UC Irvine machine learning repository in Section 4. Finally we 
conclude this paper in Section 5. 

2   Multiobjective Fuzzy Rule Selection 

Let us assume that we have N fuzzy rules as candidate rules for multiobjective fuzzy 
rule selection. We denote a subset of those candidate rules by S. The accuracy of the 
rule set S is measured by the error rate on the given training patterns. We use a single 
winner rule-based method [12] to classify each training pattern by S. The single win-
ner rule for a training pattern has the maximum product of the rule weight and the 
compatibility grade with that pattern. We include the rejection rate into the error rate 
(i.e., training patterns with no compatible fuzzy rules in S are counted among errors).  

On the other hand, we measure the complexity of the rule set S by the number of 
fuzzy rules in S and the total number of antecedent conditions in S. Thus our multiob-
jective fuzzy rule selection problem is formulated as follows:  

  Minimize )(1 Sf , )(2 Sf , )(3 Sf ,     (1) 

where f1(S) is the error rate on training patterns, f2(S) is the number of fuzzy rules, 
and f3(S) is the total number of antecedent conditions. It should be noted that each 
rule has a different number of antecedent conditions. This is because we use don’t 
care as a special antecedent fuzzy set, which is not counted as antecedent conditions. 
That is, the third objective is the number of antecedent conditions excluding don’t 
care conditions. The third objective can be also viewed as the total rule length since 
the number of antecedent conditions is often referred to as the rule length. 

Any subset S of the N candidate fuzzy rules can be represented by a binary string 
of length N as S = s1s2 ... sN where sj =1 and sj = 0 mean that the j-th rule is included 
in S and excluded from S, respectively. Such a binary string is handled as an individ-
ual in multiobjective fuzzy rule selection. Since individuals are represented by binary 
strings, we can apply almost all EMO algorithms with standard genetic operations to 
our multiobjective fuzzy rule selection problem in (1). In this paper, we use the 
NSGA-II algorithm [8] due to its popularity, high performance and simplicity. 
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In the application of NSGA-II to multiobjective fuzzy rule selection, we use two 
heuristic tricks to efficiently find small rule sets with high accuracy. One trick is  
biased mutation where a larger probability is assigned to the mutation from 1 to 0 than 
that from 0 to 1. The other trick is the removal of unnecessary rules, which is a kind 
of local search. Since we use the single winner rule-based method for the classifica-
tion of each pattern by the rule set S, some rules in S may be chosen as winner rules 
for no training patterns. By removing those rules from S, we can improve the second 
and third objectives without degrading the first objective. The removal of unnecessary 
rules is performed after the first objective is calculated and before the second and 
third objectives are calculated. NSGA-II with these two tricks is used to find non-
dominated rule sets of the multiobjective fuzzy rule selection problem in (1).  

Here we briefly explain some basic concepts in multiobjective optimization. Let us 
consider the following k-objective minimization problem: 

 Minimize ))(...,),(),(( 21 yyyz kfff=  subject to Yy ∈ ,   (2) 

where z is the objective vector, fi (y) is the i-th objective to be minimized, y is the 
decision vector, and Y is the feasible region in the decision space. 

Let a and b be two feasible solutions of the k-objective minimization problem in 
(2). If the following condition holds, a can be viewed as being better than b: 

  i∀ , )()( ba ii ff ≤   and  j∃ , )()( ba jj ff < .   (3) 

In this case, we say that a dominates b (equivalently b is dominated by a). 
When b is not dominated by any other feasible solutions (i.e., when there exists no 

feasible solution a that dominates b), the solution b is referred to as a Pareto-optimal 
solution of the k-objective minimization problem in (2). The set of all Pareto-optimal 
solutions forms the tradeoff surface in the objective space. Various EMO algorithms 
have been proposed to efficiently search for Pareto-optimal solutions [2], [3], [7]. 
Since it is very difficult to find the true Pareto-optimal solutions of a large-scale mul-
tiobjective optimization problem, non-dominated solutions among the examined ones 
during the execution of EMO algorithms are usually presented as a final solution set. 

3   Heuristic Fuzzy Rule Extraction 

Let us assume that we have m training patterns xp = (xp1, xp2, ..., xpn), p = 1, 2, ..., m 
from M classes in the n-dimensional continuous pattern space where xpi is the attrib-
ute value of the p-th training pattern for the i-th attribute. For the simplicity of expla-
nation, we assume that all the attribute values have already been normalized into real 
numbers in the unit interval [0, 1].  

