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A Novel Approach to Feature Selection
Based on Analysis of Class Regions

Ruck ThawonmasiMember, IEEE and Shigeo AbeSenior Member, IEEE

Abstract—This paper presents a novel approach to feature separation. In [3] and [4], class regions are analyzed directly to
selection based on analysis of class regions which are generretain informative features and to eliminate redundant features.
ated by a fuzzy classifier. A measure for feature evaluation is In the feature selection approach, relevant features are

proposed and is defined as the exception ratio. The exception lected f th iqinal feat Inrs . 1k
ratio represents the degree of overlaps in the class regions, in selected from the original features. In [5], various well-known

other words, the degree of having exceptions inside of fuzzy rules measures, such as Bhattacharyya probabilistic distance, are
generated by the fuzzy classifier. It is shown that for a given set given for selecting the set of features that maximizes class
of features, a subset of features that has the lowest sum of theseparability. In [6], a feature-selection algorithm is proposed

exception ratios has the tendency to contain the most relevant s oy n10its some fuzzy parameters, which represent fuzziness
features, compared to the other subsets with the same number of .

features. An algorithm is then proposed that performs elimination N & Set, to measure class separability. In [7], features are
of irrelevant features. Given a set of remaining features, the Selected based on the mutual information criterion.

algorithm eliminates the next feature, the elimination of which Compared with the feature selection approach, the feature
minimizes the sum of the except|0n ratios. Next, a term|natlng extractlon approach haS a hlgher degree Of freedom |n f|nd|ng

criterion is given. Based on this criterion, the proposed algorithm . .
terminates when a significant increase in the sum of the exception a set of features, especially when the best set in terms of

ratios occurs due to the next elimination. Experiments show that classification cannot be selected dirgctly from the original
the proposed algorithm performs well in eliminating irrelevant  features. However, the feature selection approach does have
features while constraining the increase in recognition error rates  some advantages over its counterpart, as elaborated in the

for unknown data of the classifiers in use. following. After a set of features is selected, nonselected
features will no longer be used. To collect new data, only
l. INTRODUCTION collection of the selected features is necessary, which may

N PATTERN recognition, feature reduction has long begigduce costs. Furthermore, the physical meaning of each
an important topic and has been studied by many auth&glected feature is retained. For some rule based classifiers,
because of its impact on the complexity of classifiers. It & characteristic that the features are perceivable by human
also known that a good feature reduction method must hagperts is indispensable.
the ability to constrain the increase in recognition error ratesMotivated by the above considerations, we adopt the feature
for unknown data of the classifiers in use, due to the reductiggalection approach in this paper. We propose an algorithm to
in dimensionality. eliminate irrelevant features. The proposed algorithm is based
There are two different approaches to achieve feature @ analysis of class regions which are generated by a fuzzy
duction: feature extraction and feature selection. In the featu@ssifier [8]. The degree of overlaps in the class regions, or
extraction approach, all of the original features are mapp#te degree of having exceptions inside of fuzzy rules generated
into a lower-dimensional feature space. Principal componddy the fuzzy classifier, is defined as the exception ratio and is
analysis (PCA) [1] (or the Karhunen—Loeve transform insed as a measure for feature evaluation. The idea of using
signal processing) performs a linear transformation of an inpilie exception ratio for feature evaluation derives from the
feature vector. The first component of the transformed featUeet that for a given set of features, a subset of features that
vector represents the component of the original input featuras the lowest sum of the exception ratios has the tendency
vector in the direction of its largest eigenvector of the featute contain the most relevant features, compared to the other
covariance matrix, the second component of the transformggbsets with the same number of features. Given a set of
feature vector in the direction of the second largest, and so eemaining features, the proposed algorithm eliminates the next
In [2], this technique is applied so that training of a neural né&ature, the elimination of which minimizes the sum of the
classifier is initiated in the direction of the major eigenvectomsxception ratios. Next, a terminating criterion is proposed.
of the covariance matrix of training patterns. DiscriminarBased on this criterion, the proposed algorithm terminates
analysis is another technique discussed in [1], which findghen additional elimination of a single feature results in
the set of transformed features that gives the greatest classignificant increase in the sum of the exception ratios,
Manuscript received April 11, 1995: revised December 23, 1995. which implies a remarkable rise in recognition error rates for
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ination algorithm in Section lll. Finally, we demonstrate in
Section IV the effectiveness of the proposed algorithm using
two classifiers on four classification problems from different
domains.

