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Rule Base Reduction: Some Comments on the Use
of Orthogonal Transforms

Magne Setnes, Member, IEEE,and Robert Babǔska

Abstract—This paper comments on recent publications about
the use of orthogonal transforms to order and select rules in a fuzzy
rule base. The techniques are well known from linear algebra, and
we comment on their usefulness in fuzzy modeling. The applica-
tion of rank-revealing methods based on singular value decompo-
sition (SVD) to rule reduction gives rather conservative results.
They are essentially subset selection methods, and we show that
such methods do not produce an “importance ordering” contrary
to what has been stated in literature. The orthogonal least-squares
(OLS) method, which evaluates the contribution of the rules to the
output, is more attractive for systems modeling. However, it has
been shown to sometimes assign high importance to rules that are
correlated in the premise. This hampers the generalization capa-
bilities of the resulting model.

We discuss the performanceof rank-revealing reduction methods
and advocate the use of a less complex method based on the pivoted
QR decomposition. Further, we show how detection of redundant
rules can be introduced in OLS by a simple extension of the al-
gorithm. The methods are applied to a problem known from the
literature and compared to results reported by other researchers.

Index Terms—Fuzzy rule-based modeling, orthogonal trans-
forms, rule reduction.

I. INTRODUCTION

FUZZY MODELS describe systems by establishing rela-
tions between the relevant variables in the form ofif-then

rules that are to a certain degree transparent to interpretation
and analysis. For approximation tasks, data-driven fuzzy mod-
eling is becoming more and more popular. Most such modeling
techniques are driven by the optimization of some cost function
and do not consider the complexity and inspectability of the re-
sulting rule base [1]. Consequently, there has been a lot of focus
on methods for improving these aspects, considering various is-
sues like local rule behavior [2], statistical information criteria
[3], similarities in the rule base [4], [5], conditional clustering
[6], [7], and constrained learning [8], to mention some.

One approach that has received much attention in recent lit-
erature is the use of orthogonal transforms for ordering and
reducing the rules in a rule base [9]–[13]. Orthogonal trans-
forms are well known from statistics and linear algebra, where
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R. Babǔska is with the Systems and Control Engineering Group, Electrical
Engineering Department, Faculty of Information Technology and Systems,
Delft University of Technology, Delft, The Netherlands (e-mail: r.babuska@
its.tuldeft.nl).

Publisher Item Identifier S 1094-6977(01)07600-3.

they are typically applied to subset selection and rank-deficient
least-squares problems.

An overview of some orthogonal-based rule reduction
methods is given in [12]. All approaches assume the formulation
of the modeling exercise as a regression problem, and they can
roughly be divided into two groups: the rank revealing ones
and those that evaluate the individual contribution of the rules.
Rank-revealing methods are typically based on the determi-
nation of the effective rank of the rule firing matrix from its
singular values. In practice, this is difficult to determine, and the
methods are rather conservative with respect to rule-reduction.
Also, the claimed “importance ordering” [3], [12] of the rules
depends on this estimate and thus often makes no sense. Methods
that evaluate the output contribution of the rules to obtain an
ordering, like the orthogonal least-squares approach (OLS) [9],
[14], are more attractive for systems modeling. However, OLS
methods proposed for fuzzy models, [9], [10], do not consider
the structure of the rule base in terms of redundant (similar) and
correlated rules. Evaluating only the approximation capabilities
of the rules, the OLS method often assigns high importance to a
set of redundant or correlated rules [12]. This can result in poor
generalization capabilities of the model.

In the next section, we discuss the working of rank-revealing
reduction methods and advocate the use of the simple pivoted
QR decomposition as opposed to the calculation and inspec-
tion of the singular values of the firing matrix. The proposed
method is computationally simple and can produce a rule or-
dering without any estimate of the efficient rank. Moreover, it is
known to track the singular values of a matrix with enough pre-
cision to estimate the effective rank for subset selection [15].
In Section III, we show that detection of redundant and corre-
lated rules can be introduced in OLS-based rule selection by
a simple extension to the algorithm. Section IV considers the
problem studied in [12], and it is shown that the pivoted QR
decomposition and the extended OLS algorithm give better re-
sults than other orthogonal methods. Finally, Section V ends the
paper with some concluding remarks.

