IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 31, NO. 2, MAY 2001 199

Rule Base Reduction: Some Comments on the Use
of Orthogonal Transforms

Magne SetnesMember, IEEEand Robert Babika

Abstract—This paper comments on recent publications about they are typically applied to subset selection and rank-deficient
the use of orthogonal transforms to order and select rules in a fuzzy least-squares problems.
rule base. The techniques are well known from linear algebra,and A gverview of some orthogonal-based rule reduction

we comment on their usefulness in fuzzy modeling. The applica- i . .
tion of rank-revealing methods based on singular value decompo- methods is givenin [12]. Allapproaches assume the formulation

sition (SVD) to rule reduction gives rather conservative results. Of the modeling exercise as a regression problem, and they can
They are essentially subset selection methods, and we show thatoughly be divided into two groups: the rank revealing ones
such methods do not produce an “importance ordering” contrary ~ and those that evaluate the individual contribution of the rules.
to what has been stated in literature. The orthogonal least-squares Rank-revealing methods are typically based on the determi-
(OLS) method, which evaluates the contribution of the rules to the nation of the effective rank of the rule firing matrix from its

output, is more attractive for systems modeling. However, it has . . e .
been shown to sometimes assign high importance to rules that are singular values. In practice, th|§ 1S d!ffICU|t to determine, and the
correlated in the premise. This hampers the generalization capa- Methods are rather conservative with respect to rule-reduction.
bilities of the resulting model. Also, the claimed “importance ordering” [3], [12] of the rules

We discuss the performance of rank-revealing reduction methods  depends on this estimate and thus often makes no sense. Methods
and advocate the use of a less complex method based on the pivoteqat evaluate the output contribution of the rules to obtain an

R decomposition. Further, we show how detection of redundant . ;
Sjles can bpe introduced in OLS by a simple extension of the al- ordering, like the orthogonal least-squares approach (OLS) [9],

gorithm. The methods are applied to a problem known from the [14], are more attractive for systems modeling. However, OLS
literature and compared to results reported by other researchers. methods proposed for fuzzy models, [9], [10], do not consider
Index Terms—Fuzzy rule-based modeli th | trans- the structure of the rule base in terms of redundant (similar) and

Yy rule-pased modeling, orthogonal trans . . . .

forms, rule reduction. correlated rules. Evaluating only the approximation capabilities
of the rules, the OLS method often assigns high importance to a

set of redundant or correlated rules [12]. This can result in poor

. INTRODUCTION generalization capabilities of the model.

UZZY MODELS describe systems by establishing rela- In the next section, we discuss the working of rank-revealing
tions between the relevant variables in the fornifahen réduction methods and advocate the use of the simple pivoted
rules that are to a certain degree transparent to interpretatid deécomposition as opposed to the calculation and inspec-

and analysis. For approximation tasks, data-driven fuzzy mdifn of the singular values of the firing matrix. The proposed
eling is becoming more and more popular. Most such modelifggthod is computationally simple and can produce a rule or-

techniques are driven by the optimization of some cost functidiing Without any estimate of the efficient rank. Moreover, itis
and do not consider the complexity and inspectability of the r§1OWN t0 track the singular values of a matrix with enough pre-

sulting rule base [1]. Consequently, there has been a lot of fod&ision to estimate the effective rank for subset selection [15].
on methods for improving these aspects, considering various

I Section Ill, we show that detection of redundant and corre-
sues like local rule behavior [2], statistical information criteri};{"‘ted rules can be introduced in OLS-based rule selection by
[3], similarities in the rule base [4], [5], conditional clusterin

g; simple extension to the algorithm. Section IV considers the
[6], [7], and constrained learning [8], to mention some. roblem studied in [12], and it is shown that the pivoted QR
One approach that has received much attention in recent

ﬂ{a_composition and the extended OLS algorithm give better re-
erature is the use of orthogonal transforms for ordering an

sylts than other orthogonal methods. Finally, Section V ends the
reducing the rules in a rule base [9]-[13]. Orthogonal trangfmew\”th some concluding remarks.