For our pattern classification problem, we use fuzzy rules of the following type: 

 Rule qR : If 1x  is 1qA  and  ...  and nx  is qnA  then Class qC  with qCF , (4) 

where Rq is the label of the q-th fuzzy rule, x = (x1, x2, ..., xn) is an n-dimensional 
pattern vector, Aqi is an antecedent fuzzy set, Cq is a class label, and CFq is a rule 
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weight (i.e., certainty grade). We denote the fuzzy rule Rq in (4) as “Aq ⇒  Class Cq” 
where Aq = (Aq1, Aq2, ..., Aqn). 

Since we usually have no a priori information about an appropriate granularity of 
the fuzzy discretization for each attribute, we simultaneously use multiple fuzzy parti-
tions with different granularities to extract candidate fuzzy rules. In computational 
experiments, we use four homogeneous fuzzy partitions with triangular fuzzy sets in 
Fig. 1. In addition to the 14 fuzzy sets in Fig. 1, we also use the domain interval [0, 1] 
as an antecedent fuzzy set in order to represent a don’t care condition. That is, we use 
the 15 antecedent fuzzy sets for each attribute in computational experiments. 
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Fig. 1. Antecedent fuzzy sets used in computational experiments 

Since we use the 15 antecedent fuzzy sets for each attribute of our n-dimensional 
pattern classification problem, the total number of combinations of the antecedent 
fuzzy sets is 15n. Each combination is used in the antecedent part of the fuzzy rule in 
(4). Thus the total number of possible fuzzy rules is also 15n. The consequent class Cq 
and the rule weight CFq of each fuzzy rule Rq can be specified from compatible train-
ing patterns in a heuristic manner (for details, see Ishibuchi et al. [12]). That is, we 
can generate a large number of fuzzy rules by specifying the consequent class and the 
rule weight for each of the 15n combinations of the antecedent fuzzy sets. It is, how-
ever, very difficult for human users to handle such a large number of generated fuzzy 
rules. It is also very difficult to intuitively understand long fuzzy rules with many 
antecedent conditions. Thus we examine only short fuzzy rules of length Lmax or less 
(e.g., Lmax = 3). This restriction on the rule length (i.e., the number of antecedent 
conditions) is to find rule sets of simple fuzzy rules with high interpretability. 

Among short fuzzy rules, we generate a prespecified number of candidate fuzzy 
rules using heuristic rule evaluation criteria. In the field of data mining, two rule 
evaluation criteria (i.e., confidence and support) have been often used [1], [4], [5]. 
The fuzzy version of the confidence is defined as follows [12]: 
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where μAq(xp) is the compatibility grade of each training pattern xp with the antece-
dent part Aq of the fuzzy rules Aq ⇒  Class Cq in (4), which is defined as follows: 

  )(...)()( 11 pnApAp xx qnqq μμμ ⋅⋅=xA .    (6) 

In the same manner, the support is defined as follows [12]: 

  mhs
h

pq
p

q∑=⇒
∈Class

)()Class(
x

A xA μ .   (7) 

A prespecified number of candidate fuzzy rules are extracted using the following 
ranking mechanisms of fuzzy rules (Of course, we can use other methods such as the 
SLAVE criterion [9]): 

Support criterion with the minimum confidence level: Each fuzzy rule is evalu-
ated based on its support when its confidence is larger than or equal to the prespeci-
fied minimum confidence level. Under this criterion, we never extract unqualified 
rules whose confidence is smaller than the minimum confidence level. Various values 
of the minimum confidence level are examined in computational experiments. 

Confidence criterion with the minimum support level: Each fuzzy rule is evalu-
ated based on its confidence when its support is larger than or equal to the prespeci-
fied minimum support level. Under this criterion, we never extract unqualified rules 
whose support is smaller than the minimum support level. Various values of the mini-
mum support level are examined in computational experiments. 

4   Computational Experiments 

In the first stage of our multiobjective rule selection method, a prespecified number of 
candidate fuzzy rules are extracted. We extract 300 candidate fuzzy rules for each 
class using the above-mentioned two ranking mechanisms. Experimental results on 
some benchmark data sets in the UC Irvine machine learning repository are summa-
rized in Table 1 where the classification rates on training patterns of 300M candidate 
fuzzy rules are shown (M: the number of classes in each data set). In the last column, 
we extract 30 candidate fuzzy rules using the ten specifications in the other columns 
and use all of them (i.e., 300 candidate fuzzy rules for each class in total). Bold face 
shows the best result for each data set. Bad results, which are more than 10% worse 
than the best result, are indicated by underlines. From Table 1, we can see that the 
choice of an appropriate specification in the rule ranking mechanisms is problem-
specific. Since no specification is good for all the seven data sets, we use 30 candidate 
rules extracted by each of the ten specifications (i.e., 300 rules for each class in the 
last column of Table 1: 300M rules for each data set).  

