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Support Vector Learning for Fuzzy Rule-Based
Classification Systems

Yixin Chen Member, IEEEand James Z. Wandlember, IEEE

Abstract—To design a fuzzy rule-based classification system including control and system identification [27], [30], [48],
(fuzzy classifier) with good generalization ability in a high di- [57], [65], signal and image processing [36], [39], [47], pattern
mensional feature space has been an active research topic for ac|assification [1], [17], [20], [26], and information retrieval

long time. As a powerful machine learning approach for pattern I .
recognition problems, support vector machine (SVM) is known [8], [34]. In general, building a fuzzy system consists of three

to have good genera"zation ab|||ty More importanﬂy, an SVM basic StepS [61] structure identification (Va”able Select|0n,
can work very well on a high- (or even infinite) dimensional partitioning input and output spaces, specifying the number
feature space. This paper investigates the connection betweenof fuzzy rules, and choosing a parametric/nonparametric form
fuzzy classifiers and kernel machines, establlsh_es a Ilnk_ betvveenof membership functions), parameter estimation (obtaining
fuzzy rules and kernels, and proposes a learning algorithm for - . L .
fuzzy classifiers. We first show that a fuzzy classifier implicitly ur_lknpwn parameters in _fuz_zy rules via optimizing 5_‘ given
defines a translation invariant kernel under the assumption Criterion), and model validation (performance evaluation and
that all membership functions associated with the same input model simplification). There are numerous studies on all
variable are generated from location transformation of a reference  these subjects. Space limitation precludes the possibility of a

function. Fuzzy inference on thelF-part of a fuzzy rule can be o myrehensive survey. Instead, we only review some of those
viewed as evaluating the kernel function. The kernel function is
results that are most related to ours.

then proven to be a Mercer kernel if the reference functions meet
certain spectral requirement. The corresponding fuzzy classifier

be built from the given training samples based on a support

vector learning approach with the IF-part fuzzy rules given by Deciding the number of input variables is referred to the
the support vectors. Since the leaming process minimizes an proplem of variable selection, i.e., selecting input variables

upper bound on the expected risk (expected prediction error) - : :
instead of the empirical risk (training error), the resulting PDFC that are most predictive of a given outcome. It is related to

usually has good generalization. Moreover, because of the sparsity @ Problems of input dimensionality reduction and parameter
properties of the SVMs, the number of fuzzy rules is irrelevant to ~ pruning. Emamiet al. [14] present a simple method of iden-
the dimension of input space. In this sense, we avoid the “curse of tifying nonsignificant input variables in a fuzzy system based
dimensionality.” Finally, PDFCs with different reference functions g the distribution of degree of memberships over the domain.
are constructed using the support vector learning approach. The Recently, Silipoet al. [44] propose a method that quantifies

performance of the PDFCs is illustrated by extensive experimental AT . .
results. Comparisons with other methods are also provided. the discriminative power of the input features in a fuzzy model

Index Terms—Fuzzy classifier, fuzzy systems, kernel methods, based on information gain. Selecting input variables according

pattern classification, statistical learning theory, support vector (O their information gains may improve the prediction perfor-
machines. mance of the fuzzy system and provides a better understanding

of the underlying concept that generates the data.
Given a set of input and output variables, a fuzzy partition

associates fuzzy sets (or linguistic labels) with each variable.
INCE THE publication of Zadeh'’s seminal paper on fuzzirhere are roughly two ways of doing it: data independent par-
ets [64], fuzzy set theory and its descendant, fuzzy logtitjon and data dependent partition. The former approach parti-
have evolved into powerful tools for managing uncertaintig®ns the input space in a predetermined fashion. The partition of
inherent in complex systems. In the recent twenty years, fuzthe output space then follows from supervised learning. One of
methodology has been successfully applied to a variety of arélas commonly used strategies is to assign a fixed number of lin-
guistic labels to each input variable [56]. Although this scheme
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Various data dependent partition methods have been ptibe model. In statistical learning literature, the Vapnik—Cher-
posed to alleviate these drawbacks. Dickersbal.[11] use an vonenkis (VC) theory [52], [53] provides a general measure of
unsupervised competitive learning algorithm to find the meanodel set complexity. Based on the VC theory, support vector
and covariance matrix of each data cluster in the input/outpuachines (SVMs) [52], [53] can be designed for classification
space. Each data cluster forms an ellipsoidal fuzzy rule patg@noblems. In many real applications, the SVMs give excellent
Thawonmaset al. [50] describe a simple heuristic for unsu-performance [10].
pervised iterative data partition. At each iteration, an input
dimension, which gives the maximum intraclass differende. Our Approach

between the maximum and the minimum values of the dataqowever, no effort has been made to analyze the relationship
along that dimension, is selected. The partition is performe@tween fuzzy rule-based classification systems and kernel
perpendicular to the selected dimension. Two data groghchines. The work presented here attempts to bridge this
representations, hyper-box, and ellipsoidal representations, g&@. We relate additive fuzzy systems to kernel machines, and
compared. In [42], a supervised clustering algorithm is useidmonstrate that, under a general assumption on membership
to group input/output data pairs into a predetermined numigfctions, an additive fuzzy rule-based classification system
of fuzzy clusters. Each cluster corresponds to a fuezyHEN  can be constructed directly from the given training samples
rule. Univariate memberShip functions can then be obtained Qying the Support vector |earning approach_ Such additive
projecting fuzzy clusters onto corresponding coordinate axesyzzy rule-based classification systems are named the positive

Although a fuzzy partition can generate fuzzy rules, resulifefinite fuzzy classifiers (PDFCs). Using the SVM approach to
are usually very coarse with many parameters to be learned @§ld PDFCs has following advantages.

tuned. Various optimization techniques are proposed to solve
this problem. Genetic algorithms [9], [49], [59] and atrtificial
neural networks [22], [24], [60] are two of the most popular and
effective approaches.