Il. Fuzzy RULE REPRESENTATION ANDINFERENCE SCHEME

A. Fuzzy Rule Representation

In this section, we briefly describe the method for generating
fuzzy rules discussed in [8]. The basic idea behind the method
is as follows. First, class regions in the input space are ap-
proximated by means of hyperboxes. If there exists an overlap
between the regions of any two classes, the method attempts to
resolve the overlapping region in a recursive fashion. Finally,
fuzzy rules are defined for all generated regions.

Suppose we have a training data set consisting of i
put—output pairs. LeX; denote the set of input data for class

ig. 1. Concept of the recursive procedure for generating activation and
hibition hyperboxes.

i, wheret = 1, ---, n. We generate fuzzy rules by which a it . | & wh
givenm-dimensional input vectax can be classified into one Vipr(l):  the maximum vaite ok where
of n classes as shown in Fig. 1, wheje = i and’ = j z € X; andxisin Ji;(1 - 1) if 1 > 2.

forl = 1,5 = j, ands = ¢ for I > 2. To do this, for
each class, say, classwe first define an activation hyperbox
of level 1, denoted asi;;(1), by finding the minimum and  L; (1) = {x|wix () L xp < WD), k=1,---, m} (4)
maximum values of each input variable froy;. Then, if

A;(1) and A;;(1) overlap, the overlapping region is definedVereviyi(l) < wijk(l) < Wija(D) < Vigri(l).

as the inhibition hyperbox of level 1, denoted Ag(1). To The expanded inhibition hyperbak; (1) is defined as
increase recognition rates for unknown data of the classifiers/;; (1) = {x|uix(1) < zx < Ujjn(l), k=1,---,m} (5)
in use, expansion of;;(1) in A;(1) and A;;(1) is next
performed, resulting in expanded inhibition hyperboxgg1)

The inhibition hyperboxi;;(!) is defined as

where v, (1) < wijr(l) < win(l) < Wign(l) < Uin(l) <
and J;;(1), respectively. If data of classesand/orj exist Viyi(l). To regulate the expansion, an expansion parameter

in the corresponding expanded inhibition hyperbox, a secofidS introduced. For the case shown in Fig. 1, the expansion
activation hyperbox will be defined and denoted 4g(2) process is done according to the following definitions:

or A;(2). Moreover, if these two activation hyperboxes still 1) Forvju(l) <wijn(l) < V(D) < Viga ()
overlap with each other, an inhibition hyperbfx(2) and the wign(D) = viyn (D)

associated expanded inhibition hyperboxeg2) and .J;;(2) ok ark

will be defined. The recursion procedure terminates when Uijr(l) = Vji(l) + @ [ Vije(l) = Viin(D)]. - (6)
either there is no overlap betweet;; (1) and A, ;(l) or 2) Forvn(l) <vji(l) < Vi (D) < Vierr (D)

the condition Ay (1) = Ai;(1) = ILj;(I — 1) holds. In the wiji(l) =vjin(l) — [Uﬂ,k(l) — vijrk(D)]

latter case, the overlap cannot be resolved by the recursive Usi(D) = Vi (D). )

procedure. Therefore, for each datum residing;jitl — 1), an

activation hyperbox is defined which includes only that datu
Letr;;(I) denote a fuzzy rule for clagswhich is defined at _ _ _

level [ (> 1) by resolving overlaps with class Fuzzy rules  For a givenx, the membership degree with respect to a

B. Fuzzy Rule Inference

without and with inhibition are, respectively, given by fuzzy rule given by (1) is 1 ifx is inside of the activation
hyperbox 4;;-(1). If x is outside of A;;, (1), it has a lower
If x is in A;;(1), thenx belongs to clas$ (1) membership degree. As the distance betweand A;; (1) in-
If xis in A;;»(1) andx is not in J;;(1), creases, the membership degree afecreases and vice versa.
thenx belongs to class ) We can realize these characteristics by using the following
function:
wherej’ =ifor/=1andj = jforl > 2. M (x)
Here, the activation hyperbax;; () is defined as A\
= min  myu,ox, k) (8)
Ay (1) ={x[viju(l) S op < Vig(l), k=1,---, m} Rt m
(3) mAij/(l)(x7 k)
= [1 = max (0, min {1, vi[vijx(l) — x]})]
wherez;.: the kth element of input vectox, x [1 — max (0, min {1, v;[zx — ViynD]D]  (9)
vijri(l):  the minimum value ofr;, where where~y; is the sensitivity parameter for classind it is used

