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Abstract 
 

Identification of fuzzy rules is an important issue in 
designing of a fuzzy neural network (FNN). However, 
there is no systematic design procedure at present. In 
this paper we present a genetic algorithm (GA) based 
learning algorithm to make use of the known member-
ship function to identify the fuzzy rules form a large set 
of all possible rules. The proposed learning algorithm 
initially considers all possible rules then uses the 
training data and the fitness function to perform rule-
selection. The proposed GA based learning algorithm 
has been tested with two different sets of training data. 
The results obtained from the experiments are promis-
ing and demonstrate that the proposed GA based 
learning algorithm can provide a reliable mechanism 
for fuzzy rule selection. 
 
1. Introduction 

 
Fuzzy neural networks are hybrid intelligent sys-

tems, which combine the advantages of both neural 
networks and fuzzy logic. The neural fuzzy system is a 
fuzzy system that uses the learning ability of the neural 
networks to determine its parameters (fuzzy sets, fuzzy 
memberships and fuzzy rules) by processing data [1]. 
An important topic in designing of a fuzzy neural net-
work is the identification of the fuzzy rules. However, 
there is no systematic design procedure at present [2]. 
The recent research direction in the identification of 
the fuzzy rules in fuzzy neural networks is to learn and 
modify the rules from past experience. Currently, dif-
ferent approaches are used to identify the fuzzy rules 
in the fuzzy neural networks. Quek and Zhou [3] have 
classified these rule identification approaches into 
three categories. First category of approaches uses 
linguistic information from experts to identify fuzzy 
rules [4]. Although this approach converges faster dur-
ing training and performs better, it is rather subjective 
since linguistic information from experts may vary 

from person to person, and from time to time. The sec-
ond category of approaches uses unsupervised learning 
algorithms to identify fuzzy rules in the fuzzy neural 
networks prior to the application of neural network 
techniques to adjust the rules [5, 6]. In this approach 
the training data is the only source of information so it 
must be representative, otherwise, the derived fuzzy 
rules will be ill defined. The third group of  approaches 
is using supervised leaning algorithm (particularly the 
Backpropagation technique) to identify the fuzzy rules 
in the fuzzy neural networks[7]. In this approach the 
fuzzy neural network appears as black box at the end 
of the training process. 

This paper presents a genetic learning algorithm to 
make use of the known membership function to iden-
tify the fuzzy rules. The proposed learning algorithm 
belongs to the second approach for rule identification 
in fuzzy neural network. The preliminary work on the 
GA-based learning algorithm was presented in our 
previous work [8]. This paper extends this idea further 
by incorporating a weight parameter to trade-off be-
tween the number of fuzzy rules and overall error. In 
this paper we have used GA to make use of the known 
membership function to identify the fuzzy rules using 
similar fuzzy neural network structure discussed in [2]. 
The proposed genetic algorithm differs form existing 
algorithms such as [5, 6], in terms of being simple, fast 
and flexible to control the process of identification of 
the fuzzy rules based on the error level. 

Several authors have proposed a genetic algorithm 
for fuzzy neural parameters optimization to adjust the 
control points of membership functions or to tune the 
weightings [9-14]. The pioneer was Karr[9] , who used 
GAs to adjust membership functions. Ishibuchi et 
al.[10] proposed a genetic- based method for selecting 
a small number of significant fuzzy rules to construct a 
compact fuzzy classification system with high classifi-
cation power. Ishibuchi and Yamamoto farther  devel-
oped this idea by using mult-objective genetic local 
search algorithms in [13]. Wang et al. [11] have pro-
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Figure 1. Structure of the fuzzy neural tool (FNN_Tool) 
 

posed a simplified genetic algorithm to adjust both 
control points of B-spline membership functions and 
weights of fuzzy-neural networks. The proposed algo-
rithm uses sequential-search-based crossover point 
method in which a better crossover point is determined 
and only the gene at the specified crossover point is 
crossed as a single point crossover operation. Lin [14] 
has proposed a hybrid learning algorithm for parame-
ters learning. He has used GA to tune membership 
functions at the precondition part of fuzzy rules, while 
the least-squares estimate method has been used to 
tune parameters at the consequent part. Wang et al. 
[12] have proposed GA-based approach for a feedback 
direct adaptive fuzzy-neural controller to tune the 
online weighting factors. Specifically, they have used a 
reduced-form genetic algorithm (RGA) to adjust the 
weightings of the fuzzy-neural network. 

