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Abstract - We examine the classification performance of 
fuzzy rule-based systems designed by three-objective genetic 
rule selection. While a single rule set is usually obtained from a 
single run of rule generation methods, multiple rule sets are 
simultaneously obtained by a single run of our  rule selection 
method with three objectives: to maximize the number of 
correctly classified training patterns, to minimize the number of 
selected fuzzy rules, and to minimize the total rule length. Our 
genetic rule selection is a two-stage approach. In the first stage, 
a pre-specified number of candidate fuzzy rules are extracted in 
a heuristic manner using a data mining technique. In the second 
stage, a multiobjective genetic algorithm is used for finding non- 
dominated rule sets with respect to the three objectives. Since 
the first objective is measured on training patterns, the 
evolution of rule.sets tends to overfit to training patterns. The 
question is whetMer the other two objectives work as a safeguard 
against the overfitting. In this paper, we examine the effect of 
the three-objective formulation on the generalization ability of 
obtained non-dominated rule sets. We also examine the effect of 
the adjustment of rule weights, which is performed after three- 
objective genetic rule selection. 

I. INTRODUCTION 

The tradeoff between the accuracy and the complexity of 
fuzzy rule-based systems was often discussed in recent 
studies [1]-[4]. While those studies simultaneously took into 
account the accuracy and the complexity, the design o f  fuzzy 
rule-based systems was handled in the framework of single- 
objective optimization: Thus the final goal in those studies 
was to find a single fuzzy rule-based system. One of the first 
studies on fuzzy rule-hased systems in the framework of 
multiobjective optimization was genetic rule selection [ 5 ]  
where a two-objective genetic algorithm was used for finding 
multiple non-dominated rule sets with respect to the number 
of correctly classified training patterns and the number of 
fuzzy rules. The two-objective rule selection was extended to 
the case o f  three objectives in [6 ]  where the total rule length 
was also considered. See [7] for further discussions on the 
tradeoff between the accuracy and the complexity. 

When we design fuzzy rule-based classification systems, it 
should be  noted that the maximization of any accuracy 
measure does not always mean the maximization of the 
actual performance. This is because the accuracy is measured 
on training patterns while the actual performance should be 
measured on unseen test patterns. That is, any accuracy 

measure is just an estimation o f  the actual performance, The 
maximization of the accuracy on training patterns often leads 
to the overfitting, which degrades the actual performance of 
fuzzy rule-based classification systems on test patterns. Thus 
we need some sort of safeguard for preventing the overfitting. 
This paper examines the usefulness of complexity measures 
in multiobjective genetic rule selection as a safeguard against 
the overfitting in the design of fuzzy rule-based classification 
systems. In the three-objective formulation in [6], the number 
of fuzzy rules and their total length were used as complexity 
measures. While those complexity measures were originally 
introduced for obtaining comprehensible fuzzy rule-based 
classification systems, we examine their usefulness as a 
safeguard against the overfitting to training patterns through 
computer simulations where classification rates on test 
pattems as well as training patterns were calculated. We also 
examine the effect of the adjustment of rule weights on 
classification rates on test pattems and training pattems. 

First, we briefly describe fuzzy rule-based classification in 
Section 11. Then we explain our two-stage approach [8] to the 
design of fuzzy rule-based classification systems in Section 
111. In the first stage, a number of fuzzy rules are generated as 
candidate rules from training patterns using a data mining 
technique. In the second stage, non-dominated rule sets are 
found from the generated candidate rules by a multiobjective 
genetic algorithm. After genetic rule selection, we apply a 
simple reward-punishment learning scheme of rule weights 
[Y] to each non-dominated rule set. Thus our approach in this 
paper can he viewed as a three-stage algorithm. Classification 
rates of obtained non-dominated rule sets are reported in 
Section IV. Simulation results clearly show that the two 
complexity measures improve not only the comprehensibility 
of rule sets but also their classification performance on test 
patterns. Finally Section V concludes the paper. 

11. FUZZY RULE-BASED CLASSIFICATION 

Let us assume that we have m training pattems x - 
(xpl, ..., x p , , ) ,  p =1,2 ,..., m , from M classes where xpi  is 
the attribute value of the pth training pattem for the ith 
attribute ( i  = l,2, ..., n ). For our pattem classification problem 
with n attributes, we use fuzzy rules of the following form: 

P T  

Rule Rq : If x ,  is A,I and ... and x ,  is A,, 

then Class Cq with CFq , (1) 
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where Rq is the label of the qth fuzzy rule, x =(xi, ..., x,) is 
an n-dimensional pattern vector, Aqi is an antecedent fuzzy 
set, Cy is a class label, and CFq is a tule weight. 