z € X;andxisin J;(I—-1)if [ > 2, to regulate the membership degree.
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The membership degree &fwith respect to the fuzzy rule i
r;(1) given by (1) is defined as

d"’ij O (X) = mAij’(l) (X) (10)
The membership degree af with respect to a fuzzy rule
given by (2) is 1 ifx is inside of the activation hyperbox but b 0= il
not inside of the expanded inhibition hyperbox, izeis inside memhership = |
of Ay (1) — Ji;(1), whereS denotes the closure of sftand 4D

7 —Lforl_landJ = j for I > 2. If x is outside of this
region, we set contour surfaces of the membership degres ;"’
be parallel to, and to lie at, an equal distance from the surfe | |
of A;; (1) — Ji;(I), as shown in Fig. 2. To realize this, the |~
membership degree is calculated according to whether or | — -

x is included in the regiorH;;(1). H;;() is associated with D
A, (1) and J;;(1), and is defined as Conttnr Safaces
Hi; (1) ={x|z1 < Uir() Fig. 2. Contour surfaces of the membership degree for a fuzzy rule in which
an inhibition hyperbox exists.
fOI‘ Uji’k( ) S Vs ’k( ) < V”/k(l) S ‘/“/k(l),
o 2 wiji(l) Finally, the membership degree xffor class:, denoted as
for viji(D) < wjn®) < VigrD) < Vien(D, .5, is given by '
—oo <z < o0
U,“k(l) S Tk S U“k(l) A“(l)ﬂA”(l);éw
for v () < vjirp(l) < Vo (D) £ Vigr(D), When the activation hyperbox of clagsoverlaps with those
k=1,---,m} (11) of classeg andk, we resolve the conflict, independently, first

between classesand j, then between classésand k. This
wherej’ =i andi’ = jforl =1, j/ = j, andi’ =i for{ > 2. Process is accomplished by taking the minimum in (15). The
It is noted thatH;;(1) and H;;(l) are in general different. The iNPut x is then classified as classf d;(x) is the maximum
region H,;(I), as shown in Fig. 2, defines an input regioRMONgd;(x), j = 1, ---, n
where the expanded inhibition hyperbox has an effect on the

membership degree with respect to the rule given by (2). Thus |||, FEATURE ELIMINATION BASED ON CLASS REGIONS
the membership degree with respect-ig(l) given by (2) is

calculated by A. Exception Ratio

dy (%) =ma, (%) for x & H;; (1) An aqtivation hyperbo_x of a given class is a region W_here_

data points of the class in the feature space are generalized in
the form of hyperrectangles. Similar methods can be found in
12) [9] and [10]. Unlike the method described in Section I, these
two methods operate incrementally in the learning process,
i.e., the generalization process takes into account one training
datum at a time. In addition, in [9] generalization is con-
strained by a user-defined parameter controlling the size of
the hyperboxes, while in [10] it is constrained by a matching
The definition ofm,,)(x, k) has a form similar to (9) [8]. process.

The final membership degree &fwith respect to a set of  Following the interpretation in [10], the inhibition hyperbox
fuzzy rules{r;;(1){1 = 1, ---, li;}, denoted agl,. . ;(x) . i [,;(I) can be regarded as an exception of the activation
given by hyperbox A;;(I). It is noted that, for feature evaluation,
we use here the inhibition hyperbadk;(l), rather than the
expanded inhibition hyperbox;;(l), to exactly represent a
region defined from the data for generating rules. If a given
wherel;; is the deepest level of the overlaps between classistum x is located inside of4;;(I) but outside ofI;;(l),
¢ and j. supposing thatl;;(I) exists, the inference of4,;(I) will

Here, we take the maximum because the activation hyperbexclusively contribute to the membership degreexofvith
Ai; (14 1), if it exists, is included in the expanded inhibitionrespect to the rule;; (). On the contrary, ik is located inside
hyperbox J;;(I), and hence each fuzzy rule ify;;(1)|l = of I;;(I), the membership degree gfwith respect to the rule
1, .-+, l;;} is exclusive of any others. 7i;(1) results from the inference of both;;(7) and I;;(1).