 The paper is organized as follows. The next section 
describes the structure of the GA-FNN. Section 3 dis-
cusses the proposed GA-based Learning Algorithm. 
The performance of the proposed GA-based learning 
algorithm is tested in Section 4. The conclusions and 
future works of this paper are given in Section 5. 

 
2. The  GA-FNN Structure 
 

In this section, we describe the structure and func-
tion of the proposed GA-FNN model. The structure of 
the fuzzy neural network model used in this paper is 
similar to the structure proposed in [2]. It is a five-
layer structure, as shown in Figure 1, where each layer 
performs an operation for building the fuzzy system. 
The process of each layer is described below (see Fig-
ure 1):  

Layer 1: is the input layer. Nodes at this layer rep-
resent input linguistic variable and directly transmit 

non-fuzzy input values to the next layer. The input and 
the output of this layer are given as follows: 

  

)1()1(
ii io =  (1) 

 

where  )1(
ii   is the input and )1(

io  is the output of input 
neuron i  in layer 1. 

Layer 2: is the fuzzification layer, which defines 
the fuzzy sets and membership for each of the input 
factors. Nodes in this layer acts as a membership func-
tion and represents the terms of the respective linguis-
tic variable. In our model the neurons of this layer are 
modeled as a common bell-shaped membership func-
tion [15], so the input  )2(

, jii  and the output )2(
, jio  of 

fuzzification node i   at the layer 2 are given as fol-
lows: 
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where jim ,  and ji ,σ  are the centres and the widths of 

the membership function for the input-label neuron 

jiLI ,  respectively. 

Layer 3: is the fuzzy rule layer, which defines all 
possible fuzzy rules to specify qualitatively how the 
output parameter is determined for various instances of 
the input parameters. Each node in this layer represents 
a fuzzy rule. The input and the output of a rule node at 
the layer 3 are given as follows: 

 

)( )3()3( min kii xy =  (3) 
 

where  )3(
kix  are the inputs, and  )3(

iy  is the output of 
fuzzy rule i  in the layer 3 

290290



 

 

Layer 4: is the consequence layer (or the output 
membership layer). Neurons in the consequence layer 
represent fuzzy sets used in the consequent part of the 
fuzzy rules. The input and the output of a consequence 
node in the layer 4 are given as follows: 

 

),1(min )4(
,

)4(
illi xy Σ=  (4) 

 

where )4(
,ilx is the input (the output of neuron l  in the 

fuzzy rule layer), and )4(
iy is the output of membership 

neuron i  in the layer 4. 
Layer 5: is the output layer (or the defuzzification 

layer). Each node at the output layer represents a single 
output variable. The input and the output of an output 
neuron in layer 5 are given as follows: 
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where )5(
ix   is the input and )5(

iy  is the output neuron i  

in layer 5, cia  and cib  are the centre and the width of 
the fuzzy set respectively.  

Due to the fact that the training data set is the only 
source of information in most cases, the learning proc-
ess of the proposed GA-FNN completely relies on 
training data. We proposed the learning process con-
sisting of three stages. First stage is initializing the 
membership functions of both input and output vari-
ables by determining their centres and widths. To per-
form this stage, we have employed a self-organizing 
algorithm [6] as in other works [2, 5, 16]. A proposed 
GA based learning algorithm is performed in the sec-
ond stage to identify the fuzzy rules that are supported 
by the set of training data. In the last stage, the derived 
structure and parameters are fine tuned by using the 
back-propagation learning algorithm [15]. The remain-
der of this paper focuses on only the second stage, 
which is using GA to identify the fuzzy rules needed 
for constructing the fuzzy neural network. 

