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Robust Neurofuzzy Rule Base Knowledge Extraction
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Combined With Regularization and D-Optimality
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Abstract—A new robust neurofuzzy model construction algo-
rithm has been introduced for the modeling of a priori unknown
dynamical systems from observed finite data sets in the form of
a set of fuzzy rules. Based on a Takagi–Sugeno (T–S) inference
mechanism a one to one mapping between a fuzzy rule base and a
model matrix feature subspace is established. This link enables rule
based knowledge to be extracted from matrix subspace to enhance
model transparency. In order to achieve maximized model robust-
ness and sparsity, a new robust extended Gram–Schmidt (G–S)
method has been introduced via two effective and complementary
approaches of regularization and D-optimality experimental de-
sign. Model rule bases are decomposed into orthogonal subspaces,
so as to enhance model transparency with the capability of inter-
preting the derived rule base energy level. A locally regularized
orthogonal least squares algorithm, combined with a D-optimality
used for subspace based rule selection, has been extended for fuzzy
rule regularization and subspace based information extraction. By
using a weighting for the D-optimality cost function, the entire
model construction procedure becomes automatic. Numerical ex-
amples are included to demonstrate the effectiveness of the pro-
posed new algorithm.

Index Terms—Neurofuzzy networks, optimal experimental de-
sign, orthogonal decomposition, regularization, subspace.

I. INTRODUCTION

ASSOCIATIVE memory networks [such as B-spline net-
works, radial basis functions (RBFs), support vector ma-

chines (SVM)] have been extensively developed [1]–[4]. Most
conventional neural networks lead only to “black box” model
representation, yet a neurofuzzy network has an inherent model
transparency that helps users to understand the system behav-
iors, oversee critical system operating regions, and/or extract
physical laws or relationships that underpin the system. Based
on the fuzzy rules inference and model representation of Takagi
and Sugeno (T–S) [5], a neurofuzzy model can be functionally
expressed as an operating point dependent fuzzy model with a
local linear description that lends itself directly to conventional
estimation and control synthesis [1], [6], [7]. The model output
is decomposed into a convex combination of the outputs of in-
dividual rules, and the basis function can be interpreted as a
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fuzzy membership function of individual rules. This property is
critically desirable for problems requiring insight into the un-
derlying phenomenology, i.e., internal system behavior inter-
pretability and/or knowledge (rule) representation of the under-
lying process.

The problem of the curse of dimensionality [8] has been a
main obstacle in nonlinear modeling using associative memory
networks or fuzzy logic. Networks or knowledge representa-
tions that suffer from the curse of dimensionality include all
lattice based networks such as fuzzy logic (FL), RBF, Karneva
distributed memory maps, and all neurofuzzy networks (e.g.
adaptive network based fuzzy inference system (ANFIS) [9],
T–S model [5], etc.). This problem also mitigates against model
transparency for high dimensional systems since they generate
massive rule sets, or require too many parameters, making it im-
possible for a human to comprehend the resultant rule set. Con-
sequently the major purpose of neurofuzzy model construction
algorithms is to select a parsimonious model structure that re-
solves the bias/variance dilemma (for finite training data), has a
smooth prediction surface (e.g. parameter control via regulariza-
tion), produces good generalization (for unseen data), and with
an interpretable representation—often in the form of (fuzzy)
rules. For general linear in the parameter systems, an orthogonal
least squares (OLS) algorithm based on Gram-Schmidt (G–S)
orthogonal decomposition can be used to determine the models
significant elements and associated parameter estimates, and
the overall model structure [10]. Regularization techniques have
been incorporated into the OLS algorithm to produce a regular-
ized orthogonal least squares (ROLS) algorithm that reduces the
variance of parameter estimates [11], [12]. To produce a model
with good generalization capabilities, model selection criteria
such as the Akaike information criterion (AIC) [13] are usually
incorporated into the procedure to determinate the model con-
struction process. Yet the use of AIC or other information based
criteria, if used in forward regression, only affects the stopping
point of the model selection, but does not penalize regressors
that might cause poor model performance, e.g., too large param-
eter variance or ill-posedness of the regression matrix, if this is
selected. This is due to the fact that AIC or other information
based criteria are usually simplified measures derived as an ap-
proximation formula that is particularly sensitive to model com-
plexity.