= min [mAij,(l) (X), mJij(l)(x)] forx € H“(l)

wheremy, ;y(x) is given by

mjz.j(l) (X) = k:I}laX m mJZ.j(l) (X7 k‘) (13)

dr,; (%) = maxl [d,,ij(l)(x)] (14)

ERARER LS
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Consequently, the larger the size of the inhibition hyperbox, TABLE |
or the exception, in a given activation hyperbox, the less is the THE EXCEPTION RATIO OF TwO DIFFERENT
. . - . e . SETS OF TWO FEATURES FOR THEIRIS DATA
contribution of the activation hyperbox to the classification of
the corresponding class and vice versa. This indicates that for Exception Ratio Set of Features
a given set of features, a subset of features upon which the {hu 2} {5, fa}
generated rules have the lowest number of exceptions has the P 102
tendency to contain the most relevant features, compared to f“(F) 0'76"10_2 0
the other subsets with the same number of features. o1 () 57610 0
023(F) 81.10x102  5.72x102

We determine the number of exceptions for a pair of classes
based on the exception ratio, the computation of which is

described in the following. First, at each overlapping level

the ratio of the size of the inhibition hyperbox to the size o‘?’r? rds, .bet_'i_erblse:oarﬂtedijl'g? e_xcepn;n ratloN f;r egch setis
the activation hyperbox is computed. Next, since the dee epown In-lable 1 w ered;(F) = o0i;(F) + 0;(F). From
F%ﬁls table, the result that the sum &f ({ f3, f4}) is less than

the level _qf a_rule, the Igss is the contribution of that rL!Ie tt% t of 65, ({f1, f2}) Substantiates well the idea of using the
the classification, the ratio computed at each level is weighte : : )
exception ratio as a measure for evaluating features.

by the probability to find a datum of the corresponding class The exception ratio given by (16) can be computed ver
inside of the inhibition hyperbox. This probability corresponds . €p o g y & . P y
uickly using concise representation of axis-parallel hyper-

to the frequency at which inference of rules inside of th oxes generated by the fuzzy classifier. This tvpe of repre-
inhibition hyperbox has an effect on the classification of the 9 y y i yp P

corresponding class. Einallv. the exception ratio is com utsgntation is ideal for approximating class regions in domains
P 9 X Y ptio . PUtESat are horizontally or vertically oriented. The concept of the
by taking the sum for all levels of the weighted ratio.

. exception ratio can also be applied to other domains where
Let F' denote a set of features upon which rules arg . :
. X . Xis-nonparallel hyperboxes or other types of representation,
generated. To be more precise, we define the exception ratio o ; ; .
) e.g., ellipsoidal regions, are more appropriate. This, however,
0;;(F) as follows:

essentially requires modification of the method in [8] that we

Br,(F, 1) use for generating rules, which is beyond the scope of this
0ij(F) = z Zz pij (1) B (F.1) (16) paper.
=1, -, iy ij
B. Exception Ratio Based Feature Elimination Algorithm
where To select features, we take the backward selection search
Bx, (F, 1) = H bx, (f, 1), techniqug [1], which begins with_ all th_e featur_es and eliminates
PeF the most irrelevant feature. To find this most irrelevant feature,
br, (1) = Wi (1) — wi 1 (D), each of th_e featgres is temporarily ehmmat_ed.. The sum of
’ the exception ratios after each temporary elimination is then
for Wij (1) — wijs (1) > e computed. The feature the elimination of which minimizes
= ¢ otherwise, the sum of the exception ratios is chosen. The chosen feature
ba,, (f; 1) =Vijr (1) = vigr (1), is the most irrelevant to classification, compared with the
for Viyrp(l) — viy (1) > € other features. This is because after the elimination of t_hg
. chosen feature, rules generated based upon the set of remaining
= ¢ otherwise, features have the lowest number of exceptions. The procedure
eis a small number then continues to eliminate the next most irrelevant feature.
and In addition, monitoring an increase in the sum of the excep-
number of clasg training data inl;;({)  tion ratios, we can heuristically give a terminating criterion.
pii(1) = total number of training data ~ When only relevant features are left in the remaining features,

additional elimination of one single feature results in much

In the above formula, it is necessary to limit the smallest valyggre complicated class regions, hence many more overlaps or
of bx,,(f, 1) to . This is done to allow the computation ofgxceptions. Therefore, a terminating threshold can be given.
0;;(F) for the case where there exists a featfitein /" such  The procedure then terminates if after additional elimination,
that Vi s+ (1) — wijp- (1) = 0. the increase in the sum of the exception ratios of the set of