II. DATA-DRIVEN MODELING AND RULE REDUCTION

A. Fuzzy Modeling

The most commonly used model for data-driven fuzzy mod-
eling is the Takagi–Sugeno (T–S) fuzzy model [16]. It describes
local input-output (I/O) relations using fuzzy rules with con-
sequents that are usually linear combinations of the inputs or
simply constant values like

is is

(1)
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Here, is the th rule, is the vector of
inputs, is the rule output, and are fuzzy sets
defined in the antecedent space by membership functions

. is the number of rules, and the total
output of the model is computed by aggregating the individual
contributions

(2)

where is the normalized firing strength of theth rule

(3)

Given I/O data pairs , the model in (2) can be
written as a linear regression problem

(4)

where
measured outputs;
consequents of the rules;
vector of approximation errors.

The matrix contains the firing
strength of all the rules for the inputs , where

.
Typically, the identification is a two-step approach. First, the

fuzzy sets are determined and the firing matrix is cal-
culated from (3). In the second step, the rule consequents are
determined. This problem is linear in the parameters, andcan
be determined using some least-squares parameter estimation
technique [1], [2], [17].

B. Rule Selection with Rank-Revealing Methods

The least-squares solution to the overdetermined parameter
estimation problem in (4) satisfies thenormal equations

(5)

The solution is the one that minimizes the error .
Its determination requires the cross product matrix to be
invertible, in other words, the columns of must be indepen-
dent; must have rank . When is rank deficient, i.e.,
rank , there will be no unique solution to the param-
eter estimation problem. Such problems are usually solved by
means of thepseudo inverse of

(6)

The pseudo inverse of is obtained from the singular value
decomposition (SVD) of

(7)

where and are orthogonal matrices,
and is a diagonal matrix with the singular values

in decreasing order as diagonal
elements. The pseudo inverse is calculated as

(8)

where is a diagonal matrix with the reciprocals
of the nonzerosingular values as diagonal el-

ements. The number of nonzero singular valuesin the SVD
of reveals the rank of . Usually, is an estimate of the ef-

fective rank of , identified by a (relative) gap in
the singular values. The gap represents a natural point to reduce
the dimensionality of the problem by setting the singular values
below the gap to zero. Given an estimate rank , the so-
lution to (6) can be written as

(9)

where and are the th column of and , respectively.
This solution minimizes the error , where is the
closest matrix to that has rank

(10)

Here, is a diagonal matrix extracted from in
(7) by taking the first singular values as diagonal
elements. Indeed, if rank , then and

.
It was recognized in [11] that replacing with is a way

of reducing the redundancy among the underlying rules as the
redundant rules are associated with near zero singular values.
For the application to rule selection, a system should be
designed, where has rank nonzero components. The
position of the nonzero entries indetermines which columns
in are used to approximate the outputand, consequently,
which of the initial rules should remain in the reduced
rule base.

C. Rule Selection with SVD

The problem of picking the most influential columns ofis
known assubset selection[15]. An overview of subset selection
methods applied to fuzzy rule-based systems was given in [12].
The methods seek to replace in (5) with , where

consist of columns picked from . The natural way to
determine is to locate a gap in the singular values of the firing
matrix . One such approach is theSVD-QR with pivotingfirst
proposed in [18] and applied to fuzzy systems in [11]. In short,
the algorithm works as follows.

1) Calculate the SVD of as in (7) and estimate its effective
rank rank from .

2) Calculate a permutation matrix such that the columns
of the matrix in

(11)

are independentrank .
3) Approximate with , where

and minimizes .
The actual rule selection is the calculation of the permutation
matrix that extracts an independent subset of columns
from among the columns of , assumed to correspond to the
most important rules. A heuristic solution to the problem of ob-
taining is given in [15] as computing the pivoted QR decom-
position of the submatrix of singular vectors extracted
from in (7)

(12)
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where and . The pivoted QR
decomposition determines a permutation matrix such that

where is orthogonal and and form an upper
triangular matrix.