 
3. The proposed GA-based Learning Algo-
rithm 
 

Most existing fuzzy neural networks use self-
organizing algorithm to identify fuzzy rules, like [6]. 
However, in most integrated fuzzy neural networks, 
where the membership functions are determined prior 
to the identification of fuzzy rules, self-organizing or 
competitive learning becomes redundant, because the 

boundary of  the clusters in the input and output spaces 
have already been predefined [2]. To avoid this redun-
dancy of using self-organizing algorithms to determine 
the fuzzy parameters, some authors such as Lin and 
Lee [5] have used  the known membership functions to 
find the fuzzy rules, where competitive learning is em-
ployed to identify the fuzzy rules. In Lin and Lee 
work, all the possible fuzzy rules must be listed prior 
to the initiation of competitive learning. After competi-
tive learning, the link with the largest weight is se-
lected and the consequence it connects to is subse-
quently held as the real consequence of the rule. Al-
though this method shows satisfactory result with lim-
ited number of rules, it involves iterative training be-
fore the system comes to a stable state, because at least 
50% of all possible fuzzy rules are useless. In this pa-
per we have proposed a genetic learning algorithm to 
make use of the known membership function to iden-
tify only the relevant fuzzy rules. 

  

 
 

Figure 2. FNN of two inputs variable and one output 
variable for all possible fuzzy rules 

 
To explain how we have designed a GA for identi-

fying fuzzy rules, consider a simple example of FNN 
with two input linguistic variables 1x and 2x , and 
one output linguistic variable y as shown in Figure 2. 
After performing the self-organization learning algo-
rithm (first stage of learning), each linguistic variable 
has a number of fuzzy sets, say we have three fuzzy 
sets. Then the proposed genetic learning algorithm 
considers all possible rules. In our simple example 
there are a total of twenty seven possible rules. In fact 
these rules are made of nine possible antecedents (pre-
conditions). These antecedents of fuzzy rules are rep-
resented by neurons R1 … R9 of the Fuzzy-Rules Layer 
in Figure 2. Each antecedent has links with three pos-
sible decision fuzzy sets (neurons in Consequence 
Layer: Low(L), Medium(M) and High(H)). For exam-
ple, the three possible fuzzy rules associated with neu-
ron R1 are: 

If x1 is L and x2 is L, then y is L. 
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If x1 is L and x2 is L, then y is M. 
If x1 is L and x2 is L, then y is H. 
 

A number of decisions must be made in order to 
implement the GA for identifying appropriate fuzzy 
rules. There are problem specific decisions which are 
concerned with the search space (and thus the repre-
sentation) and the form of the fitness function. The 
following steps are employed to identify appropriate 
fuzzy rules by the GA.  

Step 1: Initialization: the first and most important 
step in the implementation of the GA technique is en-
coding of the problem using an appropriate representa-
tion. The encoding used to represent chromosomes 
(solutions) defines the size and the structure of the 
search space. Here we propose integer strings as chro-
mosomes to represent candidate solutions of the prob-
lem. The string is given by  t1,t2,...,ti,...,tN, where ti  is  
an  integer  0 ≤ ti ≤ M which  indicates  the link of neu-
ron Ri (i.e. neurons in Fuzzy-Rules Layer) with output 
neurons (i.e., neurons in Consequence Layer). N is the 
number of neurons in the Fuzzy-Rules Layer and M is 
the number of neurons in the Consequence Layer. For 
our example, the chromosome has nine integers, and 0 
≤ ti ≤3. ti = 0 indicates there is no link of Ri with out-
put neuron; ti =  1 indicates that there is a link with ‘L’ 
neuron in consequence Layer and so on. When ti = 0, 
this means that Ri has no relation to that particular out-
put variables. Hence, that rule and all the correspond-
ing links in this case can be deleted without affecting 
the outputs.   

Step 2. Fitness function: in this step the goodness of 
every chromosome is evaluated by using a fitness 
function. The fitness function can be any nonlinear, 
nondifferentiable, or discontinuous positive function, 
because the GA only needs a fitness value assigned to 
each chromosome. In this paper, we use a set of train-
ing data to calculate the fitness of each chromosome 
based on the following fitness function: 

 

FIT(i) 
)(_

1
iERRORRMS

=  (7) 
 

where RMS_ERROR(i) represents the root-mean-
square error between the fuzzy-neural network outputs 
and the desired outputs for the ith string. The GA aims 
to maximize the fitness function (7) to minimize the 
error value (e). This error value is depended on the 
selected fuzzy rules (by the GA chromosome) and rule 
weightings. The proposed GA chromosome represents 
a set of fuzzy rules with ti≠ 0 for inclusion and a set of 
fuzzy rules with ti =0 for ignoring. The weight for all 
rules assumed to be 1 at this stage. However, our ex-
periment showed that the inclusions of some these 

rules (ti =0) with low weightings can still improve the 
error value. 

