
GA-Based Learning Algorithms to Identify Fuzzy Rules
for Fuzzy Neural Networks

K Almejalli, K Dahal, Member IEEE, and A Hossain, Member IEEE
School of Informatics, University of Bradford, Bradford BD7 1DP, UK

{K.A.Al-mejalli; K.P.dahal; M.A.Hossain1}@Bradford.ac.uk

Abstract

Identification of fuzzy rules is an important issue in
designing of a fuzzy neural network (FNN). However,
there is no systematic design procedure at present. In
this paper we present a genetic algorithm (GA) based
learning algorithm to make use of the known member-
ship function to identify the fuzzy rules form a large set
of all possible rules. The proposed learning algorithm
initially considers all possible rules then uses the
training data and the fitness function to perform rule-
selection. The proposed GA based learning algorithm
has been tested with two different sets of training data.
The results obtained from the experiments are promis-
ing and demonstrate that the proposed GA based
learning algorithm can provide a reliable mechanism
for fuzzy rule selection.

1. Introduction

Fuzzy neural networks are hybrid intelligent sys-

tems, which combine the advantages of both neural
networks and fuzzy logic. The neural fuzzy system is a
fuzzy system that uses the learning ability of the neural
networks to determine its parameters (fuzzy sets, fuzzy
memberships and fuzzy rules) by processing data [1].
An important topic in designing of a fuzzy neural net-
work is the identification of the fuzzy rules. However,
there is no systematic design procedure at present [2].
The recent research direction in the identification of
the fuzzy rules in fuzzy neural networks is to learn and
modify the rules from past experience. Currently, dif-
ferent approaches are used to identify the fuzzy rules
in the fuzzy neural networks. Quek and Zhou [3] have
classified these rule identification approaches into
three categories. First category of approaches uses
linguistic information from experts to identify fuzzy
rules [4]. Although this approach converges faster dur-
ing training and performs better, it is rather subjective
since linguistic information from experts may vary

from person to person, and from time to time. The sec-
ond category of approaches uses unsupervised learning
algorithms to identify fuzzy rules in the fuzzy neural
networks prior to the application of neural network
techniques to adjust the rules [5, 6]. In this approach
the training data is the only source of information so it
must be representative, otherwise, the derived fuzzy
rules will be ill defined. The third group of approaches
is using supervised leaning algorithm (particularly the
Backpropagation technique) to identify the fuzzy rules
in the fuzzy neural networks[7]. In this approach the
fuzzy neural network appears as black box at the end
of the training process.

This paper presents a genetic learning algorithm to
make use of the known membership function to iden-
tify the fuzzy rules. The proposed learning algorithm
belongs to the second approach for rule identification
in fuzzy neural network. The preliminary work on the
GA-based learning algorithm was presented in our
previous work [8]. This paper extends this idea further
by incorporating a weight parameter to trade-off be-
tween the number of fuzzy rules and overall error. In
this paper we have used GA to make use of the known
membership function to identify the fuzzy rules using
similar fuzzy neural network structure discussed in [2].
The proposed genetic algorithm differs form existing
algorithms such as [5, 6], in terms of being simple, fast
and flexible to control the process of identification of
the fuzzy rules based on the error level.

Several authors have proposed a genetic algorithm
for fuzzy neural parameters optimization to adjust the
control points of membership functions or to tune the
weightings [9-14]. The pioneer was Karr[9] , who used
GAs to adjust membership functions. Ishibuchi et
al.[10] proposed a genetic- based method for selecting
a small number of significant fuzzy rules to construct a
compact fuzzy classification system with high classifi-
cation power. Ishibuchi and Yamamoto farther devel-
oped this idea by using mult-objective genetic local
search algorithms in [13]. Wang et al. [11] have pro-