* Fuzzy rules are extracted directly from the given training
data. The number of fuzzy rules is irrelevant to the di-
mension of the input space. It is no greater (usually much
less) than the number of training samples. In this sense,
we avoid the “curse of dimensionality.”

B. Generalization Performance » The VC theory establishes the theoretical foundation for

good generalization of the resulting PDFC.
After going through the long journey of structure identifica- ¢ The global solution of an SVM optimization problem can
tion and parameter estimation, can we infer that we get a good be found efficiently using specifically designed quadratic
fuzzy model? In order to draw a conclusion, the following two programming algorithms.

questions must be answered: The remainder of the paper is organized as follows. In Sec-
« How capable can a fuzzy model be? tion Il, a brief overview of the VC theory and SVMs is pre-

« How well can the model, built on finite amount of dataSented. Section il describes the PDFCs, a class of additive fuzzy

capture the concept underlying the data? rule-based classification systems with positive definite member-

_ ) . ship functions, product fuzzy conjunction operator, and center
The first question could be answered from the perspective Gfareq (COA) defuzzification with thresholding unit. We show
function approximation. Several types of fuzzy models agg; the decision boundary of a PDFC can be viewed as a hyper-
proven to be “universal approximators” [28], [38], [58], [63];pjane in the feature space induced by the kernel. In Section IV,
i.e., we can always find a model from a given fuzzy model sgf, 41qorithm is provided to construct PDFC: first, an optimal
so that the model can uniformly approximate any continuoygsarating hyperplane is found using the support vector learning
function on a compact domain to any degree of accuragyyyroach, fuzzy rules are then extracted from the hyperplane.
The second question is about the generalization performanggcion v demonstrates the experiments we have performed,
which is closely related to several well-known problems in the,y provides the results. A description of the relationship be-
statistics and machine learning literature, such as the structyahen, PDFC’s and SVMs with radial basis function (RBF) ker-
risk minimization [51], the bias variance dilemma [15], and thges and a discussion on the advantages of relating fuzzy sys-
overfitting phenomena [2]. Loosely speaking, a model, built Qg 1 kernel machines are presented in Section VI. And fi-

finite amount of given data (training patterns), generalizes the .y we conclude in Section VIl together with a discussion of
best if the right tradeoff is found between the training (learning);re work.

accuracy and the “capacity” of the model set from which the

model is chosen. On one hand, a low “capacity” model set may

not contain any model that fits the training data well. On the

other hand, too much freedom may eventually generate a model his section presents the basic concepts of the VC theory and

behaving like a refined look-up-table: perfect for the trainingVMs. For gentle tutorials of VC theory and SVMs, we refer

data but (maybe) poor on generalization. Iinterested readers to [5] and [35]. More exhaustive treatments
Researchers in the fuzzy systems community attempt @n be found in [52] and [53].

tackle this problem with roughly two approaches: 1) use the

idea of cross-validation to select a model that has the bést VC Theory

ability to generalize [46]; 2) focus on model reduction, whichis Let us consider a two-class classification problem of

usually achieved by rule base reduction [43], [62], to simplifgssigning class labely € {+1,-1} to input feature

Il. VC THEORY AND SUPPORTVECTORMACHINES
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vector # € R"™. We are given a set of training samples How does minimizing (2) relate to our ultimate goal of
{(#1,91),-..,(@1,ym)} C R™ x {+1,—1} that are drawn optimizing the generalization? To answer this question, we
independently from some unknown cumulative probabilityeed to introduce a theorem about the VC dimension of
distribution P(Z, y). The learning task is formulated as findingcanonical hyperplanes [52], which is stated as follows. For
a machine (a functiory : R® — {+1,—1}) that “best” a given set ofl training samples, leR be the radius of the
approximates the mapping generating the training set. In ordsnallest ball containing alltraining samples, and C R"” x R
to make learning feasible, we need to specify a function spabe, the set of coefficients of canonical hyperplanes defined on
H, from which a machine is chosen. the training set. The VC dimensian of the function space
An ideal measure of generalization performance fdil={f(Z)=sgn ({0, %)+ b): (@,b) € A, ||w]| < A,7 € R*}
a selected machinef is expected risk (or the proba-is bounded above by < min (R2A2,n) + 1. Thus minimizing
bility of misclassification) defined asRpz,)(f) = the (1/2)(w, ) term in (2) amounts to minimizing the VC
J}Rnx{ﬂ,q} L p@)2y) (£, y)dP(7,y) where 14(z) is an dimension ofH, therefore the second term of the bound (1).
indicator function such that4(z) = 1 for all z € A, and On the other hanoz,’t.=1 &; is an upper bound on the number
I4(z) = 0forall z ¢ A. Unfortunately, this is more an elegantof misclassifications on the training 3etthus controls the
way of writing the error probability than practical usefulnesempirical risk term in (1). For an adequate positive constant
becauseP(Z,y) is usually unknown. However, there is aC, minimizing (2) can indeed decrease the upper bound on the
family of bounds on the expected risk, which demonstrategpected risk.
fundamental principles of building machines with good gener- Applying the Karush—Kuhn—Tucker complementarity con-
alization. Here we present one result from the VC theory d@tions, one can show that«&, which minimizes (2), can be
to [54]: Given a set of training samples and function spacevritten asw = Z,li:l y;o; Z;. This is called the dual represen-
H, with probabilityl — n, for any f € H the expected risk is tation of . An Z; with nonzeroq; is called a support vector.
bounded above by Let S be the index set of support vectors, then the optimal
decision function becomes