In order to achieve a model structure with improved model
generalization, it is natural that a model generalization ca-
pability cost function should be used in the overall model
searching process, rather than only being applied as a measure
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of model complexity. Optimum experimental designs have
been used [14] to construct smooth network response surfaces
based on the setting of the experimental variables under well
controlled experimental conditions. In optimum design, model
adequacy is evaluated by design criteria that are statistical mea-
sures of goodness of experimental designs by virtue of design
efficiency and experimental effort. Quantitatively, model ade-
quacy is measured as function of the eigenvalues of the design
matrix. In recent studies [15], [16], the authors have outlined
efficient learning algorithms, in which composite cost functions
were introduced to optimize the model approximation ability
using the forward orthogonal least squares (OLS) algorithm
[10], and simultaneously determined model adequacy using
an A-optimality design criterion (i.e., minimizes the variance
of the parameter estimates), or a D-optimality criterion (i.e.,
optimizes the parameter efficiency and model robustness via
the maximization of the determinant of the design matrix). It
was shown that the resultant models can be improved based on
A- or D-optimality. These algorithms lead automatically to an
unbiased model parameter estimate with an overall robust and
parsimonious model structure. Combining a locally regularized
orthogonal least squares (LROLS) model selection [17] with
D-optimality experimental design further enhances model
robustness [18].

Due to the inherent transparency properties of a neurofuzzy
network, a parsimonious model construction approach should
lead also to a logical rule extraction process that increases
model transparency, as simpler models inherently involve fewer
rules which are in turn easier to interpret. One drawback of
most current neurofuzzy learning algorithms is that learning is
based upon a set of one-dimensional (1-D) regressors, or basis
functions (such as B-splines, Gaussians, etc), but not upon a
set of fuzzy rules (usually in the form of multidimensional
input variables), resulting in opaque models during the learning
process. Since modeling is inevitably iterative it can be greatly
enhanced if the modeller can interpret or interrogate the derived
rule base during learning itself, allowing him/her to terminate
the process when his/her objectives are achieved. There are
valuable recent developments on rule based learning and
model construction, including a linear approximation approach
combined with uncertainty modeling [19], various fuzzy sim-
ilarity measures combined with genetic algorithms [20], [21].
Recently the authors have introduced a new neurofuzzy model
construction and parameter estimation algorithm from observed
finite data sets, based on a T–S inference mechanism and a new
extended G–S orthogonal decomposition algorithm, for the
modeling of a priori unknown dynamical systems in the form
of a set of fuzzy rules [22], which, based on a T–S inference
mechanism, establishes a one to one mapping between a fuzzy
rule base and a model matrix feature subspace.

In this paper, a new neurofuzzy model construction and pa-
rameter estimation algorithm has been introduced. Based on
a T–S inference mechanism a one to one mapping between a
fuzzy rule base and a model matrix feature subspace is estab-
lished [22]. This link enables rule based knowledge to be ex-
tracted from matrix subspace to enhance model transparency.
In order to achieve maximized model robustness and sparsity, a
new robust extended G–S algorithm has been introduced via two

effective and complementary approaches of regularization and
D-optimality experimental design. This new algorithm decom-
poses the model rule bases via an orthogonal subspace decom-
position approach, so as to enhance model transparency with the
capability of interpreting the derived rule base energy level. A
locally regularized orthogonal least squares algorithm tailored
for rule regularization has been combined with a D-optimality
for subspace selection. By using a weighting for the D-opti-
mality cost function, the entire model construction procedure
becomes automatic. The proposed algorithm enhances the pre-
vious algorithm [22] via the combined LOLS and D-optimality
for robust rule selection, and is based on the extension of the
combined LOLS and D-optimality algorithm [18] from conven-
tional regressor regression to orthogonal subspace regression.

This paper is organized as follows. Section II introduces a
general class of neurofuzzy systems as a modeling approach.
Section III introduces the proposed new algorithm, with analysis
into the associated model transparency, robustness enhancement
via D-optimality and rule based regularization. Numerical ex-
amples are provided in Section IV to illustrate the effectiveness
of the approach and Section V is devoted to conclusions.

II. A NEUROFUZZY MODELING APPROACH

This section briefly presents a general class of neurofuzzy
systems as a nonlinear data modeling approach within a
coherent framework of both mathematical representation for
learning and linguistic logic rule representation for model
transparency. Given a finite data set of
observed input/output data pairs, consider the identification of
a general nonlinear system that generates this data

(1)

where

(2)

is an observed system input vector, is a priori unknown.
The observation noise is assumed uncorrelated with vari-
ance . is an unknown parameter vector associated with an
appropriate but yet to be determined model structure.