Seventh International Conference on Intelligent Systems Design and Applications

0-7695-2976-3/07 $25.00 © 2007 IEEE
DOI 10.1109/ISDA.2007.10

289

Seventh International Conference on Intelligent Systems Design and Applications

0-7695-2976-3/07 $25.00 © 2007 IEEE
DOI 10.1109/ISDA.2007.10

289

Figure 1. Structure of the fuzzy neural tool (FNN_Tool)

posed a simplified genetic algorithm to adjust both
control points of B-spline membership functions and
weights of fuzzy-neural networks. The proposed algo-
rithm uses sequential-search-based crossover point
method in which a better crossover point is determined
and only the gene at the specified crossover point is
crossed as a single point crossover operation. Lin [14]
has proposed a hybrid learning algorithm for parame-
ters learning. He has used GA to tune membership
functions at the precondition part of fuzzy rules, while
the least-squares estimate method has been used to
tune parameters at the consequent part. Wang et al.
[12] have proposed GA-based approach for a feedback
direct adaptive fuzzy-neural controller to tune the
online weighting factors. Specifically, they have used a
reduced-form genetic algorithm (RGA) to adjust the
weightings of the fuzzy-neural network.

 The paper is organized as follows. The next section
describes the structure of the GA-FNN. Section 3 dis-
cusses the proposed GA-based Learning Algorithm.
The performance of the proposed GA-based learning
algorithm is tested in Section 4. The conclusions and
future works of this paper are given in Section 5.

2. The GA-FNN Structure

In this section, we describe the structure and func-
tion of the proposed GA-FNN model. The structure of
the fuzzy neural network model used in this paper is
similar to the structure proposed in [2]. It is a five-
layer structure, as shown in Figure 1, where each layer
performs an operation for building the fuzzy system.
The process of each layer is described below (see Fig-
ure 1):

Layer 1: is the input layer. Nodes at this layer rep-
resent input linguistic variable and directly transmit

non-fuzzy input values to the next layer. The input and
the output of this layer are given as follows:

)1()1(
ii io = (1)

where)1(
ii is the input and)1(

io is the output of input
neuron i in layer 1.

Layer 2: is the fuzzification layer, which defines
the fuzzy sets and membership for each of the input
factors. Nodes in this layer acts as a membership func-
tion and represents the terms of the respective linguis-
tic variable. In our model the neurons of this layer are
modeled as a common bell-shaped membership func-
tion [15], so the input)2(

, jii and the output)2(
, jio of

fuzzification node i at the layer 2 are given as fol-
lows:

ji

jiji mi

ji eo ,

2
,

)2(
,)(

)2(
,

σ
−

−

= (2)

where jim , and ji ,σ are the centres and the widths of

the membership function for the input-label neuron

jiLI , respectively.

Layer 3: is the fuzzy rule layer, which defines all
possible fuzzy rules to specify qualitatively how the
output parameter is determined for various instances of
the input parameters. Each node in this layer represents
a fuzzy rule. The input and the output of a rule node at
the layer 3 are given as follows:

)()3()3(min kii xy = (3)

where)3(
kix are the inputs, and)3(

iy is the output of
fuzzy rule i in the layer 3

290290

Layer 4: is the consequence layer (or the output
membership layer). Neurons in the consequence layer
represent fuzzy sets used in the consequent part of the
fuzzy rules. The input and the output of a consequence
node in the layer 4 are given as follows:

),1(min)4(
,

)4(
illi xy Σ= (4)

where)4(
,ilx is the input (the output of neuron l in the

fuzzy rule layer), and)4(
iy is the output of membership

neuron i in the layer 4.
Layer 5: is the output layer (or the defuzzification

layer). Each node at the output layer represents a single
output variable. The input and the output of an output
neuron in layer 5 are given as follows:

())4()5(/ icicii ybax ×∑= (5)

)/()4(

1

)5(
)5(

ciii

i
i

by

xy

=
Σ

=
(6)

where)5(
ix is the input and)5(

iy is the output neuron i

in layer 5, cia and cib are the centre and the width of
the fuzzy set respectively.

Due to the fact that the training data set is the only
source of information in most cases, the learning proc-
ess of the proposed GA-FNN completely relies on
training data. We proposed the learning process con-
sisting of three stages. First stage is initializing the
membership functions of both input and output vari-
ables by determining their centres and widths. To per-
form this stage, we have employed a self-organizing
algorithm [6] as in other works [2, 5, 16]. A proposed
GA based learning algorithm is performed in the sec-
ond stage to identify the fuzzy rules that are supported
by the set of training data. In the last stage, the derived
structure and parameters are fine tuned by using the
back-propagation learning algorithm [15]. The remain-
der of this paper focuses on only the second stage,
which is using GA to identify the fuzzy rules needed
for constructing the fuzzy neural network.