To verify the aforementioned formula, iris data [11], conremaining features, compared to that of the set of the original
sisting of three classes and four features, are considered heggyres, is beyond the given threshold. With this terminating
Details of the iris data are discussed in Section IV. Here Wejterion, it is expected that the performance of a classifier built
show the projection of the original data for the three classgﬁon the selected features does not degrade much compared
on two different sets of two featurelsf;, f2} and {fs, fa} 1o that of a classifier built upon the original features.
in Fig. 3(a) and (b), respectively. The activation hyperboxes From the above ideas, now we propose the following algo-
obtained when half of the original data are used for generatifghm to eliminate irrelevant features based on the exception
rules are also superimposed on the figure. It is apparent frogjio. Let O(F) denote the sum of the exception ratios and

the figure that the seftfs, f} is better or more relevant thanpe defined asy” i ; o;;(¥). Then let /™ denote the set
its counterpart in that class regions are clearer, or in other i#j
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Fig. 3. Projection in two dimensions of the iris data superimposed with activation hyperboxes when using half of the data to generate rules.

of m remaining features and”™ be defined asf™*! — Step 1: Initialize '™ by setting /"™ « I, hencem =
{f"*1} where /"t is theith element inF™+1. It is noted M.

that /" is the set ofm features obtained by temporarily Step 2: ComputeO(F{"‘l) fori=1,-.--,m.
eliminating f"** from F+L. Let F,,, denote the set of the ~ Step 3: Find the feature f/* that O(F}"‘l)
original M features wheré/ > 2. The exception ratio based min,; [O(E™1)].

feature elimination (ERFE) algorithm can be described by the Step 4: If [O(F;"‘l) — O(Forg)]/O(Fry) < B 9O tO step
following procedure: 5; otherwise terminate.



THAWONMAS AND ABE: NOVEL APPROACH TO FEATURE SELECTION 201

Step 5: Set Fm—1 — F;"_l. (fj* is permanently elimi- Neural Net Classifier:

nated from/™.) . ' learning rate= 1
Step 6: Setm = m — 1. If m = 1, terminate; otherwise go
and
to Step 2.
momentum=0.

Step 4 checks if the increase rate in the sum of the exception o .
ratios exceeds the terminating threshgidin the following In addition, fo_r the neura_l _net classifier, a three-lay_ered net is
sections, this rate is referred to as the exception increase r4g£d- T0 obtain a recognition rate, a set of 10 runs is executed,
If s set to zero, representing the most conservative criterigeCch run having initial connection weights randomly assigned
only elimination of features that does not at all increase tgWeen—0.1 and 0.1. The average value of the results from
complexity of class regions is performed. Doing so, we ¢ pe 10 runs 1S then t_aken. For each data set, we choose the
expect that the increase in recognition error rates for unknofgHMmpPer of hidden units and the number of training epochs so
data of the classifiers in use is constrained, provided that tiigt satisfactory performance can be achieved from the neural

characteristic of the unknown data is similar to that of tnget classifier on the original features. _
data used for generating fuzzy rules. In practice, from manyThe parameters used in the ERFE algorithm are as follows:

problem domains tested in the next section, we find that e~ 0-001 and/ = 1 ><'106. The value ofj is intentionally set
can loosen the criterion by allowing a value ®fup to 0.5. to such a large value. in order to let the algorithm proceed u_nt-ll
We note here that it is also possible to implement dhe number of remaining fe_atures becomes 1. However, it is
algorithm that performs forward selection search [1] based §Rown in the following sections that a robust valuesotan
the exception ratio. In this algorithm, given a set of alrea determined which serves well as the terminating threshold
selected features, the next feature to be selected is the #ethe data sets mentioned above.
the addition of which minimizes the sum of the exceptio
ratios. Similarly, a terminating threshold can be given. T
algorithm terminates if after further addition, the decrease The iris data [11] consist of 150 data with four input features
in the sum of the exception ratios of the set of selectethd three classes. Training and test data are composed of
features, compared to that of the set of the original featurése first 25 data and the remaining 25 data of each class,
is less than the terminating threshold. Below we refer t@spectively. For the neural net classifier, a net with 3 hidden
this algorithm as the Exception Ratio based Feature Additiomits is used and the net is trained for 1000 epochs.