We use the product operator for defining the compatibility 
grade of x p  with the antecedent part A, = (A,1, ..., A q n )  as 

P A ~ ( x ~ ) = P A ~ , ( x ~ I ) ~  P A , , ( X ~ Z ) .  ... . ~ a , , , ( ~ p n ) ,  (2) 

where pA .(  . )  is the membership function of A,; . For 
determining the consequent class C, , we calculate the 
confidence of the fuzzy rule “A, =Class h ” for each class 
as an extension of its crisp version [ lo]  as follows [I I], [12]: 

V‘ 

1 P A , ( x p )  
xpcClase h 

c(A, >Class h )  = (3) 
P A ,  (‘p 

p=l 

The confidence in (3) is the same as the fuzzy conditional 
probability [13]. The consequent class Cy is specified by 
identifying the class with the maximum confidence: 

c(Aq 3 Class Cq) = max c(A, 3 Class h )  . (4) 
h=I,2,  ..., M 

On the other hand, the rule weight CF, is specified as 

M 

h=l  
CF, =c(A,  =Class C,)- Zc(A, a Class h )  . (5) 

h t C q  

The rule weight of each fuzzy rule has a large effect on the 
classification ability of fuzzy rule-based systems [14]. There 
are several alternative heuristic definitions of rule weights 
(see [IS]). Better results were obtained in [IS] from the 
above definition in (5) than the direct use of the confidence. 

Let S be the set of fuzzy rules in our fuzzy rule-based 
classification system. For classifying an input pattern x p  , a 
single winner rule R, is chosen for x p  from the rule set S as 

P A , ( X ~ ) . C F ~ = ~ ~ ~ { P A  q ( x p ) , C F ,  l R q ~  s} .  (6) 

Since the winner rule is chosen based on the compatibility 
grade and the rule weight, the classification ability of the 
fuzzy rule-based system S can be improved by adjusting the 
rule weight of each fuzzy rule. Nozaki et al. [9] proposed a 
simple reward-punishment learning scheme where the rule 
weight CF, of the winner rule R, was increased as follows 
when a training pattern was correctly classified 

CFpW =CF,Oid +q+.(l-CF:ld), (7) 

where q+ is a learning rate. On the other hand, CF, was 
decreased when a training pattern was misclassified: 

( 8 )  
CFFW = CF;ld - q- . CF, Old , 

where q- is a learning rate. The two leaming rates 7’ and 
7- are usually specified as 0 < 7)’ << 7- < 1 because the 
number of correctly classified training patterns is much larger 

than that of misclassified patterns. In this paper, we use the 
heuristic method in ( 5 )  for specifying rule weights in genetic 
rule selection where non-dominated rule sets are found. The 
learning scheme is applied to each non-dominated rule set 
after the execution of the genetic rule selection is terminated. 

111. RULE GENERATION AND RULE SELECTION 

Genetic rule selection was proposed for designing fuzzy 
rule-based classification systems with high accuracy and high 
comprehensibility in [16], [17] where a small number of 
fuzzy rules were selected from a large number of candidate 
rules. Genetic rule selection was extended to the following 
three-objective optimization problem in [6]: 

Maximize fi(S), and minimize fz(S) and f 3 ( S ) ,  (9) 

where S is a subset of candidate rules, fl(S) is the number 
of correctly classified training pattems by S, fz(S) is the 
number of fuzzy rules in S, and f3(S) is the total rule length 
in S. The number of antecedent conditions of each fuzzy rule 
is referred to as the rule length in this paper. 

When we use K linguistic values and “don’t cure” as 
antecedent fuzzy sets, the total number of possible 
combinations of antecedent fuzzy sets is (Kcl )”  . In our 
early studies [5], [16], [17] on genetic rule selection, all 
combinations were examined for generating candidate rules. 
Thus genetic rule selection was applicable only to low- 
dimensional problems (e.g., iris data with four attributes). In 
our recent study [SI, we suggested the use of a data mining 
technique for extracting a pre-specified number of candidate 
rules in a heuristic manner. That is, genetic rule selection was 
extended to a two-stage approach with heuristic rule 
extraction and genetic rule selection. Since a pre-specified 
number of candidate rules are extracted using a data mining 
technique in our two-stage approach, it is applicable to high- 
dimensional problems (e.g., sonar data with 60 attributes). In 
this paper, we further extend it to a three-stage approach by 
incorporating the above-mentioned rule weight learning. 