In order to correctly identify the minimum number 
of the appropriate fuzzy rules without ignoring any 
relevant rule that might improve the error value, the 
fitness value of a chromosome is calculated in two 
stages: Firstly, a chromosome is evaluated as given by 
GA (fit_1). I.e. the fitness of the chromosome is calcu-
lated with considering all rules represented by ti ≠ 0 
(taking weight 1), and rules represented by are ig-
nored. Secondly, for each rule (Ri) represented by ti 
=0, the fitness of the chromosome is calculated again 
with considering a low weight LW (e.g. 0.01) for each 
possible rule associated with that rule (Ri) (in our ex-
ample there are three possible rules) and then the best 
one is selected (fit_2). Then these two fitness values 
(fit_1, fit_2) are compared and the best fitness value is 
taken. The chromosome is adjusted if the second fit-
ness (fit_2) appeared to be the better one.  

Step 3. GA operators: Based on our previous ex-
perience with GA and a number of experiments we 
have selected GA operators and their parameters to be 
used for this application. The GA operators used are 
steady state replacement approach[17] , tournament 
selection [18], standard two-point crossover and a 
higher mutation probability. The steady state approach 
directly inserts a new solution into the population pool 
replacing a less fit solution. The tournament selection 
method picks a subset of solutions at random from the 
population to form a tournament selection pool, from 
which two solutions are selected with probability 
based upon the fitness values of the solutions. The 
two-point crossover operator splits the selected solu-
tions at two randomly chosen positions and exchanges 
the centre sections with probability a crossover prob-
ability. The mutation operator changes the integer at 
each position in the solution within the allowed range 
with a defined mutation probability. We use a higher 
mutation priority in our case because the diversity in 
the population is not driven by recombination. The 
elitist approach, which ensures that the best solution in 
the population pool is always retained, has been ap-
plied. The initial population of chromosomes is created 
randomly. The stopping criterion for a GA run is to 
achieve the pre-specified error level (e).  

When the GA learning process has completed (i.e. 
when pre-specified error level is achieved) after run-
ning the GA over a large number of runs, we choose 
the best GA chromosome. This best chromosome is 
decoded to get the structure of the FNN by keeping 
only the rules that are indicated by the chromosome. 
Then the error level (e) can be improved by using the 
back-propagation learning algorithm to fine tune the 
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rules weights. By doing so, we only train the FNN with 
the relevant fuzzy rules only. 
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 Figure 3. Performance graph for 100 generation of 20 
chromosomes. 

 
4. Experiments and Comparison 
 

In this section, the performance of the proposed 
GA-based learning algorithm is tested with two differ-
ent sets of training data.  
Experiment 1: 
In this Experiment, a set of training data consists of 
more than thousand data samples which are generated 
from 27 rules, some of them listed below: 
If x1 is low and x2 is low and x3 is low then y is very low; 
If x1 is low and x2 is medium and x3 is medium then y is low; 
If x1 is medium and x2 is high and x3 is high then y is high; 
If x1 is high and x2 is high and x3 is high then y is very high; 

The weight of all rules set to unity (i.e. wi = 1).  
 From the rules above, it can be observed that there 

are three inputs and one output linguistic variables. For 
each input linguistic variable, its term set is defined as 
{low, medium, high}, while the output linguistic vari-
able term set is defined as { very low, low, medium, 
high, very high}. Therefore, there are a total of 135 
possible rules, and the resulting FNN consists of three 
linguistic nodes, nine input-label nodes (three for each 
linguistic node), twenty seven initial rule nodes, five 
output-label nodes, and one output node. After the 
self-organized learning to find the membership func-
tion for each input-label (output-label) node, the pro-
posed genetic learning algorithm is employed to iden-
tify the fuzzy rules. Because of the fact that the weight 
of all rules used to generate the training data was unity, 
the weight for rules to be ignored used in the calcula-
tion of the fitness in the second stage with low weight 
(LW), as discussed in perfuse section,  does not affect 
the result. In other words, we did not have to use the-
second stage of fitness calculation. After a number of 
runs, the result shows that the proposed learning algo-
rithm is able to correctly identify all the relevant fuzzy 
rules with error level equals zero. Figure 3 presents an 
average performance graph of 20 experiments created 
by 100 generations of 20 chromosomes. 
Experiment 2: 

In the second experiment, we use a similar set of 
training data which consists of more than thousand 
data samples, but in this experiment the rules have 
different weights (i.e. wi = n, where 0 ≤  n ≤1 ).  