If the number of nonsmall singular values
can be properly determined, i.e., there is a well defined gap

, then the subset selection performed by
will tend to produce a subset containing

the most important columns (rules) of. However, often, the
singular values tend to decrease smoothly without any clear gap.
In such cases, is determined by counting the number of (close
to) zero singular values in the SVD of, resulting in a con-
servative rule reduction method that degenerates to a means for
detecting equal rules and rules that do not fire. To help in such
situations, it has been claimed [2], [3] that “the smaller are the
singular values, the less important are the associated rules” and
that one can use this ordering to construct a reduced fuzzy model
of any size by picking the most important rules
according to . This is different from the idea of subset selec-
tion, where a subset ofrules is extracted, and no further impor-
tance other than this classification is associated with the order in
which they are picked by the permutation matrix. The claim
that this is an importance ordering cannot be proved, and it is
far from apparent. First of all, the column pivoting strategy ap-
plied to obtain is itself a heuristic approach. It tends to work
fine in applications, but little is known in theory about its be-
havior. Moreover, the produced permutation is strongly depen-
dent on the estimate of the effective rank. If a slightly different
(e.g., lower) threshold is used to define small singular values
(resulting in e.g., ), the permutations (rule order) in

can change dramatically. This is illustrated in the example in
Section II-E.

A method that can produce a permutation order that is inde-
pendent of the estimate ofis obtained by applying the pivoted
QR decomposition directly to .

D. Pivoted QR Decomposition of the Firing Matrix

The pivoted QR (P-QR) decomposition can be applied di-
rectly to to obtain a permutation matrix and, for most practical
cases, it will reveal its rank [15] at the same time. This is com-
putationally attractive. One can skip the calculation of the SVD
and it is not necessary to give an estimate ofto obtain the per-
mutation.

The QR decomposition of is given by , where
is a permutation matrix, has or-

thonormal columns, and is upper triangular. If
has full rank, then is nonsingular (invertible). When is

(near) rank deficient, it is desirable to select the permutation ma-
trix such that the rank deficiency is exhibited in, having a
small lower right block [19]

where . It can be shown that for the first
singular value of , we have . There-

fore, if is small, then has at least small singular
values.

The QR decomposition is uniquely determined by the per-
mutation matrix , and many techniques have been proposed
to compute it. The most well known is the column pivoting
strategy [18] which in practice is very efficient in computing
a triangular factor with a small . The pivoting works
such that the norm of the first column of dominates the
norm of the other columns. The norm of this column is ,
and the pivoting strategy can be regarded as a greedy algorithm
to make the leading principal submatrices ofas well condi-
tioned as possible by maximizing their trailing diagonals. Thus,
the values on the diagonal of , called the values,
are decreasing, and they tend to track the singular values
well enough to expose gaps.

Thepivoting algorithm favors columns ofwitha large norm,
related (through orthogonalization) to the norm of the columns of

. In regular regression problems, this is not necessarily an inter-
esting observation. For a fuzzy rule base, however, the norms of
the columns of correspond to the firing strength and firing fre-
quency of the rules. Thus, P-QR picks first the most active and
least redundant of the remaining rules. This will typically corre-
spond to an ordering according to the generalizing capability of
the rules as the most active rules canbeassumed tohavehighgen-
eralizing capability, i.e., they describe large regions of the sys-
tems state space, or frequently occurring situations.

E. Example: Pivoted QR versus SVD-QR

A simple example will illustrate the effect of the estimate of
on the “rule ordering” by the SVD-QR algorithm. We also show
the ordering by the P-QR decomposition and how it tracks the
singular values.

A simple one-dimensional (1-D) fuzzy partition of three
trapezoidal fuzzy sets , and is considered. To this
partition we add the three more or less redundant sets ,
and as shown in Fig. 1(a).

An input data vector of 200 obser-
vations evenly spaced in is constructed, and the
firing matrix is calculated. Both the singular values and the

values of are plotted in Fig. 1(b), and it is seen that the
values track the singular values well. Further, we notice that
has two small (close to zero) singular values, but also a distinct
gap after three values (as could be expected with our knowledge
of the partition).