) h(1+In2) —1n2
Rp () (f) < Remp(f) + ¢ l’ S €Y F&) =sgn | > yioi(T) +b ®3)
ics
for any distributionP(#, y) onR™ x {+1, —1}. Here,R.,,,(f) where the coefficientsy; can be found by solving the dual
is called the empirical risk (or training errof)js a nonnegative problem of (2)
integer called the VC dimension. The VC dimension is a mea- ! 1<
sure of the capacity of af{1, —1}-valued function space. Given = maximize W(&) = Z % — 5 Z a0y (T, £5)
a training set of sizé (1) demonstrates a strategy to control ex- i=1 ij=1

pected risk by controlling two quantities: the empirical risk and !
the VC dimension. Next, we will discuss an application of this subject to C > a; >0, i =1,...,1, andz oy = 0.

idea: the SVM learning strategy. i=1
(4)
B. Support Vector Machines The decision boundary given by (3) is a hyperplandih
Let {(Z1,71), ..., (T, )} C R" x {+1,—1} be a training More complex decision surfaces can be generated by employing

set. The SVM learning approach attempts to find a canonicafonlinear mapping : R — F to map the datainto anew fea-
hyperplane {# € R" : (#,#) + b =0, @ € R", b € R} that ture spacé& (usually has dimension higher thaj, and finding
maximally separates two classes of training samples. Helf@@ maximal separating hyperplanefin Note that in (4)7;

(-,-) is an inner product iR". The corresponding decisionN€Ver appears isolated but always in the form of inner product
function (or classifier)f : R® — {+1,—1} is then given by (@, ;). This implies that there is no need to evaluate the non-
f(&) = sgn (&, &) + b). linear mappingP as long as we know the inner productirfor

Considering that the training set may not be linearly sep@lY givenz, z € R". So for computational purposes, instead of

rable, the optimal decision function is found by solving the fol€fining® : R” — F explicitly, a functionk : R” xR" — Ris

lowing quadratic program: introduced to directly define an inner productinSuch a func-
l tion K is also called the Mercer kernel [10], [52], [53]. Substi-
L L= 1, tuting K (Z;, ;) for (Z;, ;) in (4) produces a new optimization
minimize J(w,§) = §<w7w) +C Z & problem / /
=1
l l
: (. 2 _ & & i = 1
subject to y: ({1 %) +6) 21 =4, & 2 0.8 = 1,1 maximize W(3) =) s — 5 D oioyyiy; K (7, 7))
(2) =1 1,7=1
wheref = [€1,...,&]T are slack variables introduced to allow

for the possibility of misclassification of training samplés;>
0 is some constant.

i=1
2A training feature vectof; is misclassified if and only it — ¢; < 0 or
1A hyperplane {Ffe€R": (@, 7)+b=0, ¥ € R", be R} is equivalentlyé; > 1. Lett be the number of misclassifications on the training
called canonical for a given training set if and only«df and b satisfy set. We have < Zﬁzlf, since¢; > 0 for all i and¢; > 1 for misclassifica-

min;—q,..; [{(@0, 7)) + b =1. tions.
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Solving (5) fora gives a decision function of the form whereby € R, the membership functions(z;) = 1 for
k =1,...,n and anyz; € R. Consequently, the input output
£(&) = sgn (Z yiai K (2, %) + b) (6) Mapping becomes
= = n

. . : bo + 32 bj [Ty a5 (zk)
whose decision boundary is a hyperplané& jrand translates to F(7) = j=1 (10)
nonlinear boundaries in the original space. Several techniques 14 i 10, a*(z2)
of solving quadratic programming problems arising in SVM al- =1 k=174

gorithms are described in [23], [25], and [37]. Details of calcu-

lating b can be found in [7]. A classifier associates class labels with input features, i.e., it

is essentially a mapping from the input space to the set of class
labels. In binary case, thresholding is one of the simplest ways
to transformF'(Z) to class labels-1 or —1. In this paper, we
are interested in binary fuzzy classifiers defined as follows.
This section starts with a short description of an additive Definition 3.1: (Binary Fuzzy Classifier) Consider a fuzzy
fuzzy model, based on which binary fuzzy classifiers and stagystem withm + 1 fuzzy rules where Rule 0 is given by (9),
dard binary fuzzy classifiers are defined. We then introduce tRélle j, j = 1,...,m, has the form of (7). If the system uses
concept of positive definite functions, and define PDFCs aproduct for fuzzy conjunction, addition for rule aggregation, and
cordingly. Finally, some nice properties of the PDFCs are di€OA defuzzification, then the system induces a binary fuzzy
cussed. classifier, f, with decision rule

f(Z) = sign (F(&) + 1) (11)

Depending on th@HEN-part of fuzzy rules and the way toWherer (Z) is defined in (10)f € R is a threshold.
combine fuzzy rules, a fuzzy rule-based classification system! € following corollary states that we can assume- 0
can take many different forms [29]. In this paper, we consid¥éfithout loss of generality. o
the additive fuzzy rule-based classification systems (or in shortCorollary 3.2: For any binary fuzzy classifier given by Def-
fuzzy classifier) with constamHeN-parts. Although the discus- |n|t|0|j _3.1 with nonzero threshol_tj_there exists a binary fuzzy
sions in this section and Section IV focus on binary classifierd@ssifier that has the same decision rule but zero threshold.
The results can be extended to multiclass problems by com- Proof: Givenabinary fuzzy classifief, with ¢ 7 0. From
bining several binary classifiers. (10) and (11), we have

Consider a fuzzy model witin fuzzy rules of the form (bo + 1) + Zl(bi 1T, af(l’k)