forms are well known from statistics and linear algebra, where
Il. DATA-DRIVEN MODELING AND RULE REDUCTION

A. Fuzzy Modeling

Manuscript received May 21, 1999; revised May 31, 2001. This work was The most commonly used model for data-driven fuzzy mod-
supported in part by the Research Council of Norway. This paper was recogling is the Takagi—Sugeno (T—-S) fuzzy model [16]. It describes
mended by Associate Editor R. Popp. . . _local input-output (I/0) relations using fuzzy rules with con-

M. Setnes is with Research and Development, Heineken Technical Services, . . . .
Zoeterwoude, The Netherlands (e-mail: magne@ieee.org). sequents that are usually linear combinations of the inputs or

R. Babiska is with the Systems and Control Engineering Group, Electricgimply constant values like
Engineering Department, Faculty of Information Technology and Systems,

Delft University of Technology, Delft, The Netherlands (e-mail: r.babuska@ R;: If z, is A;; and and z,, is A,
its.tuldeft.nl). 2 2 s ) in
Publisher Item Identifier S 1094-6977(01)07600-3. then §;, =¢;, i=1,2,..., M. 1)

1094-6977/01$10.00 © 2001 IEEE



200 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 31, NO. 2, MAY 2001

Here, R; is theith rule,x = [z1,...,7,]7 is the vector of fective rank ofP, identified by a (relative) gap,. > o,41 in
inputs, 7; is the rule output, andi;4, ..., A;, are fuzzy sets the singular values. The gap represents a natural point to reduce
defined in the antecedent space by membership functidhe dimensionality of the problem by setting the singular values
pa,(z;) : R — [0,1]. M is the number of rules, and the totalbelow the gap to zero. Given an estimatel rankP), the so-
output of the model is computed by aggregating the individukition to (6) can be written as

contributions T

T
M ¢ = Z LYy, ()]
N N —~ 0;
i=>_ pil)i (2) =1
i=1 wherewu; andw; are theith column of U andV, respectively.

This solution minimizes the errdfy — P'¢’||, whereP’ is the

wherep; is the normalized firing strength of thiéh rule
pi(z) 9 g closest matrix td that has rank

j=1 Aij(;
Ay

> =1 H?:l A (@) 7

Given N I/O data pairs{zs, vy}, the model in (2) can be

=1,2,....,M. (3 P =UY VT, (10)

Here,x’ € RY*M js a diagonal matrix extracted frod in

it i . bl (7) by taking the first- singular valuesry, ..., o, as diagonal
written as a linear regression probiem elements. Indeed, if = M = rankP), thené’ = 65 and
y=Pl+e 4 P =P

It was recognized in [11] that replacidg with P’ is a way

where . .
y = [y1. 42, . .,yn]" measured outputs; of reducing the redundancy among the underlying rules as the
6= DI T consequents of tha! rules: redundant rules are associated with near zero singular values.
o= [eiiez:’,ej)\{]T vector of approximation er,rors. For the application to rule selection, a syst& should be

designed, wheré hasr < rank P) nonzero components. The
strength of all thel rules for theN inputsz;, wherep; — posmon of the nonzero gntrles thdetermines which columns
in P are used to approximate the outpuand, consequently,

[pliap2ia"'ap/\ri]T' H . initi ni
Typically, the identification is a two-step approach. First, th%rl‘écgacgethm < M initial rules should remain in the reduced

fuzzy setsA;; are determined and the firing matR is cal-
culated_ from (3_). In the se_co_nd stgp, the rule consequents B€Rule Selection with SVD

determined. This problem is linear in the parameters,éacah o _ _

be determined using some least-squares parameter estimatiot’@ problem of picking the most influential columnsBfis

The matrixP = [p;,ps, - - ., py] € RYV*M contains the firing

technique [1], [2], [17]. known assubset selectiofi5]. An overview of subset selection
methods applied to fuzzy rule-based systems was given in [12].
B. Rule Selection with Rank-Revealing Methods The methods seek to replab¥ in (5) with P..6,., whereP,. €