(ERFA) algorithm. Further discussion on the ERFA algorithm Fig. 4(a) and (b) plot the recognition rates of the fuzzy
is given in Section IV-E. classifier against a wide range of expansion parameter values
Of course, due to its heuristic characteristic, we cannot guaihd the learning curve of the neural net classifier, respectively.
antee the optimal selection of subsets of features using eith@e rates of all possible combinations of two features are
backward selection search or forward selection search. As &jown in the figure. Binary presentation is used to present

as the optimal subset of features is concemed, some othgeh combination, i.e., thih digit is 1 if the ith feature is
search techniques, e.g., those with backtracking mechanisgigsent; otherwise 0.

can also be applied, but they need more computational effortThe combination of features obtained by the ERFE algo-
In this paper, we therefore consider the backward and forwaighm is “0011,” upon which class regions are well separated
selection searches that have computational advantages QUEr Fig. 3(b)]. Both classifiers have better performance using
the other search techniques. this combination than the other combinations.

IV. EXPERIMENTAL RESULTS B. Thyroid Data

Tl?le ERfFE z:\jl%orithmd is te_ste.zd gs_ing real dﬁta _(()jfdfour The thyroid data [11] consist of 3772 training data and 3428
problems from different domains: 1) iris data, 2) thyroid datgyq; 414 ith 21 input features, among which 15 are binary and

3) numeral data, and 4) blood cell data. The f_|r_st two dag? analog. These data belong to one of the three classes. Since
sets are well-known benchmark data for classification. Tlilﬁ

others are data sets used in our original applications. For e ﬁre Is one class which occupies over 92% of the collected
data set, all of the available data are divided into training da dla, any acceptable classifier must have the recognition rate

0 o .
and test data. The training data are used both for eIiminatiO? more than 92%. For the neural net classifier, a net with 3

e o $%den units is used and the net is trained for 10000 epochs.
features and training classifiers. The test data are used OF; 5 plots the recoanition rates of the two classifiers and
evaluating the recognition rate of the classifiers. 9.9 P 9

Two classifiers are used, namely, the fuzzy classifier [ etexceglflr(])n increase rate agilnst t?e.num:_er O(; fehmmg(tjed
described in Section Il, and a back propagation neural ures. The maximum recognition rate 1S achieved for a wide

classifier [12]. Unless explicitly specified, the following setidn9€ Of numbers of eliminated features. When 15 features

of parameters are used for the fuzzy classifier and the ne it eliminated, the recognition rates of both classifiers start
net classifier, respectively. to drop. At the same time, the exception increase rate starts

. Iris Data

Fuzzy Classifier: to rise.
expansion parameter0.001 C. Numeral Data
and This set of data was initially used in a system for number

sensitivity parametes 1. recognition of license plates using a decision-tree algorithm
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Fig. 4. The iris data. (a) Recognition rates of the fuzzy classifier and (b) the neural net classifier for all the possible combinations of two features
out of four features.

[13] and [14]. The task of the system is to recognize 10 Fig. 6 plots the recognition rates of the two classifiers

numbers using 12 input features extracted from images arid the exception increase rate against the number of elim-
moving cars taken by a TV camera. In our study, 1630 datzated features. For the fuzzy classifier, the maximum recog-
are divided into a combination of 810 training data and 82tition rate can be achieved for a wide range of numbers
test data. For the neural net classifier, a net with six hiddeh eliminated features. The same tendency in the recog-
units is used and the net is trained for 4000 epochs. nition rate can be seen for the neural net classifier. For
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Fig. 5. The thyroid data. Recognition rates of the fuzzy classifier and the neural net classifier plotted together with the exception increase rate.
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Fig. 6. The numeral data. Recognition rates of the fuzzy classifier and the neural net classifier plotted together with the exception increase rate.

both classifiers, the recognition rates start to drop whéh Blood Cell Data

five features are eliminated. A rise in the exception in- o o . . .
crease rate can be seen at this number of eliminated feaThe task in this last application [15] is to classify optically

tures.

screened white blood cells into 12 classes of mature and
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Fig. 7. The blood cell data. Recognition rates of the fuzzy classifier and the neural net classifier plotted together with the exception increase rate.