=

I1l. ADDITIVE FUzzY RULE-BASED CLASSIFICATION SYSTEMS
AND POSITIVE DEFINITE FuzzY CLASSIFIERS

A. Additive Fuzzy Rule-Based Classification Systems

Rule j: IF A} AND A% AND --- AND A7 THEN b; f(&) = sign ,
Y L4 3 Tlim af (o)
whereA% is a fuzzy set with membership functiafj : R — j=1
0,1, 7 = 1,....m, k = 1,....n, b; € R.If we choose whjchisidentical to the decision rule of a binary fuzzy classifier
product as the fuzzy conjunction operator, addition for fuzzyjth b; + t as theTHEN-part of jth fuzzy rule § = 0,...,m)
rule aggregation (that is what “additive” means), and COA dgnd zero threshold. O

fuzzification, then the model becomes a special form of the The membership functions for a binary fuzzy classifier de-
Takagi-Sugeno (TS) fuzzy model [48], and the input outpghed above could be any function froRito [0, 1]. However,

mapping,F' : R" — R, of the model is defined as too much flexibility on the model could make effective learning
m (or training) unfeasible. So, we narrow our interests to a class of
Z bj [Tizs af (zk) membership functions, which are generated from location trans-

F(%) = F; (8) formation of reference functions [12], and the classifiers defined

3 HZ:1 a?(l«k) on them.
j=1 Definition 3.3: (Reference Function, [12]) A functiop :

wherez = [z1,...,2,]T € R" is the input. Note that (8) is not R—[0,1]isa refer.ence function if and only if

well-defined onR™ if 37", T, a¥(xx) = 0 for somez e * pla) = p(-w);

R, which could happen if the input space is not wholly covered * w0) = 1.2

by fuzzy rule “patches.” However, there are several easy fixesDefinition 3.4: (Standard Binary Fuzzy Classifier) A binary
for this problem. For example, we can force the output to sorfizzy classifier given by Definition 3.1 is a standard binary
constant whey" " TT}_, a%(z),) = 0, or add a fuzzy rule so fuzzy .ClaSSIfI(.EI’ if f(lgr thekth mput,.k € {1,...,n}, the mem-
that the denominatoE;.”:l I, af(xk) > 0forall# € Rr. bership functionsg? : [R?.—>k[07 11,7=1,.. .,m, are generaFed
Here, we take the second approach for analytical simplicity. THEM & reference function® through location transformation,

following rule is added: i.e.,af(x) = a*(xr—2}) for some location parametef € R.

3Note that the original definition in [12] has an extra conditignis nonin-
. 1 2 n g [12] o
Rule 0: IF Ay AND Aj AND --- AND Ay THEN b, creasing on0, o), but this condition is not needed in deriving our results and,

(9) therefore, is omitted.
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Proof: From (10), (11), and Corollary 3.2, the decision
rule of a binary fuzzy classifier is

bot 2 b [Ti=1 a5 ()
j=

f(&) = sign 0
1+ Zl [T5=1 o (zk)
=

Sincel + Y.L, [Tj—; af (1) > 0, we have

f(Z) = sign | bo + Z bj H af (k)
=1 k=1

From the definition of standard binary fuzzy classifier,
af(zy) = a¥(ap — 2§), k = 1,...,n,j = 1,...,m. Substi-
tuting them into (14) completes the proof. O

The decision rule (13) is not merely a different representa-
tion form of (11), it provides us with a novel perspective on
binary fuzzy classifiers (Sections I1I-B and 11I-C), and accord-
ingly leads to a new design algorithm for binary fuzzy classifiers
(Section 1V).

(14)

Fig. 1. IF-part membership functions for a standard binary fuzzy classifieﬁ' Positive—Definite Fuzzy Classifiers

Two thick curves denote the reference functiahéz; ) anda?(a) for inputs
xy andxs, respectivelya}(xl) = a'(zy 4+ 6), al(xy) = a*(x1 + 3), and
ai(xz1) = a'*(x, —5) are membership functions associated witha?(z;) =

One particular kind of kernel, Mercer kernel, has received
considerable attention in the machine learning literature [10],

a*(wy+5),a3(w2) = a?(x2 —3),anda3(w2) = a?(x2—7) are membership [16], [52], [53] because it is an efficient way of extending linear

functions associated with, . Clearlyal(rl) ay(xy), andaa(rl)are location
transformed versions ef! (x, ), anda? (x5 ), a2(x2), andaZ(x, ) are location
transformed versions af? ().

A simple example will be helpful for illustrating and under-
standing the basic idea of the aforementioned definition. Let
consider a standard binary fuzzy classifier with two inputs (

andz,) and three fuzzy rules (excluding Rule 0)

Rule 1: TF A] AND A7 THEN b,
Rule 2 : IF AL AND A2 THEN b,
Rule 3 : IF A} AND A2 THEN b;

wherea! (1) = e~1/* anda?(z3) = max(1 — |z2/3],0) are
reference functions for inputs, andzs, respectivelyaj' is the
membership function oA’“ ji=1,2, 3 k =1,2. As shown in
Fig. 1, the membership functloms} aj, anda3 belong to one
location family generated by', the membership functiong,
a3, anda? belong the other location family generatedddy

Corollary 3.5: The decision rule of a standard binary fuzzy

classifier given by Definition 3.4 can be written as

f(#) = Zb K (2, 2;) + bo (12)
whereZ = [x1,z2,...,z,]" € R", Zj = [2],27,...,2}7]" €
R™ contains the Iocatlon parametersa_fjf k=1,...,n, K :

R™ x R™ — [0, 1] is a translation invariant kerrfetlefined as

@.2) = [] a"(er = 25)

4A kernel K (Z, 2) is translation invariant ifx (7, ) = K(Z — 2), i.e., it
depends only o’ — Z, but not on¥ andz themselves.