) . NXr i . i
The least-squares solution to the overdetermined paraméfer ~ consist ofr columns picked fronP. The natural way to

estimation problem in (4) satisfies thermal equations determine- is to locate a gap in the singular values of the firing
matrix P. One such approach is ti$8/D-QR with pivotindirst

P"Plis =P'y. (5)  proposed in [18] and applied to fuzzy systems in [11]. In short,
The solutiond;s is the one that minimizes the errpg — P¢||.  the algorithm works as follows.
Its determination requires the cross product mal#P to be 1) Calculate the SVD dP as in (7) and estimate its effective

invertible, in other words, the columns Bf must be indepen- rankr < rankP) from .
dent; P must have rank{. WhenP is rank deficienti.e.,r = 2) Calculate a permutation matrI such that the columns
rank P) < M, there will be no unique solution to the param- of the matrixP,. € RV*" in

eter estimation problem. Such problems are usually solved by

means of thg@seudo invers®+ of P PIL =[P, Pas—] (11)
! _ D+ are independerfrankR.,.) = ).
¢ =Py ©) 3) Approximatey with P8, where
The pseudo inverse @ is obtained from the singular value P
decomposition (SVD) oP § =11 [ 0’}
P=UxV” )

- _ andé, € R” minimizes||P,.0, — y||.

whereU € [RA‘ XJ.\‘ andV € RMXM.are_OI’thOQO'nm matrices, The actual rule selection is the calculation of the permutation
andx € R™** is a diagonal matrix with the singular valuesmatrix Pi that extracts an independent subset of colups

o1 2 03 2 --- 2 oy 2 0in decreasing order as diagonatyom among the columns @, assumed to correspond to the

elements. The pseudo inverse is calculated as most important rules. A heuristic solution to the problem of ob-
Pt =vxtu? (8) tainingIlis given in [15] as computing the pivoted QR decom-
position of the submatrifv%; V] of singular vectors extracted

wherext ¢ RM*N is a diagonal matrix with the reciprocals
1/04,...,1/0, of ther nonzercsingular values as diagonal el-
ements. The number of nonzero singular valaeas the SVD

of P reveals the rank aP. Usually, is an estimate of the ef-

from V in (7)

12)

Vii Vi
V=
[Vm V22}
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whereVy; € R™" andVy; € RM-7)x7 The pivoted QR fore, if [|Rix |2 is small, thenP has at least small singular
decomposition determines a permutation matrix such that values.
The QR decomposition is uniquely determined by the per-
QY [VL V3] I = Ry Rys] mutation matrixII, and many techniques have been proposed
to compute it. The most well known is the column pivoting
whereQ € R™" is orthogonal and; andR» form an upper strategy [18] which in practice is very efficient in computing
triangular matrix. a triangular factoR with a small||Ry]|. The pivoting works
If the number of nonsmall singular values > rank(P) such that the norm of the first column &, dominates the
can be properly determined, i.e., there is a well defined gaBrm of the other columns. The norm of this columi#gkk)),
or+1(P) < o.(P), then the subset selection performed bynd the pivoting strategy can be regarded as a greedy algorithm
PII = [P, Py, ] will tend to produce a subs#,. containing to make the leading principal submatricesRofas well condi-
the most important columns (rules) Bf. However, often, the tioned as possible by maximizing their trailing diagonals. Thus,
singular values tend to decrease smoothly without any clear g valueg R(kk)| on the diagonal oR, called theR values,

In such cases; is determined by counting the number of (clos@re decreasing, and they tend to track the singular valy@®)
to) zero singular values in the SVD @, resulting in a con- well enough to expose gaps.