immature cells using 13 features such as area and perimet@mponent analysis (PCA) and discriminant analysis (DA).
of a kernel. Five of the classes are mature and the othdise last one is a feature selection method that performs
immature. The blood cell classification is known to be a vetiyackward selection search using interclass Euclidean distance
hard problem. In our study, there are 6196 blood cell datas the class separability measure (EDFE). It is known that
These data are divided into 3097 training data and 3100 tgs¢ PCA method is not optimal because it does not take
data. For the neural net classifier, a net with 18 hidden unijigo account the information about the individual classes. In
is used and the net is trained for 6000 epochs. addition, the DA method is not reliable if the class means are
Fig. 7 plots the recognition rates of the two classifiers angbar to one another. On the contrary, our method does not
the exception increase rate against the number of eliminaiggl,e these drawbacks.
features. For the fuzzy classifier, the recognition rate starts to, he tests, the number of features is set to 2 for the iris data.
drop when the number of eliminated features is five. It is thre;_»eor the other data sets, we use the numbers of features that
for the neural net classifier. The exception increase rate stalfs gelected by the ERFE algorithm with= 0.5. Namely,

to rise at the first elimination. the numbers of features for the thyroid data, numeral data, and
blood cell data are 5, 7, and 10, respectively. From the previous
E. Comparison with Other Methods and Discussion results, satisfactory performance of the classifiers is retained if

In this section, we show comparison results with some otht ey are built upon the features selected by the ERFE algorithm

methods. For nonparametric classification, recent metho‘?ﬁh these numbers. The accumulation of eigenvalues of the

such as decision boundary feature extraction in [4] or mutu%FA method for each data set is shown in Table Il. Since

information feature selection in [7] have some parameters t3 @ccumulation of eigenvalues corresponds to classification
must be appropriately chosen for each classification probleRgrformance, it can be expected that the performance of the
namely, the decision boundary searching threshold in tREA method is good for-th.e blood cellldata but unfavorable for
former method and the number of quantization levels in tfi€ thyroid data. For training and testing the fuzzy and neural
latter method. Fair empirical comparison of our method witRet classifiers, we use the same conditions as those elaborated
them is nontrivial, if not infeasible. This leads to the neeth the previous sections.
of theoretical understanding of these three methods so thafable Ill summarizes the results. As can be seen, the ERFE
unbiased comparison can be performed, which is left asalgorithm has the most preferable performance, especially
challenging open problem. for the thyroid data. The DA method cannot be applied for
From the above considerations, we conduct additional tethe thyroid data because of zero diagonal elements of the
using three popular conventional feature reduction methodgvariance matrices. There is only one case where the PCA
that do not have sensitive parameters influencing the perfarethod outperforms the ERFE algorithm, i.e., the case where
mance. The first two are feature extraction methods: princighe neural net classifier is used for the blood cell data. For
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TABLE I TABLE I
THE ACCUMULATION OF EIGEN VALUES (Acc. Ev.) oF COMPARISON OF FEATURE REDUCTION TECHNIQUES
PrINCIPAL COMPONENT ANALYSIS (PCA) FOR EACH DATA SeT T r——— e —
Do St vl Feararey Feouced Pairen
Data set Number of Features Acc. Ev. (%) EHFE FLA ey EL¥E
FUZEYMN  PUZIYNN FUZZYMMN FUZZVNN  FUZZYNN
Iris 2 97.79 Ina SARIET AT SAATATIS WRATAETII AEOOER G0 Ud N B
Thyroid 5 73.33 Thigroiad 5515 FFIMEE]  ES.ELE2ET 415091 7]
Numeral 7 93.45 Mol 0 A0 4 MA1ANEE AP GRZINATI SEA1M50
Baiad A5 1ABE.1H E54586.77 ELILEL]S 7T 393496 3139339