A.  Heuristic Rule Extraction 
In the field of data mining, association rules are often 

evaluated by two measures: support and confidence [IO]. In 
the same manner as the fuzzy version of the confidence in (3), 
the definition of the  support [ IO]  can be also extended to the 
case of fuzzy rules as follows [ 1 I], [12]: 

1 
s(A,=Class h ) = -  1 , u A q ( x p ) .  (IO) 

xpcClaSsh 

The product of the confidence and the support was used in 
[8] for heuristic selection of candidate rules. Seven heuristic 
criteria were compared in [18] where good results were 
obtained from the following criterion: 
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M 

h=l 
h#Cq 

f S L A v F ( R 4 ) = s ( A q ~ C l a s s C ~ ) -  1 s(A4 ~ C l a s s h ) .  (11) 

This is a modified version of a rule evaluation criterion in an 
iterative genetic learning algorithm called SLAVE [ 191. 

In our heuristic rule extraction, a pre-specified number of 
candidate rules with the largest values of the SLAVE 
criterion are found for each class. For designing fuzzy rule- 
based systems with high comprehensibility, only short rules 
are examined as candidate rules. This restriction on the rule 
length is consistent with the third objective (i.e., to minimize 
the total rule length) of our three-objective formulation in (9). 

B. Genetic Rule Selection 
Let us assume that N fuzzy rules have been extracted as 

candidate rules using the SLAVE criterion (i.e., N / M  fuzzy 
rules for each class). A subset S of the N candidate rules is 
represented by a binary string of the length N as 

s = s,sz “ ‘ S N  , (12) 

where si = 1 and si = O  mean that the j t h  candidate’ rule is 
included in Sand  excluded from S, respectively. 

Recently many multiobjective genetic algorithms with high 
search ability were proposed (e.g., SPEA [20] and NSGA-I1 
[21]). Since rule sets are represented by  binary strings, almost 
all multiobjective genetic algorithms are applicable. In this 
paper, we use the NSGA-I1 because its search ability is high 
and its implementation is relatively easy. 

We use two problem-specific heuristic procedures in the 
NSGA-11. One is biased mutation where a larger probability 
is assigned to the mutation from 1 to 0 than that from 0 to 1. 
This is for efficiently decreasing the number of fuzzy rules. 
The other is the removal of unnecessary rules. Since we use 
the single winner-based method for classifying each pattern, 
some fuzzy rules in S may be chosen as winner rules for no 
patterns. We can remove those fuzzy rules without degrading 
the first objective with respect to the classification accuracy. 
At the same time, the second and third objectives with 
respect to the complexity are improved by removing 
unnecessary rules. Thus we remove all fuzzy rules that are 
not selected as winner rules for any training patterns from the 
rule set S. The removal of unnecessary rules is performed 
after the first objective is calculated for each rule set and 
before the second and third objectives are calculated. 

Iv. COMPUTER SIMULATIONS 

A.  Data Sets 
We used three data sets in Table I available from the UCI 

ML Repository (http://www.ics.uci.edd-mlead. Data sets 
with missing values are marked by “I” in the third column. 
Since we did not use incomplete patterns with missing values, 

the number of patterns in the third column does not include 
those patterns. As benchmark results, we cited simulation 
results by  Elomaa and Rousu [22] in Table 1. They applied 
six variants of the C4.5 algorithm [23] to 30 data sets in the 
UCI ML Repository. The performance of each variant was 
examined by ten iterations of the whole ten-fold cross- 
validation (10-CV) procedure. W e  show in the last two 
columns of Table 1 the best and worst error rates on test 
patterns among the six variants in [22] for each data set. 

Table 1. Data sets used in our computer simulations 

Number of Number of Number of Error rates in [22] 
Data set attributes Dattems classes uprt wnrrv .._.”. 
Breast W 9 683’ 2 5.1 6.0 
Diabetes 8 768 2 25.0 27.2 

Glass 9 214 6 21.3 32.2 
* Incomplete patterns with missing values are not included. 

B. Simulation Conditions 
We applied our two-stage and three-stage approaches to 

three data sets in Table 1. All attribute values were 
normalized into real numbers in the unit interval [0, I]. As 
antecedent fuzzy sets, we used “don ’t care” and 14 triangular 
fuzzy sets in Fig. 1. We generated 300 fuzzy rules of the 
length three or less for each class as candidate rules using the 
SLAVE criterion. Thus the total number of candidate rules 
was 300M where M is the number of classes. 

0.0 “Om 0.0 I .0 I:lxxl. 0.0 I .0 

0.0 ‘-D\x>a. 0.0 I .0 ~~- 0.0 1.0 

Fig. 1. Four fuzzy partitions used in our computer simulations. 