servative rule reduction method that degenerates to a means forhe pivoting algorithm favors columns Bfwith a large norm,
detecting equal rules and rules that do not fire. To help in sughlated (through orthogonalization) to the norm of the columns of
situations, it has been claimed [2], [3] thdhe smaller are the P Inregular regression problems, thisis not necessarily aninter-
singular values, the less important are the associated f@led  esting observation. For a fuzzy rule base, however, the norms of
that one can use this ordering to construct a reduced fuzzy mogil columns oP correspond to the firing strength and firing fre-
of any sizeM; < M by picking theM, most important rules quency of the rules. Thus, P-QR picks first the most active and
according tdll. This is different from the idea of subset selecteast redundant of the remaining rules. This will typically corre-
tion, where a subset ofrules is extracted, and no further imporspond to an ordering according to the generalizing capability of
tance other than this classification is associated with the ordegia rules as the most active rules can be assumed to have high gen-
which they are picked by the permutation mafflx The claim eralizing capability, i.e., they describe large regions of the sys-
that this is an importance ordering cannot be proved, and itti§ms state space, or frequently occurring situations.
far from apparent. First of all, the column pivoting strategy ap-
plied_ to obtginlj is itself a heqristic approach. It tends tq Worlt_ Example: Pivoted QR versus SVD-QR
fine in applications, but little is known in theory about its be-
havior. Moreover, the produced permutation is strongly depen-A simple example will illustrate the effect of the estimate-of
dent on the estimate of the effective rankf a slightly different on the “rule ordering” by the SVD-QR algorithm. We also show
(e.g., lower) threshold is used to define small singular valutfie ordering by the P-QR decomposition and how it tracks the
(resulting in e.g.7” = 7 — 1), the permutations (rule order) insingular values.
II can change dramatically. This is illustrated in the example in A simple one-dimensional (1-D) fuzzy partition of three
Section II-E. trapezoidal fuzzy setsl;, A>, and Az is considered. To this

A method that can produce a permutation order that is indeartition we add the three more or less redundant defsi;,
pendent of the estimate ofis obtained by applying the pivotedand Ag as shown in Fig. 1(a).

QR decomposition directly t®. An input data vector = [z1,z2,...,T200]7 of 200 obser-
vations evenly spaced [r-3, 3] is constructed, and tH#0 x 6
D. Pivoted QR Decomposition of the Firing Matrix firing matrix P is calculated. Both the singular values and the

The pivoted OR (P-QR) decomposition can be applied dﬁ values ofP are plotted in Fig. 1(b), and it is seen that the

rectly toP to obtain a permutation matrix and, for most practic alues track the singular values well. Further, we notice Fnat
Yok AP L P as two small (close to zero) singular values, but also a distinct
cases, it will reveal its rank [15] at the same time. This is co

putationally attractive. One can skip the calculation of the SV ap after three values (as could be expected with our knowledge

and it is not necessary to give an estimate tf obtain the per- f the partition).
mutation ytog P We now apply the SVD-QR algorithm several times with

. L _ varying estimates of. The results are reported in Table | to-
HTgeu‘\S\fo?\feﬁgn;p;sr%qugoﬁ ?A\;?QXQ/I;HR} %?hggegﬁ gether with those of the P-QR. The entriga the table corre-
thonormal columns, anik € RM*M is upper triangular. If spond to the order in which the rulég are picked from most

P has full rank, therR is nonsingular (invertible). WheR is important at the top till least important at the bottom. The an-

(near) rank deficient, it is desirable to select the permutation mtecedent of the rulef; are formed by the fuzzy set; shown

a-—.
. . . L . in Fig. 1(a).

trix II such that the rank deficiency is exhibited®) having a . . :

small lower right blockRy, [19] According to the distribution of the singular values, two good

choices are: = 4 andr = 3. However, the resulting “impor-
Ri;; Ry tance ordering” of the SVD-QR differ completely for these two
0 Rkk:| values. For = 4, the algorithm assigns the highest importance
to the two rules defined by the fuzzy sets and A5 of which
whereR;, € RF>* |t can be shown that for th&f — k+ first one is certainly redundant. In fact, the only reasonable ordering
singular value of?, we haver; r+1(P) < ||Rix||2. There- obtained with SVD-QR is the one obtained foe 3. The P-QR

|
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like the OLS method [9], [14] which order the rules based
on their contribution to explain the variance of the data to be
approximated. This method is discussed in the following.