Model (1) can be simplified by decomposing it into a set of
local models , , where is to be

determined, each of which operates on a local region depending
on the submeasurement vector , a subset of the input
vector , i.e., , , .
Each of the local models can be represented by
a set of linguistic rules

(3)

where the fuzzy set denotes a fuzzy
set in the -dimensional input space, and is given as an
array of linguistic values, based on a predetermined input spaces
partition into fuzzy sets via some prior system knowledge of the
operating range of the data set. Usually if , for

, then , where denotes empty set.
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defines a complete fuzzy partition of the input space . For
an appropriate input space decomposition, the local models can
have essentially local linear behavior. In this case, using the well
known T–S fuzzy inference mechanism [5], the output of system
(1) can be represented by

(4)

where is a linear function of , given by

(5)

and denotes parameter vector of the th fuzzy rule or
local model. is a fuzzy membership function of the rule
(3), subject to a unity of support condition: ,

. Each of the linguistic rules (3) can be eval-
uated via the known fuzzy membership function .

Consider a neurofuzzy network using B-spline functions [23]
as membership functions. A general 1-D B-spline model
can be formed as a linear combination of B-spline basis func-
tions, , as

(6)

The coefficients ’s represent the set of adjustable parameters
associated with the set of basis functions. ’s, which are
polynomials of a given degree and are uniquely defined by
an ordered sequence of real values denoted as a knot vector

. The knot sequence forms a partitioning
of the input domain into disjoint intervals. The basis
functions set can be defined by recursive equation [23]

(7)
with

otherwise.

Multidimensional B-spline basis functions are formed by a di-
rect multiplication of univariate basis functions via

(8)

for , where ,

. , is the
number of B-spline basis functions defined in , the th
component of .

Note that for a complete model base, the number of rules
increases exponentially as the input dimension in-

creases, (which is commonly known as the curse of dimension-
ality). To alleviate this disadvantage, input dimension or vari-
able reduction can be used. Notably an ANOVA (analysis of
variance) representation of multivariable functions uses lower
dimensional tensor products of models inputs, e.g. in many prac-
tical applications, the number of multiplication terms maybe

limited to as low as 3, yet maintaining sufficient modeling ca-
pability [1]. For practical applications, not only is the ANOVA
approach effective in overcoming the curse of dimensionality, it
has additional advantage of model transparency because a lower
input dimension than three can be visualized and interpreted
[24].

Substitute (5) and (4) into (1):

(9)

where

. .

, where .
For the finite data set , (9) can be

written in a matrix form as

(10)

where is the output
vector, is
the regression matrix associated with the th fuzzy rule,

is the model residual vector.
is the full regression matrix.

An effective way of overcoming the curse of dimensionality
is to start with a moderate sized rule base according to the actual
data distribution. In this paper, the selection of local models
as an initial model base is based on model identifiability via
an A-optimality design criterion [14] with the advantage of en-
hanced model transparency to quantify and interpret fuzzy rules
and their identifiability.

III. RULE BASED MODEL CONSTRUCTION AND

LEARNING ALGORITHMS

A. Rule Based Learning and Initial Model Base Construction

Rule based knowledge, i.e., information associated with a
fuzzy rule, is highly appropriate for users to understand a de-
rived data based model. Most current learning algorithms in
neurofuzzy model are based on an ordinary p-dimensional linear
in the parameter model. Model transparency during learning
cannot be automatically achieved unless these regressors have
a clear physical interpretation, or are directly associated with
physical variables. Alternatively, a neurofuzzy network is in-
herently transparent for rule based model construction. In (10),
each of is constructed based on a unique fuzzy membership
function , providing a link between a fuzzy rule base and
a matrix feature subspace spanned by . Rule based knowl-
edge can be easily extracted by exploring this link.

Definition 1: Basis of a Subspace: If vectors ,

, satisfy the nonsingular condition that
has a full rank of , they span a -di-

mensional subspace , then is the basis of the subspace
.
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Definition 2: Fuzzy Rule Subspace: Suppose the is non-
singular, clearly is the basis of a -dimensional subspace

, which is a functional representation of the fuzzy rule (3)
by using T–S fuzzy inference mechanism with a unique label

. is defined as a fuzzy rule subspace of the th fuzzy
rule.