We now apply the SVD-QR algorithm several times with
varying estimates of. The results are reported in Table I to-
gether with those of the P-QR. The entriesin the table corre-
spond to the order in which the rules are picked from most
important at the top till least important at the bottom. The an-
tecedent of the rules are formed by the fuzzy sets shown
in Fig. 1(a).

According to the distribution of the singular values, two good
choices are and . However, the resulting “impor-
tance ordering” of the SVD-QR differ completely for these two
values. For , the algorithm assigns the highest importance
to the two rules defined by the fuzzy sets and of which
one is certainly redundant. In fact, the only reasonable ordering
obtained with SVD-QR is the one obtained for . The P-QR
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(a)

(b)

Fig. 1. (a) Redundant fuzzy partition of six fuzzy sets and the singular values
(�) and (b)R values(�) of the corresponding200� 6 firing matrixP.

TABLE I
RULE ORDERING BY P-QRAND SVD-QRFOR VARYING ESTIMATES OFr

(MOST IMPORTANT AT TOP)

does not need any estimate of, and it produces a reasonable
order. As for the singular values, thevalues of the P-QR de-
composition [see Fig. 1(b)] can help to determine the number
of rules to pick. Due to the robust ordering, this estimate is not
necessary, and one can use other methods like an information
criteria [3] to pick the first rules according to the permuta-
tion order produced by the pivoted QR decomposition.

As discussed above, the claimed importance ordering [2], [3]
produced by the rank-revealing SVD-QR and related methods
can be questioned. These methods have been proposed for
subset selection, and they typically require some estimate of the
efficient rank to work in a reasonable way. Also, they operate
on the information in the rule-firing matrix only. However, the
effect of the rule consequents should not always be discarded.
In systems modeling, where the measured output is often
available, a more useful rule ordering is produced by methods

like the OLS method [9], [14] which order the rules based
on their contribution to explain the variance of the data to be
approximated. This method is discussed in the following.

III. ORTHOGONAL LEAST SQUARES-BASED REDUCTION

The OLS method was first applied to fuzzy systems in [9] to
select the most important fuzzy basis functions needed to ap-
proximate a data set. The OLS method transform the columns
of the firing matrix into a set of orthogonal basis vectors in
order to inspect the individual contribution of each rule. The
Gram–Schmidt orthogonalization is used to perform the orthog-
onal decomposition , where is an orthogonal ma-
trix such that , and is an upper-triangular matrix
with unity diagonal elements. Substituting into (4),
we have , where . Since the
columns of are orthogonal, the sum of squares of
can be written as

(13)

The part of the output variance explained by the regres-
sors is . Thus, an error reduction ratio [14] due to
an individual rule can be defined as

err (14)

This ratio offers a simple means of ordering the rules, and was
used in [9] to select a subset of important rules in a forward-
regression manner.

In [12], it was concluded that the OLS method may pro-
duce an inappropriate subset of fuzzy rules. An explanation
for this was sought in the used error reduction ratio (14) as it
tries to minimize the fitting error without paying any attention
to the model structure. Thus, in the OLS algorithm applied in
[9], [10], and [12], it is possible that a rather redundant rule
is assigned a high importance because of its contribution to
the output. This problem can easily be helped by introducing
a check for when selecting the th most impor-
tant rule based on its error reduction. Here, is some nu-
merical approximation of zero, and the relation im-
plies that the corresponding column vectoris a linear com-
bination of the column vectors corresponding to the previously
selected rules [14]. An extended OLS algorithm for or-
dering the rules can now be written down that creates a vector

of rule indices where the rules are
ordered in decreasing importance.

• Step 1:Select the first vector of the orthogonal basis
For ,
set and calculate the corresponding element of
the OLS solution vector

and the error-reduction ratio

err
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where is given by the firing strength
matrix .
Find the rule with the largest error reduction ratio

err

and select the first basis vector and the first element
of the OLS solution vector

• Step 2:Select the next basis vectors .
Repeat for :
For , calculate

err

Find the remaining rule with the largest error reduction
ratio that is not redundant (see the equation shown at the
bottom of the page) and select theth basis vector and
the th element of the OLS solution vector.