I1l. ORTHOGONAL LEAST SQUARES BASED REDUCTION

The OLS method was first applied to fuzzy systems in [9] to
select the most important fuzzy basis functions needed to ap-
proximate a data set. The OLS method transform the columns
of the firing matrix P into a set of orthogonal basis vectors in
order to inspect the individual contribution of each rule. The
Gram-Schmidt orthogonalization is used to perform the orthog-
onal decompositiod® = WA, whereW is an orthogonal ma-
trix such thatWw? W = I, andA is an upper-triangular matrix
with unity diagonal elements. Substitutili®yy= WA into (4),
we havey = WA6 + ¢ = Wg + ¢, whereg = A6. Since the
columnsw, of W are orthogonal, the sum of squaresyok)
can be written as

M
yly = Z giw! w; +ele. (13)
=1
The part of the output varianggy/N explained by the regres-
sorsisd giw!w;/N. Thus, an error reduction ratio [14] due to
an individual rule; can be defined as
. . . . [err]i _ gfwfwz
2 3 4 5 6 Yy
(b) This ratio offers a simple means of ordering the rules, and was
Fig. 1. (a) Redundant fuzzy partition of six fuzzy sets and the singular valug§ed |n.[9] to select a subset of important rules in a forward-
(o) and (b)I? values( x ) of the correspondin@00 x 6 firing matrix P. regression manner.
In [12], it was concluded that the OLS method may pro-
TABLE | duce an inappropriate subset of fuzzy rules. An explanation
RULE ORDERING BY P-QRAND SVD-QRFOR VARYING ESTIMATES OF r for this was sought in the used error reduction ratio (14) as it
(MOST IMPORTANT AT TOF) tries to minimize the fitting error without paying any attention
Pivoted QR SVD-QR to the model structure. Thus, in the OLS algorithm applied in
r=4|r=3|r [9], [10], and [12], it is possible that a rather redundant rule
2 2 is assigned a high importance because of its contribution to
the output. This problem can easily be helped by introducing
a check forw:,fwk < ¢ when selecting théth most impor-
tant rule based on its error reduction. Here;y 0 is some nu-
merical approximation of zero, and the relatifiw; = 0 im-
plies that the corresponding column vegigris a linear com-
. ) bination of the column vectors corresponding to the previously
does not need any estimatesqfand it produces a reasonablgg|ectedt — 1 rules [14]. An extended OLS algorithm for or-

order. As for the singular values, tievalues of the P-QR de- gering the rules can now be written down that creates a vector
composition [see Fig. 1(b)] can help to determine the numbgr — [o1,02,...,00]T of rule indices where th@/ rules are
of rules to pick. Due to the robust ordering, this estimate is ngfdered in decreasing importance.

necessary, and one can use other methods like an information, Step 1:Select the first vectam, of the orthogonal basis

criteria [3] to pick the firstd], rules according to the permuta- Forl<i<M,

tion order produced by the pivoted QR decomposition. setw@ :_pi and calculate the corresponding element of
As discussed above, the claimed importance ordering [2], [8]  the OLS solution vector

produced by the rank-revealing SVD-QR and related methods

Singullar values (log)

|
N

. 1<i<M. (14)

|
w
Pt

=)
=
9]
1l
)
=
=

= O Ot Ww o= N

D = & ot w ol

S Wl = o of |
O o W = Ot
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—_n o N O] |

A
can be questioned. These methods have been proposed for () (wg’)) Y
subset selection, and they typically require some estimate of the 9 = NI &)
efficient rank to work in a reasonable way. Also, they operate (“’1 ) w1

on the information in the rule-firing matrix only. However, the and the error-reduction ratio

effect of the rule consequents should not always be discarded. N2 [ NT @)
In systems modeling, where the measured output is often ) ) (wl ) wy
available, a more useful rule ordering is produced by methods yTy