Blood Cell 10 99.53 e L

ERFE and ERFA algorithms are plotted against the number
the iris and blood cell data, the neural net classifier convergafsfeatures in Fig. 8. As can be seen, the ERFA algorithm
very slowly when trained with the features extracted by thHeas higher values for a wide range of numbers of features.
DA method. By extending the number of epochs to 10000, tAdis means that within that range, class regions in the feature
rate is increased to 65.73% for the iris data, while significaspace of the features selected by the ERFA algorithm are more
improvement of the rate cannot be obtained for the blood cebmplicated, resulting in inferior classification performance.
data. For the thyroid data, the rate of the fuzzy classifier trainkd addition, until the last feature is added, the sum of the
with the features selected by the EDFE method is significantxception ratios obtained from the ERFA is larger than that
lower than the corresponding rate of the neural net classifief. the original features. This result indicates that the lastly
This result indicates that the class regions in the selectadded feature is a relevant feature but it cannot be detected
features are not horizontally or vertically oriented. As a resulty the ERFA algorithm. As a consequence, we conjecture
the axis-parallel hyperboxes generated by the fuzzy classifieat, in general, features selected by the ERFE algorithm are
do not fit well to the class regions in this case. more reliable than those selected by the ERFA algorithm.

It is interesting to compare the ERFE algorithm with th&he reason for this conjecture is that in the ERFE algorithm,
ERFA algorithm. From our experience, both algorithms undéne interdependence of features with higher dimensionality
the same terminating threshold have compatible performarare taken into account in order to determine features with
for most of the data sets, namely, the iris data, numeilalwer dimensionality while the opposite is done in the ERFA
data, and the blood cell data, though the ERFE algorithaigorithm.
performs slightly better. For the thyroid data, however, the In [8], another algorithm is discussed that eliminates features
ERFA algorithm vyields notably worse results. To explaisubject to a constraint that the number of fuzzy rules generated
this case, the sum of the exception ratios obtained from thg the fuzzy classifier does not increase at each elimination.
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Fig. 9. The thyroid data. The learning curve of the neural net classifier for different sets of features selected by the ERFE algorithm for which the
exception increase rates remain zero.

In practice, this algorithm is too conservative in terms of the V. CONCLUSIONS

number of features that can be eliminated. For the numeraly, have presented a novel approach to feature selection
data, the maximum number of features that can be eliminatggsaq on analysis of class regions which are generated by
by the algorithm is three. a_fuzzy classifier. For feature evaluation, we proposed the
The above results substantiate well the fact that the EREEception ratio as a measure of the degree of overlaps in the
algorithm can successfully select features by eliminating irrglr,5¢ regions, in other words, the degree of having exceptions
evant features. In the case of the numeral data and thyroid d{@ije of fuzzy rules generated by the fuzzy classifier. The
satisfactory classification performance is retained for a wiglgeg of using the exception ratio derived from the fact that
range of numbers of eliminated features. Within this rangg,, g given set of features, a subset of features that has
the exception increase rate remains zero, implying that fj&, |owest sum of the exception ratios has the tendency to
complexity of class regions does not change. This can Pgniain the most relevant features, compared to the other
validated by the learning curve of the neural net classifief,psets with the same number of features. An algorithm
If the same complexity of class regions can be achieved, g5 proposed that performs elimination of features based on
lower the number of selected features, the lower is the nUmMRRE exception ratios and terminates when further elimination
of epochs required to reach the peak performance, due 10 §§€; single feature degrades the classification performance.
decrease in the number of weights which need to be updafgensive experiments were conducted using four types of
in the net. Fig. 9 shows the learning curve for the thyroid dafgyta namely, iris data, thyroid data, numeral data, and blood
with different sets of features for which the exception increagg| gata. The fuzzy classifier and a back-propagation neural
rates remain zero. net classifier were used to evaluate the features selected by
In addition, it can be seen that the classification performangg proposed algorithm. It was shown by the experiments that
of the classifiers drops as there is a rise in the exceplie proposed algorithm could successfully select features by
increase rate. In the case of the blood data, known to be hgfhinating irrelevant features.
to classify, this tendency also holds. Though the complexity
of class regions increases at the first elimination, this does
not mean that elimination of features is not at all possible.
Analyzing the results of all the data sets, we find that the The authors are grateful to Prof. N. Matsuda, Kawasaki
terminating thresholds can be heuristically set to 0.5 inMedical School, for providing the blood cell data. The thyroid
order to retain satisfactory performance of the classifiers. Madata set was obtained from the machine learning databases
experiments are needed to obtain a better understanding onahehe University of California, Irvine (available FTP at
relationship between the classification performance and the.ics.uci.edu/pub/machine-learning-databases). Thanks are
exception increase rate. also due to P. M. Murphy and D. W. Aha, who organized
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