For rule selection, if a predetermined number of rules
is to be selected, step two of the algorithm is ended at . It
is also possible to determine a stopping criterion based on, e.g.,
the approximation accuracy [10] or the relative contribution of
the selected rules [7].

IV. EXAMPLE

We consider the same example as in [12] to illustrate the
working of the pivoted QR decomposition and the extended
OLS algorithm.1 The system under study is a second-order non-
linear plant

(15)

1See [12] for a discussion and comparison of other methods.

TABLE II
PARAMETERS OF THEGAUSSIAN MEMBERSHIPFUNCTIONS

where

(16)

We want to approximate the nonlinear componentof the plant
(the unforced system) with a fuzzy model (1). Twelve hundred
simulated data points were generated from the plant model (15).
Starting from equilibrium state (0, 0), 1000 samples of identifi-
cation data were obtained with a random input signal uni-
formly distributed in , followed by 200 samples of
evaluation data obtained using a sinusoid input signal

. The simulated data is shown
in Fig. 2(a). The input to the fuzzy model is

, and the 25 Gaussian membership functions taken
from [12] with the parameters shown in Table II are used to par-
tition the input space as illustrated in Fig. 2(b).

(17)

Each row in Table II is associated with one of the fuzzy rules
in the rule base. The first two rows have equivalent membership
function parameters. Thus, the first two rules in the rule base will
always have nearly the same firing strengths. This implies that
there is redundancy between the two rules and removing one of
them will not significantly affect the performance of the model.

err if

err otherwise.
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(a)

(b)

Fig. 2. (a) Simulated output of the plant. (b) Positions and widths of the
Gaussian membership functions in the models input space along with the input
data.

The same holds for rules 5 and 6 as well as rules 15 and 16. The
Gaussian membership functions associated with the rules 10 and
20 are very narrow. This implies that the rules will virtually never
fire, and they can thus be removed from the rule base.

From the first 1000 input data points
, the firing strength matrix

is calculated using (3). The singular values of the matrix are
shown in Fig. 3 together with the values of the pivoted QR
decomposition. It is seen that the vlaues track the singular
values with considerable fidelity.

A. Rule Subset Selection

From inspecting the log scale plot in Fig. 3, one could con-
clude that there are anywhere from one till five relatively small
singular values. The real scale plot indicates the presence of five
near zero singular values, corresponding with our knowledge
about the rule base. We now apply the orthogonal transforma-
tion-based methods studied above to the problem. The results
are reported in Table III, which shows the order in which the
rules are picked from the rule base. The SVD-QR and the OLS
method are the same as those studied for this problem in [12]2

(a)

(b)

Fig. 3. Singular values(�) andR values(�) of the corresponding1000�25
firing matrixP. (a) Log scale. (b) Real scale.

TABLE III
ORDER IN WHICH THE RULES ARE PICKED FROM THE RULE BASE

(MOST IMPORTANT AT TOP)

while the P-QR decomposition and the extended OLS method
(E-OLS) are those proposed in this paper.

2Due to the random nature of the identification data, the rule order by
SVD-QR and OLS differs slightly from that in [12].
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Fig. 4. Performance of models with an increasing number of rules picked according to the different methods. Solid line indicates mean square error (MSE) on
training data. Dash-dotted line indicates MSE on evaluation data.

The results show that both rank-revealing methods, the P-QR
and the SVD-QR, pick as the least important rules three redun-
dant ones and the two nonfiring ones. In this case, the SVD-QR
algorithm was executed with , i.e., it was told that there
where noninfluential rules, according to the inspec-
tion of the singular values in Fig. 3. The P-QR method does not
need this information, and still produces the correct subset of
least important rules for this problem. Further, as concluded in
[12], the OLS method correctly sorts out the nonfiring rules (10
and 20) but fails to assign a low importance to one rule from
each of the three pairs of redundant rules. This deficiency is not
encountered with the E-OLS method proposed in Section III. It
produces an importance ordering that successfully detects both
the redundant as well as the nonfiring rules.