, the submatrix associated with the th rule, can be ex-
panded as

(11)

where ,
. (11)

shows that each rule base is simply constructed by a weighting
matrix multiplied to the regression matrix of original input
variables. The weighting matrix can be regarded as a data
based spatial prefiltering over the input region. Without loss of
generality, it is assumed that is nonsingular, and ,
as . As

(12)

For to be nonsingular, then , this means
that for the input region denoted by , its basis function
needs to be excited by at least data points.

The A-optimality design criteria for the weighting matrix
which is given by [14], [22]

(13)

provides an indication for each fuzzy rule on its identifiability
and hence a metric for selecting appropriate model rules. The
derived model rules can then be rearranged in descending order
of identifiability, followed by utilizing only the first experts
with identifiability to construct a model rule base set.

B. Orthogonal Subspace Decomposition and Regularization
in Orthogonal Subspace

For ease of exposition, we initially introduce some notations
and definitions that are used in the development of the new ex-
tended G–S orthogonal decomposition algorithm.

Definition 3: Orthogonal Subspaces: For a -dimensional
matrix space , two of its subspaces

and , ( , ) are orthogonal if
and only if any two vectors and that are located in the
two subspaces respectively, i.e., and ,
are orthogonal, that is, , for .

The -dimensional space , , can be decom-
posed by orthogonal subspaces , , given
by [25], [26]

(14)

where denotes sum of orthogonal sets. From Definition 1, if
there are any linear uncorrelated vectors located in , de-
noted as , , then the matrix

, forms a basis of . Note that these vec-
tors need not to be mutually orthogonal, i.e.,

, where is not required to be diagonal.
Clearly if two matrix subspaces , have the basis of

full rank matrices , , then they
are orthogonal if and only if

(15)

where is a zero matrix.
Definition 4: Vector Decomposition to Subspace Basis: If

orthogonal subspaces , , are defined by a
series of matrices , as subspace basis
based on Definition 3, then an arbitrary vector
can be uniquely decomposed as

(16)

where ’s are combination coefficients.
.

As the result of the orthogonality of , (for
), from (16),

(17)

Clearly the variance of the vector projected into each subspace
can be computed as , for .

Consider the nonlinear system (1) given as a vector form
by (10). By introducing an orthogonal subspace decomposition

, (10) can be written as

(18)

where spans a -dimensional space
with , spanning its subspaces , as

defined via Definition 3. The auxiliary parameter vector
, where is a block upper trian-

gular matrix

(19)

in which . , a unit matrix
.

Definition 5: The Extended G–S Orthogonal Decomposition
Algorithm [22]: An orthogonal subspace decomposition for
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model (18) can be realized based on an extended G–S orthog-
onal decomposition algorithm as follows. Set ,

, and, for , set ,

(20)

where

(21)

for .
Definition 6: Locally Regularized Least Squares Cost Func-

tion in Orthogonal Subspaces: The orthogonal subspace based
regularized least squares uses the following error criterion:

(22)

where , ,
are regularization parameters, and the diagonal matrix

, is a unit
matrix. The regularized least squares estimates of , is given
by [27]

(23)

An appropriate choice of can smooth parameter estimates
(noise rejection), and can be optimized by using a separate
procedure, such as Bayesian hyper-parameter optimization [18],
or a genetic algorithm. In this paper, it is assumed that an appro-
priate is predetermined to simplify the procedure. The regu-
larized least squares solution of (18) is given by

(24)

which follows from the fact that , are mu-
tually orthogonal subspaces basis, and .
From (16), if the system output vector is decomposed as a term

by projecting onto orthogonal subspaces , ,
and an uncorrelated term that is unexplained by the model,
such that the projection onto each subspace basis (or a per-
centage energy contribution of these subspaces toward the con-
struction of ) can be readily calculated via

(25)

The output variance projected onto each subspace can be in-
terpreted as the contribution of each fuzzy rule in the fuzzy
system, subject to the existence of previous fuzzy rules. To in-
clude the most significant subspace basis with the largest
as a forward regression procedure is a direct extension of con-
ventional forward OLS algorithm [10]. The output variance pro-
jected into each subspace can be interpreted as the output energy
contribution explained by a new rule demonstrating the signifi-
cance of the new rule toward the model. At each regression step,
a new orthogonal subspace basis is formed by using a new fuzzy