The NSGA-I1 was employed for finding non-dominated 
rule sets from 300M candidate rules. We used the following 
parameter values in the NSGA-11: 

Population size: 200 strings, 
Crossover probability: 0.8, 
Biased mutation probabilities: p,(O + 1) = 1/300M, 

Stopping condition: 5000 generations. 
p,(l+O)=O.l, 

For evaluating the generalization ability of obtained rule 
sets, we used the IO-CV technique as in [22]. First each data 

151 The IEEE International Conference on F u u y  Systems 

http://www.ics.uci.edd-mlead


set was randomly divided into ten subsets of the same size. 
One subset was used as test patterns while the other nine 
subsets were used as training patterns. Our two-stage 
approach was applied to training patterns for finding non- 
dominated rule sets. The generalization ability of obtained 
rule sets was evaluated by classifying test patterns. The train- 
and-test procedure was iterated ten times so that all the ten 
subsets were used as test patterns. As in [22], we iterated the 
whole IO-CV procedure ten times using different data 
partitions. Thus our two-stage approach was executed 100 
times in total for each data set. 

We  also evaluated each non-dominated rule set with 
adjusted rule weights by the reward-punishment learning 
algorithm (i.e., each non-dominated rule set obtained by our 
three-stage approach). Using training patterns, the learning 
algorithm was iterated ten times (i.e., ten epochs or ten 
sweeps) for each of the obtained non-dominated rule sets. 
The classification rate on training patterns was calculated 
after each epoch. The best rule set with the largest 
classification rate on training patterns was chosen among ten 
alternatives, each of which was obtained after each epoch. 
The classification rate on test patterns was calculated for each 
of the non-dominated rule sets improved by the rule weight 
adjustment. 

C. Simulation Results 
Wisconsin Breast Cancer Data Sei: The NSGA-I1 was 

applied to the Wisconsin breast cancer data set (Breast W in 
Table 1) 100 times. From each run of the NSGA-11, 11.5 non- 
dominated rule sets were obtained on the average. We 
calculated error rates of each non-dominated rule set on 
training pattems and test patterns before the rule weight 
adjustment. Simulation results are summarized in Table 2 
where the last column shows the number of runs from which 
the corresponding rule sets (with respect to the number of 
fuzzy rules and the average rule length) were obtained. For 
example, rule sets including four rules of the average length 
1.50 were obtained from 12 out of 100 runs. We omit from 
Table 2 some rare combinations of the number of fuzzy rules 
and the average rule length that were obtained from only 30 
m s  or  less. We can see from Table 1 and Table 2 that the 
generalization ability of many rule sets outperforms the best 
result ofthe C4.5 algorithm in Table 1 (i.e., 5.1% error rate). 

For visually demonstrating the tradeoff between the 
accuracy and the complexity of rule sets, error rates on 
training patterns in Table 2 are shown in Fig. 2 (a) where 
some results with too large error rates are omitted. In Fig. 2 
(a), the smallest error rate on training patterns is denoted by a 
closed circle for each number of fuzzy rules. Thus closed 
circles in Fig. 2 (a) can he viewed as simulation results 
obtained from the two-objective formulation without the third 

objective (Le,, total rule length). From this figure, we can 
observe a clear tradeoff between the error rate on training 
patterns and the number of fuzzy rules. If we use a weighted 
sum of the accuracy on training patterns and the number of 
fuzzy rules as a scalar fitness function, one of the closed 
circles is obtained. For example, the right-most closed circle 
is obtained when the weight for the accuracy is very large. 

On the other hand, error rates on test patterns are shown in 
Fig. 2 (b). Rule sets corresponding to closed circles in Fig. 2 
(a) are also denoted by closed circles in Fig. 2 (b). From Fig. 
2 (b), we can observe the overfitting due to the increase in the 
number of fuzzy rules. That is, error rates on test patterns 
were increased by the increase in the number of fuzzy rules 
in some cases. Moreover we can observe the overfitting due 
to the increase in the rule length in Fig. 2 (b) from the 
difference between the closed circle and the smallest error 
rate on test patterns for each number of fuzzy rules. This 
overfitting was illustrated in Fig. 3 (a) and Fig. 3 (b) for the 
cases of rule sets consisting of two rules and four rules, 
respectively. 

Table 2. Performance of obtained rule sets for the Wisconsin breast 
cancer data set. 