3. The proposed GA-based Learning Algo-
rithm

Most existing fuzzy neural networks use self-
organizing algorithm to identify fuzzy rules, like [6].
However, in most integrated fuzzy neural networks,
where the membership functions are determined prior
to the identification of fuzzy rules, self-organizing or
competitive learning becomes redundant, because the

boundary of the clusters in the input and output spaces
have already been predefined [2]. To avoid this redun-
dancy of using self-organizing algorithms to determine
the fuzzy parameters, some authors such as Lin and
Lee [5] have used the known membership functions to
find the fuzzy rules, where competitive learning is em-
ployed to identify the fuzzy rules. In Lin and Lee
work, all the possible fuzzy rules must be listed prior
to the initiation of competitive learning. After competi-
tive learning, the link with the largest weight is se-
lected and the consequence it connects to is subse-
quently held as the real consequence of the rule. Al-
though this method shows satisfactory result with lim-
ited number of rules, it involves iterative training be-
fore the system comes to a stable state, because at least
50% of all possible fuzzy rules are useless. In this pa-
per we have proposed a genetic learning algorithm to
make use of the known membership function to iden-
tify only the relevant fuzzy rules.

Figure 2. FNN of two inputs variable and one output
variable for all possible fuzzy rules

To explain how we have designed a GA for identi-

fying fuzzy rules, consider a simple example of FNN
with two input linguistic variables 1x and 2x , and
one output linguistic variable y as shown in Figure 2.
After performing the self-organization learning algo-
rithm (first stage of learning), each linguistic variable
has a number of fuzzy sets, say we have three fuzzy
sets. Then the proposed genetic learning algorithm
considers all possible rules. In our simple example
there are a total of twenty seven possible rules. In fact
these rules are made of nine possible antecedents (pre-
conditions). These antecedents of fuzzy rules are rep-
resented by neurons R1 … R9 of the Fuzzy-Rules Layer
in Figure 2. Each antecedent has links with three pos-
sible decision fuzzy sets (neurons in Consequence
Layer: Low(L), Medium(M) and High(H)). For exam-
ple, the three possible fuzzy rules associated with neu-
ron R1 are:

If x1 is L and x2 is L, then y is L.

291291

If x1 is L and x2 is L, then y is M.
If x1 is L and x2 is L, then y is H.

A number of decisions must be made in order to
implement the GA for identifying appropriate fuzzy
rules. There are problem specific decisions which are
concerned with the search space (and thus the repre-
sentation) and the form of the fitness function. The
following steps are employed to identify appropriate
fuzzy rules by the GA.

Step 1: Initialization: the first and most important
step in the implementation of the GA technique is en-
coding of the problem using an appropriate representa-
tion. The encoding used to represent chromosomes
(solutions) defines the size and the structure of the
search space. Here we propose integer strings as chro-
mosomes to represent candidate solutions of the prob-
lem. The string is given by t1,t2,...,ti,...,tN, where ti is
an integer 0 ≤ ti ≤ M which indicates the link of neu-
ron Ri (i.e. neurons in Fuzzy-Rules Layer) with output
neurons (i.e., neurons in Consequence Layer). N is the
number of neurons in the Fuzzy-Rules Layer and M is
the number of neurons in the Consequence Layer. For
our example, the chromosome has nine integers, and 0
≤ ti ≤3. ti = 0 indicates there is no link of Ri with out-
put neuron; ti = 1 indicates that there is a link with ‘L’
neuron in consequence Layer and so on. When ti = 0,
this means that Ri has no relation to that particular out-
put variables. Hence, that rule and all the correspond-
ing links in this case can be deleted without affecting
the outputs.