Fig. 1. Orthogonal subspace decomposition based on fuzzy rule bases.

rule and the existing fuzzy rules in the model, with the rule basis
with the largest to be included in the final model until

(26)

satisfies for an error tolerance to construct a model with
rules. The parameter vectors , can be com-

puted by the following back substitution procedure: Set
, and, for

(27)

The concept of orthogonal subspace decomposition based on
fuzzy rule bases is illustrated in Fig. 1. This figure illustrates
(20) that forms the orthogonal bases. Because of the one to one
mapping of a fuzzy rule to a matrix subspace, a series of orthog-
onal subspace basis are formed by using fuzzy rule subspace
basis in a forward regression manner, such that,

, , whilst maxi-
mizing the output variance of the model at each regression step .
Note that the well known orthogonal schemes such as the clas-
sical G–S method construct orthogonal vectors as basis based
on regression vectors (1-D), but the new algorithm extends the
classical G–S orthogonal decomposition scheme to the orthogo-
nalization of subspace bases (multidimensional). The extended
G–S orthogonal decomposition algorithm is not only an exten-
sion from classical G–S orthogonal axis decomposition to or-
thogonal subspace decomposition, but also as an extension from
basis function regression to matrix subspace regression, intro-
ducing a significant advantage of model transparency to inter-
pret fuzzy rule energy level.

C. New Extended G–S Orthogonal Decomposition Algorithm
With Regularization and D-Optimality in Orthogonal
Subspaces

The above discussion has been largely introduced in [22], ex-
cept that in [22], the was used for subset selection without
parameter regularization . Regularization can be used
as an effective resort to overcome overfitting to noise. Note that
the use of aims to optimize the model in terms of approx-
imation capability, but not in terms of model robustness. In ad-
dition to parameter regularization, composite cost function such
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as least squares plus a penalty term based D-optimality experi-
mental design criterion can be used [16]. To enhance rule model
robustness, the proposed algorithm combines the two separate
previous works, the subspace based rule based model construc-
tion [22] and the combined LOLS and D-optimality algorithm
[18] for robust rule based model construction. The combined
LOLS and D-optimality algorithm [18] was not previously in-
troduced as a rule based learning algorithm, hence some exten-
sions to orthogonal subspace decomposition domain are neces-
sary, as introduced in the following.

The concept of parameter regularization may be incorporated
into a forward orthogonal least squares algorithm as a locally
regularized orthogonal least square estimator for subspace se-
lection by defining a regularized error reduction ratio due to the
submatrix as follows.

After some simplification, it can be shown that the criterion
(22) can be expressed as

(28)

where . Normalizing (28) by yields

(29)

The regularized error reduction ratio due to the subma-
trix

(30)

Definition 7: D-Optimality Experimental Design Cost Func-
tion in Orthogonal Subspaces: In experimental design, the data
covariance matrix is called the design matrix. The D-op-
timality design criterion maximizes the determinant of the de-
sign matrix for the constructed model. Consider a model with
orthogonal subspaces with design matrix as , and a
subset of these subspaces are selected in order to construct a

-subspace model that maximizes the D-optimality
, where is a column subset of repre-

senting a constructed subset model with submatrices selected
from (consisting of submatrices). It is straightforward
to verify that the maximization of is equiva-
lent to the minimization of [22].
Clearly

(31)

It can be easily verify that the maximization of
is identical to the maximization of

, where is a column subset of ( rep-
resenting a constructed subset model with submatrices
selected from (consisting of submatrices) [22].

Definition 8: Combined Locally Regularized Cost Function
and D-Optimality in Orthogonal Subspaces: The combined
LROLS and D-optimality algorithm based on orthogonal
subspace decomposition is based on the combined criterion

(32)

for model selection, where is a fixed small positive weighting
for the D-optimality cost. Equivalently a combined error reduc-
tion ratio defined as

(33)

is used for model selection, and the selection is terminated with
a -subspace model when

(34)

The introduction of D-optimality enhances model robustness
and simplify the model selection procedure [18]. Given a proper

, the new extended G–S orthogonal subspace decomposition
algorithm with regularization and D-optimality for rule based
model construction is given in Appendix I.