[erd{” = (
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wherep; = [pui, ..., pni]? is given by the firing strength TABLE I
matrix P. PARAMETERS OF THEGAUSSIAN MEMBERSHIPFUNCTIONS

Find the rule with the largest error reduction ratio

i | center ¢;; | center ¢;p | width oy | width oy

‘ 1| 0.0930 | -0.3630 | 0.7095 | 0.7095

01 = arg max ([err]gz)) 2 | 0.0933 | -0.3632 | 0.7095 | 0.7095

1<i<M 3| 1.3828 | -0.6617 | 0.6271 | 0.6271

4 | -1.0414 | 15397 | 0.7969 | 0.7969

and select the first basis vecty and the first element; 5 | -1.8130 | -1.6470 | 1.3205 | 1.3205
of the OLS solution vector 6 | -1.8125 | -1.6469 | 1.3205 | 1.3205
7| 07776 | -1.1555 | 0.7800 | 0.7800

(01) 8| 01898 | 1.0142 | 06141 | 06141

W =w; =P, 9 | -04052 | 02798 | 08099 | 0.8099

 (o1) 10 | -0.6613 | -0.4846 | 0.0100 | 0.0100

gL =91 " 11| -0.6613 | -0.4846 | 0.7051 | 0.7051

. 12| 09529 | -0.3965 | 06313 | 0.6313

» Step 2:Select the next basis vectarg . 13| 07860 | 0.7723 | 06177 | 0.6177
Repeat for2 < k < M: 14| 04329 | 01910 | 06652 | 0.6652
A ) 15| 1.2940 | 1.0740 | 0.6474 | 0.6474

Forl <i¢< M,i#o1,...,i # or—1, calculate 16| 1.2942 | 1.0738 | 0.6474 | 0.6474
T 17] 06801 | 14083 | 06370 | 06370

(6 _ WD < i<k 18| 12656 | 02698 | 0.7156 | 0.7156

T i 1<i<k 19| 03846 | 11827 | 0.6772 | 06772

§ 20 | -1.2642 | -0.1808 | 0.0100 | 0.0100

k—1 21| -1.2642 | -0.1808 | 0.7907 | 0.7907
G _ . Z ), 22| -0.9099 | -1.1750 | 0.7728 0.7728
Wy =P jp Wy 23| -0.1008 | -1.1384 | 0.8046 | 0.8046
j=1 24| -1.1533 | 0.7037 | 0.8517 | 0.8517

(@) T 25 1.7691 -1.2798 (.8746 0.8746
) _ ("’k ) v
9. = ~T .
(wg)) ng) where
ON2 N T @) fly(k = 1),y(k —2))
ferf? = (gk ) (”’k ) T _ y(k = Dy(k = 2)[y(k — 1) — 0.5] (16)
b yly T+y2(k— 1)+ 92 (k—2)

Find the remaining rule with the largest error reductiokVe want to approximate the nonlinear compongof the plant
ratio that is not redundant (see the equation shown at tfike unforced system) with a fuzzy model (1). Twelve hundred
bottom of the page) and select thih basis vectow, and simulated data points were generated from the plant model (15).

the kth elementy;. of the OLS solution vector. Starting from equilibrium state (0, 0), 1000 samples of identifi-
(0n) cation data were obtained with a random input sigi{al) uni-
Wi = Wy, formly distributed in[—1.5, 1.5], followed by 200 samples of
gL = glgok), evaluation data obtained using a sinusoid input sigi&) =

sin(27k/25), k = 1001, .. .,1200. The simulated data is shown
For rule selection, if a predetermined number of rilés < M in Fig. 2(a). The input to the fuzzy model is, = [y(k —
is to be selected, step two of the algorithmis enddd-atMs. It 1), y(k — 2)], and the 25 Gaussian membership functions taken
is also possible to determine a stopping criterion based on, efebm [12] with the parameters shown in Table Il are used to par-
the approximation accuracy [10] or the relative contribution aftion the input space as illustrated in Fig. 2(b).

the selected rules [7]. 2
gl (k) = exp <_w>

2
20; J

We consider the same example as in [12] to illustrate the J=12 i=1,...,25. (17)

working of the pivoted QR decomposition and the extended Each row in Table Il is associated with one of the fuzzy rules
OLS algorithm! The system under study is a second-order nofi the rule base. The first two rows have equivalent membership
linear plant function parameters. Thus, the first two rules in the rule base will
_ always have nearly the same firing strengths. This implies that
u(k) = fly(k = 1), y(k = 2)) + u(k) (15) there is redundancy between the two rules and removing one of
1See [12] for a discussion and comparison of other methods. them will not significantly affect the performance of the model.