Step 2. Fitness function: in this step the goodness of
every chromosome is evaluated by using a fitness
function. The fitness function can be any nonlinear,
nondifferentiable, or discontinuous positive function,
because the GA only needs a fitness value assigned to
each chromosome. In this paper, we use a set of train-
ing data to calculate the fitness of each chromosome
based on the following fitness function:

FIT(i)
)(_

1
iERRORRMS

= (7)

where RMS_ERROR(i) represents the root-mean-
square error between the fuzzy-neural network outputs
and the desired outputs for the ith string. The GA aims
to maximize the fitness function (7) to minimize the
error value (e). This error value is depended on the
selected fuzzy rules (by the GA chromosome) and rule
weightings. The proposed GA chromosome represents
a set of fuzzy rules with ti≠ 0 for inclusion and a set of
fuzzy rules with ti =0 for ignoring. The weight for all
rules assumed to be 1 at this stage. However, our ex-
periment showed that the inclusions of some these

rules (ti =0) with low weightings can still improve the
error value.

In order to correctly identify the minimum number
of the appropriate fuzzy rules without ignoring any
relevant rule that might improve the error value, the
fitness value of a chromosome is calculated in two
stages: Firstly, a chromosome is evaluated as given by
GA (fit_1). I.e. the fitness of the chromosome is calcu-
lated with considering all rules represented by ti ≠ 0
(taking weight 1), and rules represented by are ig-
nored. Secondly, for each rule (Ri) represented by ti
=0, the fitness of the chromosome is calculated again
with considering a low weight LW (e.g. 0.01) for each
possible rule associated with that rule (Ri) (in our ex-
ample there are three possible rules) and then the best
one is selected (fit_2). Then these two fitness values
(fit_1, fit_2) are compared and the best fitness value is
taken. The chromosome is adjusted if the second fit-
ness (fit_2) appeared to be the better one.

Step 3. GA operators: Based on our previous ex-
perience with GA and a number of experiments we
have selected GA operators and their parameters to be
used for this application. The GA operators used are
steady state replacement approach[17] , tournament
selection [18], standard two-point crossover and a
higher mutation probability. The steady state approach
directly inserts a new solution into the population pool
replacing a less fit solution. The tournament selection
method picks a subset of solutions at random from the
population to form a tournament selection pool, from
which two solutions are selected with probability
based upon the fitness values of the solutions. The
two-point crossover operator splits the selected solu-
tions at two randomly chosen positions and exchanges
the centre sections with probability a crossover prob-
ability. The mutation operator changes the integer at
each position in the solution within the allowed range
with a defined mutation probability. We use a higher
mutation priority in our case because the diversity in
the population is not driven by recombination. The
elitist approach, which ensures that the best solution in
the population pool is always retained, has been ap-
plied. The initial population of chromosomes is created
randomly. The stopping criterion for a GA run is to
achieve the pre-specified error level (e).

When the GA learning process has completed (i.e.
when pre-specified error level is achieved) after run-
ning the GA over a large number of runs, we choose
the best GA chromosome. This best chromosome is
decoded to get the structure of the FNN by keeping
only the rules that are indicated by the chromosome.
Then the error level (e) can be improved by using the
back-propagation learning algorithm to fine tune the

292292

rules weights. By doing so, we only train the FNN with
the relevant fuzzy rules only.

0

0.05

0.1

0.15

0.2

0.25

0.3

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Generations

E
rr

or

Best
Average

 Figure 3. Performance graph for 100 generation of 20
chromosomes.

4. Experiments and Comparison

In this section, the performance of the proposed
GA-based learning algorithm is tested with two differ-
ent sets of training data.
Experiment 1:
In this Experiment, a set of training data consists of
more than thousand data samples which are generated
from 27 rules, some of them listed below:
If x1 is low and x2 is low and x3 is low then y is very low;
If x1 is low and x2 is medium and x3 is medium then y is low;
If x1 is medium and x2 is high and x3 is high then y is high;
If x1 is high and x2 is high and x3 is high then y is very high;