IV. NUMERICAL EXAMPLES

Example 1: We start with a simple illustrative mapping ex-
ample. Consider a nonlinear functional approximation of

Five–hundred data pairs are generated where the
system input is generated as a uniformly distributed
random number ranged in [0,1]. Define a knot vector
[ 0.2,0,0.2,0.4,0.6,0.8,1,1.2], and use a piecewise linear
B-spline fuzzy membership function to build a 1-D model,
resulting basis functions. These basis functions,
as shown in Fig. 2, corresponding to six fuzzy rules. 1) If

(very small); 2) IF (small); 3) IF
(medium-small); 4) IF (medium-large); 5) IF

(large); and 6) If (very large).
By using the fuzzy model (4) for the approximation of ,

the neurofuzzy model is simply given as

(35)

where denotes the data label, with each of the fuzzy rule
spanning a 1-D space, i.e., , .

The identifiability of these fuzzy rules are computed based
on (13) and are listed in Table I. Because this example only
involves a scalar input variable, the extended G–S orthogonal
decomposition algorithm reduces to the conventional OLS
algorithm, with each rule subspace being spanned by a 1-D rule
basis. The proposed algorithm produces rule based information
of percentage energy increment (or the model error reduction
ratio) by the selected rule to the model, as shown in Table II



604 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 1, FEBRUARY 2004

Fig. 2. Fuzzy membership functions for x in Example 1.

TABLE I
FUZZY RULES IDENTIFIABILITY IN EXAMPLE 1

TABLE II
SYSTEM ERROR REDUCTION RATIO BY THE SELECTED RULES IN EXAMPLE 1

TABLE III
MODEL MEAN SQUARES ERRORS (MSE) FOR NOISY OBSERVATIONS

AND UNDERLYING FUNCTION

(in the order of selected rules), shown in two cases of with
or without parameter regularization. Each rule contribution in
reducing model error (or increasing the model energy level)
provides model transparency for the fuzzy rules interpretability.
To verify the model’s approximation and robustness, Table III
lists the mean squares error (MSE) of model in target to the
noisy observations and the true function , respec-
tively. For this example, the modeling results are insensitive to
a wide range of the parameter associated with D-optimality
( ). However for , the model
selection process automatically terminates at a five-rule model
(rule 1 is excluded). This insensitivity means that varying

within a certain range will all terminates the modeling
within a suitable structural range. The modeling results of a

Fig. 3. Modeling results of a five-rule model with � = 0:2 for Example 1.

model using five rules with is plotted in Fig. 3. This
example demonstrates that the proposed method has good
approximation and some robustness improvement. Clearly the
proposed modeling approach is additionally advantageous via
its significant model transparency during the modeling process.

Example 2: Nonlinear 2-D Surface Modeling: The Matlab
logo was generated by the first eigenfunction of the L-shaped
membrane. A 51 51 meshed data set is generated by using
Matlab commands

(36)

such that output is defined over an unit square input region
. The data set , shown in Fig. 5(a), is used to model

the target function (the first eigenfunction of the L-shaped mem-
brane function).

For both , , define a knot vector [ 0.4,
0.2,0,0.25,0.5,0.75,1,1.2,1.4], and use a piecewise quadratic

B-spline fuzzy membership function to build a 1-D model,
resulting basis functions. These basis functions, as
shown in Fig. 4, correspond to six fuzzy rules. 1) If ( or ) is
(very small) (VS); 2) IF ( or ) is (small)(S); 3) IF ( or ) is
(medium-small)(MS); 4) IF ( or ) is (medium-large)(ML); 5)
IF ( or ) is (large)(L); and 6) If ( or ) is (very large)(VL).

The univariate and bivariate membership functions (interac-
tion between univariate membership function and via tensor
product) are used as model set and shown in Table IV, in which,
the identifiability of fuzzy rules are listed based on (13). From
Table IV, it is seen that all the rules have been uniformly excited.
There are 48 rules.

By using the fuzzy model (4) for the modeling of , the
neurofuzzy model is simply given as

(37)

where denotes the data label, and is given by the
meshed values of in the input region . Hence each
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Fig. 4. Fuzzy membership functions for x, or y in Example 2.