Then we apply NSGA-II to the 300M candidate fuzzy rules for each data set to 
search for non-dominated rule sets. Fig. 2 shows five rule sets obtained by a single 
run of NSGA-II for the iris data. It should be noted that the three plots show the same 
five rule sets using a different horizontal axis. We can observe in each plot of Fig. 2 
the accuracy-complexity tradeoff with respect to a different complexity measure. One 
rule set with a 2.67% error rate (i.e., the simplest rule set in Fig. 2) and the  
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corresponding classification boundary are shown in Fig. 3. We can see that the rule 
set with the three fuzzy rules in Fig. 3 has high linguistic interpretability. For exam-
ple, the first rule is linguistically interpreted as “If x4 is very small then Class 1.” We 
can also see that the classification boundary in Fig. 3 is intuitively acceptable.  

Table 1. Classification rates on training patterns of candidate fuzzy rules 

Support with minimum conf. Confidence with minimum sup. 
Data set 

0.6 0.7 0.8 0.9 1.0 0.01 0.02 0.05 0.10 0.15 
Mixed 

Iris 96.00 96.00 96.00 96.00 88.00 92.67 94.00 96.00 96.00 95.33 96.00 
Breast W 95.90 95.90 95.90 95.90 82.43 90.48 94.58 96.78 96.78 96.24 96.34 
Diabetes 69.40 69.92 73.05 78.26 14.06 63.28 64.45 77.34 75.52 71.61 70.44 
Glass 69.63 65.89 56.07 31.78 23.83 55.61 69.16 62.62 64.49 59.44 68.69 
Heart C 62.96 64.65 68.35 58.92 48.82 54.21 55.62 50.17 59.26 52.46 65.32 
Sonar 77.40 78.37 79.33 90.38 83.65 81.25 87.98 88.94 79.33 77.88 87.02 
Wine 97.19 97.19 96.63 97.19 98.88 95.51 96.07 98.88 96.63 96.07 96.63 
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Fig. 2. Non-dominated rule sets by a single run of the NSGA-II algorithm for the iris data 

3x

1R

2R

Consequent

Class 1
(1.00)

Class 2
(0.28)

4x

DCDC

DCDC

3R Class 3
(0.61)

DCDC

                 

Class 1    Class 2    Class 3

x3

x4

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

 

Fig. 3. One rule set obtained for the iris data and the corresponding classification boundary 

We also obtain simple rule sets with high interpretability for the other data sets as 
shown in Fig. 4 where the error rate of each data set is shown as a figure caption. 
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  (d) Heart C: 46.13% error        (e) Sonar: 22.59% error               (f) Wine: 6.18% error 

Fig. 4. Example of obtained rule sets for the other data sets 

5   Concluding Remarks 

In this paper, we demonstrated that simple rule sets with high interpretability can be 
obtained by multiobjective rule selection for some benchmark data sets in the UC 
Irvine machine learning repository. Since our approach selects a small number of 
short fuzzy rules using homogeneous fuzzy partitions, rule sets with high linguistic 
interpretability are obtained as shown in Fig. 3 and Fig. 4. Whereas all the rule sets in 
Fig. 3 and Fig. 4 have high interpretability, the classification accuracy of these rule 
sets is not necessarily high. Especially the rule sets in Fig. 4 (c) for the glass data with 
six classes and Fig. 4 (d) for the Cleveland heart disease data with five classes have 
poor classification accuracy. This is because the number of fuzzy rules is less than the 
number of classes. When emphasis should be placed on the classification accuracy, 
more complicated rule sets with higher accuracy can be chosen from non-dominated 
rule sets. For example, our approach found a rule set with 14 fuzzy rules for the glass 
data. The error rate of this rule set was 17.76% whereas the rule set with two fuzzy 
rules in Fig. 4 (c) has a 58.89% error rate. Another difficulty of our approach for mul-
ti-class problem is that fuzzy rules for all classes are not necessarily included in rule 
sets. When we need at least one fuzzy rule for each class, an additional constraint 
condition can be introduced to multiobjective rule selection. 
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