(13)

learning machines to nonlinear ones. Is the kernel defined by
(13) a Mercer kernel? Before answering this question, we first
guote a theorem.

Theorem 3.6:(Mercer Theorem [10], [32]) LeX be a com-
act subset dR™. Supposex is a continuous symmetric func-
5n such that the integral operatby : La(X) — La(X)

(T f)(- / (.
K(z,

is positive, that is
2)f(Z) f(2)dTdzZ > 0
X x X

forall f € Ly(X). Then, we can expanll (Z, Z) in a uniformly
convergent series (0 x X) in terms ofT’x’s eigen-functions
¢: € Lo(X), normalized in such a way thii;||., = 1, and
positive associated eigenvalulep> 0

me

The positivity condltlon (15) is also called the Mercer con-
dition. A kernel satisfying the Mercer condition is named a
Mercer kernel. An equivalent form of the Mercer condition,
which proves most useful in constructing Mercer kernels, is
given by the following lemma [10].

Lemma 3.7: (Positivity Condition for Mercer Kernels [10])
For a kernelK : R® x R® — R, the Mercer condition (15)
holds if and only if the matriXK (Z;, Z;)] € R"*"™ is positive
semidefinite for all choices of pointgty, ..., Z,} € X andall
n=12....

For most nontrivial kernels, directly checking the Mercer con-
ditions in (15) or Lemma 3.7 is not an easy task. Nevertheless,
for the class of translation invariant kernels, to which the ker-
nels defined by (13) belong, there is an equivalent yet practi-

(15)

)pi(%) (16)
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TABLE |
LIST OF POSITIVE-DEFINITE REFERENCEFUNCTIONS AND THEIR FOURIER TRANSFORM

Reference Function Fourier Transform
Symmetric Triangle || p(z) = max(1 —d|z|,0), d>0 | Flyl(w) = \/g—ﬂb—lzl%(—é—
Gaussian ulz)=e" d>0 Flpllw) = —=e ~%7
I
Cauchy w(z) = sz, d>0 Flul(w) = \/25e Vd
Laplace “(z) = e—dlﬂ?" d>0 ]:'[M](w) = \/;2—_72%5
: — 2 R T )
Hyperbolic Secant || u(z) = @;ﬂ; d>0 Flulw) = 3% e—%g;%é_%-
Squared sinc wlz) = %%2, d>0 Flpl(w) = max(\/Z(3 - %%),0_)
cally more powerful criterion based the spectral property of thehere # = [z1,...,2,]7, Z = [z1,...,2,)7 € R, @ =
kernel [45]. [u1,...,u,)t = 7 — Z. Then
Lemma 3.8:(Mercer Conditions for Translation Invariant 1 n
Kernels, Smolaet al. [45]) A translation invariant kernel FIK](@) = —— / e~ UG, @) H ak(uk)dﬁ
K(%,Z) = K(¥ — %) is a Mercer kernel if and only if the (2m)"/2 Jr k=1
Fourier transform 1 ﬁ . )
1 L :ﬁ/ a”(ug)e "“rU g
FIK|&) = =75 / K(#)e~ i@ gz (2m)"/2 Jan (2]
(27T)n/2 JR" n 1 .
_ k —iWE U
is nonnegative. = H \/ﬂ/ﬁa (g )™ duy,
Kernels defined by (13) do not, in general, have nonnegative k=1
Fourier transforms. However, if we assume that the referenwéich is nonnegative sinaé®, k = 1, ..., n, are positive defi-
functions are positive definite functions, which are defined hyite functions (Corollary 3.10). O
the following definition, then we do get a Mercer kernel (given It might seem that the positive definite assumption on refer-
in Theorem 3.11). ence functions is quite restrictive. In fact, many commonly used

Definition 3.9: (Positive Definite Function [18]) A function reference functions are indeed positive definite. An incomplete
f : R — Ris said to be a positive definite function if the matriXist is given in Table I.
[f(z; — z;)] € R"*™ is positive semi-definite for all choices of More generally, the weighted summation (with positive

points{zy,...,z,} C Randalln =1,2,....... weights) and the product of positive—definite functions are still
Corollary 3.10: A function f : R — R is positive definite if positive—definite (a direct conclusion from the linearity and
and only if the Fourier transform product/convolution properties of the Fourier transform). So,
we can get a class of positive definite membership functions
Flf(w / Je~ T dy; from those listed previously. It is worthwhile noting that the
\/ﬁ asymmetric triangle and the trapezoid membership functions
is honnegative. are not positive definite.
Proof: Given any functionf : R — R, we can define a
translation invariant kernék : R x R — R as C. PDFC and Mercer Features

Recall the expansion (16) given by the Mercer theorem. Let
F be ani, space. If we define a nonlinear mappifig X — F

From Lemma 3.8K is a Mercer kernel if and only if the Fourier &S
transform off is nonnegative. Thus, from Lemma 3.7 and Def- . . . T
inition 3.9, we conclude thaf is a positive definite function if 8(#) = [VMr(), ... vV Mi(@), - ] A7)
and only if its Fourier transform is nonnegative. O

Theorem 3.11:(PDFC) A standard binary classifier given by
Definition 3.4 is called a PDFC if the reference functiom’s,: T T
R — [0,1], k = 1,...,n, are positive—definite functions. The [,y I oy v IT)E =D Jw (18)
translation invariant kernel (13) is then a Mercer kernel. '

Proof: From Lemma 3.8, it suffices to show that the tranghen (16) becomes

lation invariant kernel defined by (13) has nonnegative Fourier oo - >
transform. Rewrite (13) as K(@2) = (2(@),2(E)r - (19)