The weight of all rules set to unity (i.e. wi = 1).
 From the rules above, it can be observed that there

are three inputs and one output linguistic variables. For
each input linguistic variable, its term set is defined as
{low, medium, high}, while the output linguistic vari-
able term set is defined as { very low, low, medium,
high, very high}. Therefore, there are a total of 135
possible rules, and the resulting FNN consists of three
linguistic nodes, nine input-label nodes (three for each
linguistic node), twenty seven initial rule nodes, five
output-label nodes, and one output node. After the
self-organized learning to find the membership func-
tion for each input-label (output-label) node, the pro-
posed genetic learning algorithm is employed to iden-
tify the fuzzy rules. Because of the fact that the weight
of all rules used to generate the training data was unity,
the weight for rules to be ignored used in the calcula-
tion of the fitness in the second stage with low weight
(LW), as discussed in perfuse section, does not affect
the result. In other words, we did not have to use the-
second stage of fitness calculation. After a number of
runs, the result shows that the proposed learning algo-
rithm is able to correctly identify all the relevant fuzzy
rules with error level equals zero. Figure 3 presents an
average performance graph of 20 experiments created
by 100 generations of 20 chromosomes.
Experiment 2:

In the second experiment, we use a similar set of
training data which consists of more than thousand
data samples, but in this experiment the rules have
different weights (i.e. wi = n, where 0 ≤ n ≤1).

After the self-organized learning to find the mem-
bership function for each input-label (output-label)
node, the proposed genetic learning algorithm is em-
ployed to identify the fuzzy rules. In this case, due to
the fact that some rules used in generating the training
data may have a low weight (LW) (e.g. 0.1), the weight
for rules to be ignored should be set for two stage fit-
ness calculations. After a number of runs, the result
shows that the number of rules identified by the algo-
rithm and the error level (e) is affected by the value of
LW. Table I shows the relationship between LW and
the number of generated rules and the error level (e),
created by 100 generations of 20 chromosomes.

From Table I, it is clear that, any increase of the
value of LW results a decrease of the number of rele-
vant rules identified by the algorithm and also results
an increase of the value of the error level (e). The ex-
planation of these observations is that when the value
of LW is large the possibility of ignoring some relevant
rules with low weight is high, which affects negatively
on the level error. For example, when the value of LW
was 0.9 the number of relevant rules was 18 (9 ignored
rules) and the error level was 0.2375, while the value
of LW was 0.1, the number of relevant rules identified
is 27 (i.e. all rules considered) and the error level de-
creased to 0.0760.

Table 1. The effect of LW on the number of rules and
the error level

LW Number of Rules e

0.9 15 0.2105
0.7 19 0.1975
0.5 21 0.1358
0.3 25 0.0902
0.1 27 0.0760

It is usually the case that a low value of LW pro-

duces a better error value as this allows to consider a
large number of rules. In this example, where we have
a limited number of rules (i.e. 27), we can consider all
rules by setting a low value of LW to get a minimum
error level. However, for a case with a very large num-
ber of possible rules (which are impossible to con-
sider), it is important to limit the number of rules for
consideration by setting an appropriate value of LW to
obtain an acceptable error level. For example, if we
have a problem with a large number of rules (large
number of inputs and outputs), and there are two val-
ues of LW lw1,lw2 (lw1<lw2). If lw1 results a number
of rules N and a level error e, and lw2 results a de-

293293

crease of N by 30% and an increase of e by only 0.1%.
In this case possibly we set LW to lw2.

Also, in order to evaluate the effectiveness of appli-
cation of the proposed genetic learning algorithm in
FNN, we have employed the proposed GA-learning
algorithm in GA-FNN to a real world case study of
road traffic management. The results obtained from the
case study are promising and demonstrate that the pro-
posed GA based learning algorithm can provide a reli-
able mechanism for fuzzy rule selection. The results of
this case study have been presented and discussed in
[8].

5. Conclusion and Future Work

This paper has described a GA based learning algo-
rithm to identify the fuzzy rules for FNNs. The pro-
posed algorithm makes use of the known membership
functions to identify only the relevant fuzzy rules. Ini-
tially, it has considered all possible rules and then used
the training data and the fitness function to select a
limited number of the relevant fuzzy rules by introduc-
ing a weight parameter to trade-off between number of
rules and error value. In order to test the capabilities of
the proposed GA-based learning algorithm for correct
identification of all the relevant fuzzy rules, it has been
tested with two different sets of training data. The re-
sults of the proposed GA-based learning algorithm
demonstrate its capabilities and merits in term of iden-
tification of the fuzzy rules fast and correctly. Further
experiments on its application to a case study of road
traffic management, which have been reported else-
where, also show the effectiveness of the proposed
algorithm in FNN.