B. Rule Ordering

Wenowrepeat themodelingexerciseseveral times.According
to each of the three methods (P-QR, SVD-QR, and E-OLS)3 , we
make 20 models of increasing complexity with the rules picked
in the order reported in Table III and evaluate their performances
on fitting the training (1000 samples) and evaluation (200 sam-
ples) data. For instance, according to the P-QR method, we first
makea one-rule model consistingonlyof rule, then a two-rule

3Since the ordering produced by the E-OLS method is quite similar to that of
the OLS, only the models obtained with E-OLS are inspected in this exercise.

modelwith the rules and ,etc., untilwe havea modelof20
rules. In this exercise, when rules are picked, the cor-
responding firing matrix is formed using the training
data, and the rule consequentsare determined by solving the
resulting least-squares problem. To verify the methods, for each
model complexity, 50 models are made with
different rules drawn at random from the total set of 25 rules. The
average performance of the random models are recorded. The re-
sults are presented in Fig. 4.

In this experiment, the P-QR picks the rules such that they
have good generalizing capabilities. It obtains an error on the
evaluation data that is below that of the training data for a low
number of rules . This result supports the observation
made in Section II-D concerning the pivoting algorithm.

As expected, the E-OLS method has a good performance in
fiting the training data with a low number of rules. Unlike the
other methods, it uses information about the systems output and
tries to fit the training data as well as possible. For a low number
of rules, the E-OLS constructs models that are fitting only the
training data. However, already from seven rules on, the models
show good performance both on the training and the evaluation
data.

The worst performing of the studied methods is the SVD-QR.
As could be expected from the discussion in Section II-E, the
order in which the rules are picked bears no proof of representing
any importance order; neither with respect to fitting the training
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data, nor with respect to generalization capabilities. In fact,
Fig. 4 shows that its performance is qualitatively close to the
average random approach in which the redundant and nonfiring
rules were picked with the same probability as all the other rules.

V. CONCLUSION

We have discussed the principles and the performance of
some orthogonal transform-based rule reduction methods
proposed in the literature. These methods can be divided into
two groups: the rank-revealing ones and the ones that evaluate
the contribution of each rule to the output. A representative
of the former is the SVD-QR method which was originally
developed for subset selection [18]. It has been claimed by
researchers that the SVD-QR method can be used to order the
rules according to their importance [2], [3]. We have shown in
this paper that this is not the case. The SVD-QR behaves strictly
like a subset selection method. It only classifies the rules into
two sets of influential and noninfluential rules, respectively.
Moreover, the success of this classification strongly depends
on a correct estimate of the effective rank of the firing matrix.

We propose to use the pivoted QR decomposition for rule se-
lection. Similarly to the SVD-QR, the P-QR method can be used
as a subset selection method. We have shown that it can track
the singular values in the firing matrix well enough to make
an estimate of the effective rank without calculating the SVD of

. For rule ordering, the method produces a permutation matrix
directly from the firing matrix, and the order in which the rules
are picked is not dependent on any estimate of the rank. More-
over, in the studied experiments, this order proved to pick the
rules according to their generalizing capabilities while filtering
out redundant ones. Finally, it is also computationally less ex-
pensive. Thus, when applying rank-revealing methods to select
rules according to their ordering as proposed in [2] and [3], the
P-QR method is preferable to the SVD-QR and related methods.

The rank-revealing methods consider the partitioning of the
input space by the rule antecedents and the influence of the rule
consequents is discarded. In systems modeling, when measured
output data are available, a more effective and transparent rule
ordering is produced by the OLS method [9], [14]. It was con-
cluded in [12] that the OLS does not make any considerations
about the structure of the rule base, and sometimes it assigns
a high importance to redundant rules. In Section III, we have
presented a simple extension to the algorithm that detects rule
redundancy. When repeating the experiments from [12], it was
shown that the E-OLS method effectively filtered out the redun-
dant rules, making it more applicable to rule selection than the
standard OLS method.
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