After the self-organized learning to find the mem-
bership function for each input-label (output-label) 
node, the proposed genetic learning algorithm is em-
ployed to identify the fuzzy rules. In this case, due to 
the fact that some rules used in generating the training 
data may have a low weight (LW) (e.g. 0.1), the weight 
for rules to be ignored should be set for two stage fit-
ness calculations. After a number of runs, the result 
shows that the number of rules identified by the algo-
rithm and the error level (e) is affected by the value of 
LW.  Table I shows the relationship between LW and 
the number of generated rules and the error level (e), 
created by 100 generations of 20 chromosomes.  

From Table I, it is clear that, any increase of the 
value of LW results a decrease of the number of rele-
vant rules identified by the algorithm and also results 
an increase of the value of the error level (e). The ex-
planation of these observations is that when the value 
of LW is large the possibility of ignoring some relevant 
rules with low weight is high, which affects negatively 
on the level error. For example, when the value of LW 
was 0.9 the number of relevant rules was 18 (9 ignored 
rules) and the error level was 0.2375, while the value 
of LW was 0.1, the number of relevant rules identified 
is 27 (i.e. all rules considered) and the error level de-
creased to 0.0760. 

 
Table 1. The effect of LW on the number of rules and 
the error level 

LW Number of Rules e 

0.9 15 0.2105 
0.7 19 0.1975 
0.5 21 0.1358 
0.3 25 0.0902 
0.1 27 0.0760 

 
It is usually the case that a low value of LW pro-

duces a better error value as this allows to consider a 
large number of rules. In this example, where we have 
a limited number of rules (i.e. 27), we can consider all 
rules by setting a low value of LW to get a minimum 
error level. However, for a case with a very large num-
ber of possible rules (which are impossible to con-
sider), it is important to limit the number of rules for 
consideration by setting an appropriate value of LW to 
obtain an acceptable error level. For example, if we 
have a problem with a large number of rules (large 
number of inputs and outputs), and there are two val-
ues of LW lw1,lw2 (lw1<lw2). If lw1 results a number 
of rules N and a level error e, and  lw2  results a de-
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crease of N by 30% and an increase of e by only 0.1%. 
In this case possibly we set LW to lw2. 

Also, in order to evaluate the effectiveness of appli-
cation of the proposed genetic learning algorithm in 
FNN, we have employed the proposed GA-learning 
algorithm in GA-FNN to a real world case study of 
road traffic management. The results obtained from the 
case study are promising and demonstrate that the pro-
posed GA based learning algorithm can provide a reli-
able mechanism for fuzzy rule selection. The results of 
this case study have been presented and discussed in 
[8]. 
 
5. Conclusion and Future Work 
 

This paper has described a GA based learning algo-
rithm to identify the fuzzy rules for FNNs. The pro-
posed algorithm makes use of the known membership 
functions to identify only the relevant fuzzy rules. Ini-
tially, it has considered all possible rules and then used 
the training data and the fitness function to select a 
limited number of the relevant fuzzy rules by introduc-
ing a weight parameter to trade-off between number of 
rules and error value. In order to test the capabilities of 
the proposed GA-based learning algorithm for correct 
identification of all the relevant fuzzy rules, it has been 
tested with two different sets of training data. The re-
sults of the proposed GA-based learning algorithm 
demonstrate its capabilities and merits in term of iden-
tification of the fuzzy rules fast and correctly. Further 
experiments on its application to a case study of road 
traffic management, which have been reported else-
where, also show the effectiveness of the proposed 
algorithm in FNN.  

Currently we have demonstrated the technical feasi-
bility of the proposed GA-learning algorithm to iden-
tify fuzzy rules, in which all possible rules were used 
to select the relevant rules. In the next stage we will 
investigate the possibility of developing the proposed 
learning algorithm to start with a limited number of 
relevant rules and then the learning process will be 
increased (or decreased) to that number rules instead of 
considering all possible rules.   
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