IV. EXAMPLE

‘ NT . ‘ NT .
arg max {[erl’]gz) ‘ (w,(:’)) w,(:’) > 6} ,if Elw,(:’), (w,(:’)) w,(:’) > €
or = 1<i<M iF#o1,... 150 1

arg max [err]gi’)) , otherwise.
1<i<M iF#on,... i5ok 1
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Fig. 3. Singular value&) andR? values( x ) of the corresponding000 x 25
firing matrix P. (a) Log scale. (b) Real scale.

3 TABLE I
ORDER IN WHICH THE RULES ARE PICKED FROM THE RULE BASE
(MOST IMPORTANT AT TOP)

Fig. 2. (a) Simulated output of the plant. (b) Positions and widths of the P-QR | SVD-QR | E-OLS | OLS
Gaussian membership functions in the models input space along with the input 24 25 5 5
data. 25 4 2% | 4
6 19 25 | 2

15 7 6 | 16

The same holds for rules 5 and 6 as well as rules 15 and 16. The s S M
Gaussian membership functions associated with the rules 10 and 4 8 23 | 23
20 are very narrow. Thisimplies that the rules will virtually never g ;g 131 11
fire, and they can thus be removed from the rule base. 14 14 2 232
From the first 1000 input data poings = [y(k — 1), y(k — 18 21 7 6
2)],k = 1,...,1000, the 1000 x 25 firing strength matrixP i " > 175
is calculated using (3). The singular values of the matrix are 17 18 4 19
shown in Fig. 3 together with th& values of the pivoted QR 7 12 14 4
decomposition. It is seen that th vlaues track the singular 231 191 118 197
values with considerable fidelity. 13 2 17 | 13
9 5 13 | 18

. 2 16 12 |12

A. Rule Subset Selection 20 15 3 1
From inspecting the log scale plot in Fig. 3, one could con- 156 ;g 1% 124
clude that there are anywhere from one till five relatively small 1 6 15 | 10
singular values. The real scale plot indicates the presence of five 10 1 20 |20

near zero singular values, corresponding with our knowledge
about the rule base. We now apply the orthogonal transforma-. .
tion-based methods studied above to the problem. The res@yglge P'Qﬁ decomposrgo_n ahr!d the extended OLS method
are reported in Table Ill, which shows the order in which the—" ) are those proposed in this paper.

rules are picked from the rule base. The SVD'QR and th.e OI-SDue to the random nature of the identification data, the rule order by
method are the same as those studied for this problem ia [18)D-QR and OLS differs slightly from that in [12].
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Fig. 4. Performance of models with an increasing number of rules picked according to the different methods. Solid line indicates mean squat€) @mor (MS
training data. Dash-dotted line indicates MSE on evaluation data.

The results show that both rank-revealing methods, the P-@Rdel with the ruledis andR,., etc., untilwe have amodel of 20
and the SVD-QR, pick as the least important rules three redunies. In this exercise, whene [1, 20] rules are picked, the cor-
dant ones and the two nonfiring ones. In this case, the SVD-Q&pondind 000 x r firing matrix P,. is formed using the training
algorithm was executed with= 20, i.e., it was told that there data, and the rule consequefitare determined by solving the
where25—20 = 5 noninfluential rules, according to the inspecresulting least-squares problem. To verify the methods, for each
tion of the singular values in Fig. 3. The P-QR method does nmiodel complexity, 50 models are made with= 1,2,...,20
need this information, and still produces the correct subsetdifferent rules drawn at random from the total set of 25 rules. The
least important rules for this problem. Further, as concludedawerage performance of the random models are recorded. The re-
[12], the OLS method correctly sorts out the nonfiring rules (18ults are presented in Fig. 4.
and 20) but fails to assign a low importance to one rule from In this experiment, the P-QR picks the rules such that they
each of the three pairs of redundant rules. This deficiency is n@ve good generalizing capabilities. It obtains an error on the
encountered with the E-OLS method proposed in Section lll.dvaluation data that is below that of the training data for a low
produces an importance ordering that successfully detects botimber of ruleg» > 5). This result supports the observation