K(z,2)= f(z — 2)

and define an inner product in as

" ®(7) € F is sometimes referred to as the Mercer features.
K(&,7) H Equation (19) _disple_lys a _nice prope_rty of Merqer kernels:
Pt} Mercer kernel implicitly defines a nonlinear mappifigsuch
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that the kernel computes the inner product in the sgao@aps
to. Therefore a Mercer kernel enables a classifier, in the form
of (12), to work on Mercer features (which usually reside in

2) For a PDFC described in the theorem, et be the

THEN-part of thejth fuzzy rule, and, be theTHEN-part
of Rule 0. Then, from (12) and (19), the decision rule is

a space with dimension much higher than that of the input
space) without explicitly evaluating the Mercer features (which
is computationally very expensive). The following theorem

illustrates the relationship between the PDFCs and Mercer

£(@) =sign (Z by(®(2), B())r + b0>

features. . < . .
Theorem 3.12:Given n positive—definite reference func- =sieht <ij¢(zj)’¢)(‘r)> +bo
tions,a* : R — [0,1],k = 1,...,n,and acompact s& C R", =t F
we define a Mercer kemek (7,2) = [[r_, a"(zx — 2&) Letdi = 3°70, b;®(Z;) andg(ii) = sign((w, @) + bo),
whereZ = [z1,...,2,]T, Z = [z1,...,2,]T € X. LetF be an theng € H and f(Z) = g(®(2)), V& € X.
I, space® : X — F be the nonlinear mapping given by (17),This completes the proof. O

Remark 3.13: The compactness of the input domains re-
quired for purely theoretical reason: it ensures that the expan-
sion (16) can be written in a form of countable sum, thus the non-
linear mapping (17) can be defined. In practice, we do not need
to worry about it provided that all input features (both training
and testing) are within certain range (which can be satisfied via
data preprocessing). Consequently, it is reasonable to assume

and (-, -)g be an inner product ifr defined by (18). Given a
set of points{zy, ..., Z,} C X, we define a subspad¥ C F
asW = Span{®(z}),...,®(Z,)}, and a function spadd on
F asH = {h : h(d) = sign({w,@)g + by), W € W, @ €

F, bo € R}. Then we have the following results.

1) For anyg € H, there exists a PDFC with*, k =

l’l' . ’n’faﬁ reference TUFCtiOES_SUCh tﬁat thﬁe deCiSiotﬂatz*j is also inX for j = 1,...,m because this essentially
rule, f, of the PDFC fatls leg(7) = g((x)), VT € X. requires that all fuzzy rule “patches” center inside the input do-
2) Forany PDFCusing”, k = 1,...,n, as reference func- main

tions, if Z; contains location parameters of tirepart

membership functions associated with fitle fuzzy rule

forj =1,...,m (as defined in Corollary 3.5), then ther
existsg € H such that the decision rul¢, of the PDFC

satisfiesf (Z) = g(®(Z)), V¥ € X.

Remark 3.14:Sinceg(@) = sign({w, @)g + b) = 0 defines
a hyperplane if-, Theorem 3.12 relates the decision boundary
€f a PDFC inX to a hyperplane ir-. The theorem implies
that given any hyperplane I, if its orientation (normal direc-
tion pointed byw) is a linear combination of vectors that have
preimage (undeb) in X, then the hyperplane transforms to a de-
) _ cision boundary of a PDFC. Conversely, given a PDFC, one can
1) Giveng € H, we havey(ii) = sign((@, @) + bo). SINC€  fing a hyperplane i that transforms to the decision boundary
€ W, it can ben\l/vrltten as a linear combination ot the given PDFC. Therefore, we can alternatively consider the
®(Zj)'s, i.e.,u = 35—, bj®(Z;). Thus,g(ii) becomes  gecision boundary of a PDFC as a hyperplane in the feature
spacelF, which corresponds to a nonlinear decision boundary
in X. Constructing a PDFC is then converted to finding a hyper-
plane infF.

Remark 3.15:A hyperplane inF is defined by its normal
direction« and the distance to the origin, which is determined
by b for fixed w. According to the proof of Theorem 3.12,and
b are defined asi = Z;"Zl b;®(Z;) andb = by, respectively,
where{#, ..., Z,} C Xisthe set of location parameters of the
) ) IF-part fuzzy rules, andby, . . ., b, } C Ris the set of constants
Now, we can define a PDFC using', k = 1,---.m iy the THEN-part fuzzy rules. This implies that the-part and
as reference functions. Fgr=1,...,m, letZ; contain - yenpart of fuzzy rules play different roles in modeling the
location parameters of the IF-part membership f“”Ct'O'?ﬁlperplane. The-part parameters,z; . .., Z,, }, defines a set
associated with thgth fuzzy rule (as defined in Corollary ¢ feasible orientationdy = Span{®(2,), o ,®(Z,)}, of the
3.5), andb; be theTHEN-part of thejth fuzzy rule. The pyherplane. ThaHen-part parametergbr , . .., b} select an
THEN-part of Rule 0 ishy. Then, from (12) and (19), the orientation,y""", b;®(Z;), from W. The distance to the origin
decision rule is is then determined by the{EN-part of Rule 0, i.e.b = b.

Proof:

(i) =sign <ij@<zj>7a> + by
F

J=1
m

—sign [ S 0;(®(2), )¢ + bo

Jj=1

IV. SVM APPROACH TOBUILD PDFCs

A PDFC with n inputs andm, which is unknown, fuzzy
rules is parameterized by, possibly different, positive—def-
inite reference functionsaf : R — [0,1], k¥ = 1,...n),

a set of location parameter§z,...,z,} < X) for the
i=1 membership functions of the-part fuzzy rules, and a set
of real numbers{bo,...,b,} C R) for the constants in the
THEN-part fuzzy rules. Which reference functions to choose is
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an interesting research topic by itself [33]. However, it is out It is straightforward to check that the decision rule of the re-
of the scope of this article. Here, we assume that the referemtdting PDFC is identical to (6).

functionsa’ : R — [0,1],% = 1,...,n are predetermined.