TABLE IV
FUZZY RULES IDENTIFIABILITY IN EXAMPLE 2; (A) RULES ABOUT x; (B)
RULES ABOUT y; (C) RULES ABOUT X AND Y (THE STAR “ ” INDICATES

RULES INCLUDED IN THE FINAL MODEL)

of the fuzzy rule spans a two-dimensional
(2-D) space, i.e., , . The proposed algorithm based on
the extended G–S orthogonal decomposition has been applied,
in which each rule subspace being spanned by a 2-D rule basis
is mapped into orthogonal matrix subspaces. The modeling re-
sults contain rule based information of percentage energy incre-
ment (or the model error reduction ratio) by the selected rule
to the model as shown in Table V for , .
The MSE of the resultant 20-rule model is . In
Table V, the selected rules are ordered in the sequence of being
selected, and the model selection automatically terminates at
a 20-rule model . The model prediction of the
20-rule model is shown in Fig. 5(b). For this example, the mod-
eling results are insensitive to value of . It has shown that by

TABLE V
SYSTEM ERROR REDUCTION RATIO BY THE SELECTED RULES IN EXAMPLE 2

Fig. 5. Modeling results for Example 2.
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TABLE VI
SYSTEM ERROR REDUCTION RATIO BY THE SELECTED RULES IN EXAMPLE 3

Fig. 6. Modeling results for Example 3.

using a weighting for the D-optimality cost function, the entire
model construction procedure becomes automatic. It can be seen
that the model has some limitations over the modeling of corner
and edge of the surface due to the data being only piecewise
smooth and piecewise nonlinear. This factor may contribute to
the fact that regularization may not help in reducing misfit in
some strong nonlinear behavior region. Global nonlinear mod-
eling using B-spline for strong nonlinear behavior such as piece-
wise smooth and piecewise nonlinear data is under investiga-
tion.

Example 3: Consider the benchmark Henon time series
given by

(38)

Five-hundred data points are generated with an initial con-
dition , . All the data points were used
in the modeling by using the proposed approach. The mod-
eling process is briefly described here. The input vector

. For each input, define a knot
vector [ 2.0, 1.9, 1.8,0,1.8,1.9,2.0], and use a piecewise
quadratic B-spline fuzzy membership function to build a 1-D

model, resulting basis functions, corresponding to six
fuzzy rules. That is, for : 1) If is (small)
(S); 2) If is (Medium Small) (MS); 3) If
is (Medium Large) (ML); 4) If is (Large) (L); Then
bivariate membership functions are formed by using tensor
product.

The modeling results derived by the subspace forward re-
gression process, with , , is given in
Table VI, with the final model consisting of 13 fuzzy rules. This
table shows the energy level per rule extracted for this chaotic
time series. Fig. 6 demonstrates the excellent approximation of
the derived model. The final model MSE is 0.0041. This is very
small compared to signal variance of 1.01.

V. CONCLUSIONS

This paper has introduced a new robust neurofuzzy model
construction algorithm for the modeling of a priori unknown
dynamical systems in the form of a set of fuzzy rules. A one
to one mapping between a fuzzy rule base and a model matrix
feature subspace has been established by extending a T–S in-
ference mechanism. Rule based knowledge are extracted from
matrix subspace to enhance model transparency due to this map-
ping link. In order to achieve maximized model robustness and
sparsity, a new robust extended G–S method has been intro-
duced via two effective and complementary approaches of regu-
larization and D-optimality experimental design. By combining
a subspace approach and the concept of robust model construc-
tion, a locally regularized orthogonal least squares algorithm is
extended for fuzzy rule regularization and subspace based in-
formation extraction, and by combined with a D-optimality for
subspace based rule selection. Model rule bases are decomposed
into orthogonal subspaces, so as to enhance model transparency
with the capability of interpreting the derived rule base energy
level, and are automatically selected for a model with robust-
ness.

APPENDIX I

THE ALGORITHM

An extended classical G–S scheme combined with parameter
regularization and D-optimality selective criterion in orthogonal
subspaces can be summarized as the following procedure.

1) At the th forward regression step, where , for
, compute

for
and if

if

if
if

(39)

(40)
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(41)

Find

for rule base selection (42)

and select

for selected rule base energy

level information extraction (43)

The selected submatrix exchanges columns with
submatrix . For notational convenience, all the sub-
matrices will still be referred as , , ac-
cording to the new column submatrix order in , even if
some of the column submatrices have been interchanged.

2) The procedure is monitored and terminated at the derived
step, when , for a predetermined

. Otherwise, set , go to step 1.
3) Calculate the original parameters according to (27).
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