the redundant as well as the nonfiring rules. made in Section II-D concerning the pivoting algorithm.
As expected, the E-OLS method has a good performance in
B. Rule Ordering fiting the training data with a low number of rules. Unlike the

We now repeat the modeling exercise several times. Accordiﬂﬁ;er methods, it uses information about the systems output and
to each of the three methods (P-QR, SVD-QR, and E-OL& tries to fit the training data as well as possible. For a low number
make 20 models of increasing complexity with the rules picke‘H _ru_Ies,dthte E|_'|OLS Consltrucés ]Enodels that alre flttln?honly 'Ejhel
inthe order reported in Table Il and evaluate their performancgg'r"ng| ‘;a' fowever, age?h y r;)hm ?e\_/e_n ru esd(;E, € rlno t'e S
on fitting the training (1000 samples) and evaluation (200 sa@':'OW good performance both on the training and the evaluation

ples) data. For instance, according to the P-QR method, we fi
make a one-rule model consisting only of ridlg, then atwo-rule

he worst performing of the studied methods is the SVD-QR.
As could be expected from the discussion in Section II-E, the

3Since the ordering produced by the E-OLS method is quite similar to thatgf'de.r inwhich the rules ar_e pickgd bears no pro_of of represgqting
the OLS, only the models obtained with E-OLS are inspected in this exerciseany importance order; neither with respect to fitting the training
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data, nor with respect to generalization capabilities. In fact,[5]
Fig. 4 shows that its performance is qualitatively close to the
average random approach in which the redundant and nonfirin
rules were picked with the same probability as all the other rules.
(71

V. CONCLUSION

We have discussed the principles and the performance of
some orthogonal transform-based rule reduction methodg9]
proposed in the literature. These methods can be divided into
two groups: the rank-revealing ones and the ones that evalugig)
the contribution of each rule to the output. A representative
of the former is the SVD-QR method which was originally [11
developed for subset selection [18]. It has been claimed by
researchers that the SVD-QR method can be used to order the
rules according to their importance [2], [3]. We have shown in,,
this paper that this is not the case. The SVD-QR behaves strictly
like a subset selection method. It only classifies the rules int? 3
two sets of influential and noninfluential rules, respectively. 13
Moreover, the success of this classification strongly depends
on a correct estimate of the effective rank of the firing matrix. [14]

We propose to use the pivoted QR decomposition for rule se-
lection. Similarly to the SVD-QR, the P-QR method can be usedt5]
as a subset selection method. We have shown that it can traﬁ !
the singular values in the firing matriR well enough to make
an estimate of the effective rank without calculating the SVD of
P. For rule ordering, the method produces a permutation matri ;]
directly from the firing matrix, and the order in which the rules
are picked is not dependent on any estimate of the rank. Morgl9]
over, in the studied experiments, this order proved to pick the
rules according to their generalizing capabilities while filtering
out redundant ones. Finally, it is also computationally less ex-
pensive. Thus, when applying rank-revealing methods to select
rules according to their ordering as proposed in [2] and [3], tt
P-QR method is preferable to the SVD-QR and related metho

The rank-revealing methods consider the partitioning of tt
input space by the rule antecedents and the influence of the
consequents is discarded. In systems modeling, when meast
output data are available, a more effective and transparent r
ordering is produced by the OLS method [9], [14]. It was cor
cluded in [12] that the OLS does not make any consideratiori
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