Once reference functions are fixed, the only free parameter in

So the remaining question is how to find a set of fuzzy rulahe previous algorithm i€’. According to the optimization cri-
({#1,...,Zm} and {bo,...,b,}) from the given training terion in (2),C’ weights the classification error versus the upper
samples{(1,y1),..., (&1, w)} C X x {+1,-1} so that the bound on the VC dimension. Another way of interpretifids

PDFC has good generalization.

that it affects the sparsity af (the number of nonzero entries

As given in (13), for a PDFC, a Mercer kernel can bg ) [4]. Unfortunately, there is no general rule for picki6g
constructed from the positive definite reference functions. Thgpjcally, a range of values @F should be tried before the best

kernel implicitly defines a nonlinear mapping that mapsx

one can be selected.

into a kernel-induced feature spa€eTheorem 3.12 states that Tpe aforementioned learning algorithm has several nice prop-
the decision rule of a PDFC can be viewed as a hyperplanedjes.

F. Therefore, the original question transforms to: given training

Samples{((b(fl):yl)v'">(Cb(fl)7yl)} c Fx {+17_1}’

how to find a separating hyperplane n that yields good
generalization, and how to extract fuzzy rules from the obtained *
optimal hyperplane. We have seen in Section I1.B that the SVM
algorithm finds a separating hyperplane (in the input space or

* The shape of the reference functions &hgarameter are
the only prior information needed by the algorithm.

The algorithm automatically generates a set of fuzzy rules.
The number of fuzzy rules is irrelevant to the dimension of
the input space. It equals the number of nonzero Lagrange

the kernel induced feature space) with good generalization by ~Multipliers. In this sense, the “curse of dimensionality” is
reducing the empirical risk and, at the same time, controlling ~ avoided. In addition, due to the sparsity@fthe number
the hyperplane margin. Thus we can use the SVM algorithm  Of fuzzy rules is usually much less than the number of

to find an optimal hyperplane iR. Once we get such a hyper-

training samples.

plane, fuzzy rules can be easily extracted. The whole procedure® Each fuzzy rule is parameterized by a training sample

is described by the following algorithm.

Algorithm 4.1: SVM Learning for PDFC

Inputs: Positive definite reference func-

tions af(xzy), kK = 1,...,n, associated with

n input variables, and a set of training

samples  {(Z1,y1),---, (@, u)}-

Outputs: A set of fuzzy rules parame-

terized by %, b;, and m. Z (j = 1,...,m)
contains the location parameters of the

IF -part membership functions of the jth
fuzzy rule, bj (j=0,...,m) is the  THENpart
constant of the jth fuzzy rule, and m + 1
is the number of fuzzy rules.

Steps:

1 Construct a Mercer kernel, K, from the
given positive—definite reference func-

tions according to (13) .

2 Construct an SVM to get a decision rule

of the form 6) :

1) Assign some positive number to C, and
solve the quadratic program defined by (5)
to get the Lagrange multipliers a.

2) Find b (details can be found in, fo
example, [7] ).
3 Extracting fuzzy rules from the deci-
sion rule of the SVM:
bo — b
je1
FORi=1 TO
IF a; >0
bj — yic
je—J+1
END IF
END FOR
m«— j—1

(#Z;,y;) and the associated nonzero Lagrange multiplier
a; whereZ; specifies the location of the-part member-
ship functions, ang;«; gives theTHEN-part constant.

« The global solution for the optimization problem can al-
ways be found efficiently because of the convexity of the
objective function and of the feasible region. Algorithms
designed specifically for the quadratic programming
problems in SVMs make large-scale training (for ex-
ample 200000 samples with 40000 input variables)
practical [23], [25], [37]. The computational complexity
of classification operation is determined by the cost of
kernel evaluation and the number of support vectors.

 Since the goal of optimization is to lower an upper bound
on the expected risk (not just the empirical risk), the re-
sulting PDFC usually has good generalization, which will
be demonstrated in the coming section.

V. EXPERIMENTAL RESULTS

Using Algorithm 4.1, we design PDFCs with different
choices of reference functioasBased on the IRIS data set [3]
and the USPS data setye evaluate the performance of PDFCs
in terms of generalization (classification rate) and number of
fuzzy rules. Comparisons with fuzzy classifiers described in
[19] and results in [35] are also provided.

A. IRIS Data Set

The IRIS data set consists of 150 samples belonging to three
classes of iris plants namely Setosa, Versicolor, and Verginica.
Each class contains 50 samples, and each sample is represented
by four input features (sepal length, sepal width, petal length,
and petal width) and the associated class label. The Setosa class

5The SVMLight [23] is used to implement the SVM’s. This software is avail-
able at http://svmlight.joachims.org.