Number Average Average error rate Number 
of Nles length Training Test of runs 

0 0.00 100.00 100.00 100 
1 1.00 35.43 35.43 IO0 
2 I .oo 5.25 6.13 IO0 
2 I .so 3.34 3.47 IO0 
2 2.00 3.15 3.87 92 
3 1.33 2.85 4.19 19 
3 1.61 2.64 4.33 92 
4 1.50 2.42 4.41 72 
4 1.75 2.32 5.09 36 
5 I .40 2.21 4.43 35 
5 1.60 2.05 4.51 61 
5 1.80 2.01 4.02 35 
6 1.50 1.91 4.19 35 
6 1.67 I .87 3.97 45 

0 

Y e 
6 2  
Y 

2 1 4 5 6  
Numbeioffuuymlcr 

(a) Error rate on training patterns. (b) Error rate on test patterns. 
Fig. 2. Error rates for the Wisconsin data before rule weight learning 
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(a) Rule sets with two rules. @) Rule sets with four rules. 
Fig. 3. Error rates of some rule sets in Table 2 and Fig. 2. 

2 1 4 5 6  
Number of fuzzy ~ l e s  

(a) Error rate on training patterns. (b) Error rate on test patterns. 
Fig. 4. Error rates for the Wisconsin data afler rule weight leaming. 

(a) Error rate on training patterns. (b) Error rate on test pattems. 
Fig. 5. Error rates for the diabetes data before rule weight learning. 

e 
5 2 1  

w 
1 3 4 5  2 1 . 1 5  

Number of fuzzy "le! Numbcr of Fuzzy mlcs 

(b) Error rate on test pattems. (a) Error rate on training pattems. 
Fig. 6. Error rates for the diabetes data afler rule weight learning. 

Fig. 4 shows simulation results after the.adjustment of rule 

weights. We applied the leaming algorithm with q+ = 0.0001 
and 11- = 0.1 to each non-dominated rule set. From the 
comparison between Fig. 2 and Fig. 4, we can see that the 
effect of the rule weight adjustment was very small in our 
computer simulations on the Wisconsin breast cancer data. 

Diabetes Data Set: In the same manner as Fig. 2 and Fig. 4, 
simulation results on the diabetes data arc summarized in Fig. 
5 and Fig. 6. In Fig. 5 (a), we can observe a clear tradeoff 
between the accuracy on training pattems and the number of 
fuzzy rules. The overfitting due to the increase in the number 
of fuzzy rules is not clear in Fig. 5 (b). The overfitting due to 
the increase in the rule length, however, is clear as shown by 
the location of each closed circle. We can also see that the 
generalization ability of many rule sets in Fig. 5 (b) and Fig. 
6 (b) is comparable with the reported results of the C4.5 
algorithm in Table l(i.e., best: 25.0% and worst: 27.2%). 

The effect of the. rule weight adjustment was large for the 
diabetes data set. That is, error rates of many rule sets in Fig. 
5 were improved by the adjustment of rule weights in Fig. 6. 

Glass Identification Data Set:' Simulation results on the 
glass data are summarized in Fig. 7 and Fig. 8. In Fig. 7 (b), 
we do not observe the overfitting due to the increase in the 
number of fuzzy rules while the overfitting due to the 
increase in the rule length is clear. The generalization ability 
of rule sets in Fig. 7 (b) and Fig. 8 (b) are inferior to the best 
result ofthe C4.5 algorithm in Table 1 (i.e., 27.3%). The rule 
weight adjustment slightly improved their generalization 
ability in Fig. 8. Our results outperform the recently reported 
result (i.e., 42.1% error rate by 8.5 fuzzy rules) in [24]. 

V. CONCLUSION 
We demonstrated the effect of two complexity measures in 

three-objective genetic rule selection on the generalization 
ability of obtained rule sets. We 'observed the overfitting to 
training pattems due to the increase in the number of fuzzy 
rules in computer simulations on the Wisconsin breast cancer 
data set. For this data set, the second objective (i.e., 
minimization of the number of fuzzy rules) may work as a 
safeguard against the overfitting. We also observed the 
overfitting due to the increase in the tule length in computer 
simulations on three data sets (i.e., Wisconsin, diabetes and 
glass). The two-objective formulation is not enough for those 
data sets where the third objective (Le,, minimization of the 
total rule length) is necessary as  a safeguard against the 
overfitting. We also used a simple reward-punishment 
scheme for adjusting rule weights after non-dominated rule 
sets were obtained by genetic rule selection. The effect of the 
tule weight adjustment was not large in our computer 
simulations except for those on the diabetes data. Currently 
we are examining the rule weight adjustment not only after 
genetic rule selection but also during genetic rule selection. 
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