Currently we have demonstrated the technical feasi-
bility of the proposed GA-learning algorithm to iden-
tify fuzzy rules, in which all possible rules were used
to select the relevant rules. In the next stage we will
investigate the possibility of developing the proposed
learning algorithm to start with a limited number of
relevant rules and then the learning process will be
increased (or decreased) to that number rules instead of
considering all possible rules.

6. References

[1] T. Lin, Neural Fuzzy Control Systems With Structure

and Parameter Learning. Singapore: World Scientific
1994.

[2] C. Quek, M. Pasquier, and B. B. S. Lim, "POP-
TRAFFIC: a novel fuzzy neural approach to road traf-
fic analysis and prediction," Intelligent Transportation
Systems, IEEE Transactions on, vol. 7, pp. 133, 2006.

[3] C. Quek and R. W. Zhou, "The POP learning algo-
rithms: reducing work in identifying fuzzy rules," Neu-
ral Netw, vol. 14, pp. 1431-45, 2001.

[4] B. Krause, A. S. von, W , and K. Limper, "A neuro-
fuzzy adaptive control strategy for refuse incineration
plants," Fuzzy Sets and Systems, vol. 63, pp. 329-338,
1994.

[5] C. T. Lin and C. S. G. Lee, "Neural-Network-Based
Fuzzy Logic Control and Decision System," IEEE
Transactions on Computers, vol. 40, pp. 1320-1336,
1991.

[6] R. R. Yager, "Modeling and formulating fuzzy knowl-
edge bases using neural networks," Neural Networks,
vol. 7, pp. 1273-1283, 1994.

[7] H. Ishibuchi, H. Tanaka, and H. Okada, "Interpolation
of fuzzy if-then rules by neural networks," Interna-
tional Journal of Approximate Reasoning, vol. 10, pp.
3–27, 1994.

[8] K. Almejalli, K. Dahal, and A. Hossain, "Intelligent
Traffic Control Decision Support System," in
EVOWorkshop2007. Valencia, Spain: (to be published
in Computer Science Lecture notes by Spinger), 2007.

[9] C. Karr, "Genetic algorithms for fuzzy controllers," AI
Expert, vol. 6, pp. 26-33, 1991.

[10] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Ta-
naka, "Selecting fuzzy if-then rules for classification
problems usinggenetic algorithms," Fuzzy Systems,
IEEE Transactions on, vol. 3, pp. 260-270, 1995.

[11] W. Y. Wang, T. T. Lee, C. C. Hsu, and Y. H. Li, "GA-
based learning of BMF fuzzy-neural network," Fuzzy
Systems, 2002. FUZZ-IEEE'02. Proceedings of the
2002 IEEE International Conference on, vol. 2, 2002.

[12] W. Y. Wang, C. Y. Cheng, and Y. G. Leu, "An online
GA-based output-feedback direct adaptive fuzzy-
neural controller for uncertain nonlinear systems," Sys-
tems, Man and Cybernetics, Part B, IEEE Transac-
tions on, vol. 34, pp. 334-345, 2004.

[13] H. Ishibuchi and T. Yamamoto, "Fuzzy rule selection
by multi-objective genetic local search algorithms and
rule evaluation measures in data mining," Fuzzy Sets
and Systems, vol. 141, pp. 59-88, 2004.

[14] C. J. Lin, "A GA-based neural fuzzy system for tem-
perature control," Fuzzy Sets and Systems, vol. 143, pp.
311-333, 2004.

[15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,
"Learning internal representations by error propaga-
tion, Parallel distributed processing: explorations in the
microstructure of cognition, vol. 1: foundations," MIT
Press, Cambridge, MA, 1986.

[16] P. J. Werbos, "Neurocontrol and fuzzy logic: connec-
tions and designs," International Journal of Approxi-
mate Reasoning, vol. 6, pp. 185-219, 1992.

[17] G. Sywerda, "Uniform crossover in genetic algo-
rithms," Proceedings of the third international confer-
ence on Genetic algorithms table of contents, pp. 2-9,
1989.

[18] D. E. Goldberg and K. Deb, "A Comparative Analysis
of Selection Schemes Used in Genetic Algorithms,"
Urbana, vol. 51, pp. 61801-2996, 1991.

294294