6The USPS data set is available at http://www.kernel-machines.org/data.
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Fig. 2. Performance of PDFC’s in terms of the mean classification rate and the mean number of fuzzy rules for the IRIS data set. (a) and (d) give the mean
classification rate and the mean number of fuzzy rules, respectively, of PDFCs designed to separate Setosa class from the other two clas$egvéiihand (e

mean classification rate and the mean number of fuzzy rules, respectively, of PDFCs designed to separate Versicolor class from the other(tyawcthfyes.

give the mean classification rate and the mean number of fuzzy rules, respectively, of PDFC’s designed to separate Verginica class from thiassiest two c

is linearly separable from the Versicolor and Verginica classes,and d. Separating the Versicolor (or Verginica) class from
the latter are not linearly separable from each other. Clearly, thlie rest two classes requires slightly more efforts. Fig. 2(b) and
is a multi-class classification problem. However, the Algorithrtc) show that the generalization performance depends on the
4.1 only works for binary classifiers. So we design three PDFGshoices ofC andd. However, for different values af, we get
each of which separates one class from the rest two clasaesy similar generalization performance by picking a praoper
The final predicted class label is decided by the winner of thregalue. In Fig. 2(b), the maximum mean classification rates for
PDFCs, i.e., one with the maximum unthresholded output. C = 100, 1000, and 10000 are 96.81% & 1/4), 96.61%
The generalization performance is evaluated via two-fold = 1/16), and 96.45%d = 1/32), respectively. In Fig. 2(c),
cross-validation. The IRIS data set is randomly divided intitne maximum mean classification rates o= 100, 1000, and
two subsets of equal size (75 samples). A PDFC is trained td6 000 are 96.57%d( = 1/16), 96.61% ¢ = 1/256), and
times, each time with a different subset held out as a validati®6.56% @ = 1/2048), respectively. Moreover, Fig. 2(d)—(f)
set. The classification rate is then defined as the numberddgmonstrate that' affects the number of fuzzy rules. For a
correctly classified validation samples divided by the size diked value ofd, a largerC value corresponds to a smaller mean
the validation set. We repeat the two-fold cross-validatiamumber of fuzzy rules. This complies with the observation in
200 times using different partitions of the IRIS data set, artle SVM literature that the number of support vectors decreases
compute the mean of the classification rates. This quantityvidenC is large.
viewed as an estimation of the generalization performance.  To get the final multi-class classifier, we need to combine
For all input variables, we use the Gaussian reference funliree PDFCs (each one is designed to separate one class from
tion given in Table I. PDFCs are designed for different values gfe rest two classes)_ Here, we use the following strategy.
C (in Algorithm 4.1) and{ (of the Gaussian reference function). _ .
The mean classification rate and the mean number of fuzzy * Pick thre(_a PDFC's with thg sarr(é andd values. .
rules for different values of andd are plotted in Fig. 2. Sep- * The .pred|cted class label is given by the PDFC with the
arating the Setosa class from the other two classes is relatively maximum unthresholded output.
easy since they are linearly separable. Consequently, as shdhis strategy is by no means optimal. However, itis very simple,
in Fig. 2(a), the PDFCs generalizes perfectly for all values ahd works very well. The results far = 100, d = 1, 1/2, 1/4,
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TABLE I
MEAN CLASSIFICATION RATE » AND MEAN NUMBER OF FUZzY RULES m (FOR MULTI-CLASS CLASSIFIERS. A COMPARISON OFMULTICLASS CLASSIFIERS
CONSTRUCTEDFROM THREE PDFCs AND FUzzY CLASSIFIERSBUILT FROM ISHIBUCHI'S APPROACHUSING THE IRIS DATA SET

Combining 3 PDFCs (C = 100) Ishibuchi’s Approach [19]
d=% |d=3% |d=% |d=} |d=10||M=2 | M=3 |M=4 |M=5|M=6
T || 95.46% | 96.22% | 96.38% | 95.97% | 95.55% || 91.73% | 94.80% | 94.53% | 94.80% | 95.37%
m || 62.49 | 475 | 3546 | 28695 | 26.69 | 16 81 256 625 1296

TABLE 1lI
USPS D:xTA SET. MEAN CLASSIFICATION RATE 74 STANDARD DEVIATION AND MEAN NUMBER OF FUzzy RULES m (FOR ONE PDFC) WsING
DIFFERENT REFERENCEFUNCTIONS

Gaussian Cauchy Laplace S-Triangle H-Secant Sinc?
r | 95.2% +0.3% | 95.2% +0.3% | 94.7% +0.4% | 95.0% + 0.3% | 95.0% + 0.3% | 95.2% + 0.2%
m | 573 567 685 652 468 391

1/8, and 1/16 are summarized in Table I, where we also cite thk the average cross-validation error is computed. The optimal
results reported by Ishibucht al.[19]. In their approach, input d andC' are the values that gives the minimal mean cross-val-
features are normalized to the interval [0, 1], and each axisidhtion error. Based on the selected parameter, the PDFCs are
the input space is assignéd uniformly distributed fuzzy sets. constructed and evaluated on the testing set. The whole process
The rule weights angdHEN-part of fuzzy rules are determinedis repeated five times. The mean classification rate (and the stan-
by a reward-and-punishment scheme [19]. Clearly, the numlziard deviation) on the testing set and the mean number of fuzzy
of fuzzy rules for such a system ig*. rules (for one PDFC) are listed in Table IIl. For comparison pur-
From Table Il we can see that the classification rates of clgsese, we also cite the results from [35]: linear SVM (classifica-
sifiers built on PDFCs (with a range dfvalues) are higher than tion rate 91.3%)k-nearest neighbor (classification rate 94.3%),
those of the classifiers constructed from Ishibuchi’'s approacBvM with Gaussian kernel (classification rate 95.8%), and vir-
Moreover, the number of fuzzy rules used by PDFCs is less thtaral SVM (classification rate 97.0%).
that of Ishibuchi's approach (except f&f = 2 which gives Note that the Gaussian reference function corresponds to
a less favorable classification rate of 91.73%). In addition, fohe Gaussian RBF kernel used in the SVM literature. For
a PDFC, the number of fuzzy rules is bounded above by thiee USPS data, all six reference functions achieve similar
number of training samples since each fuzzy rule is paran@assification rates. The number of fuzzy rules varies signif-
terized by a training sample with nonzero Lagrange multipligcantly. The number of fuzzy rules needed by the squared
While, using Ishibuchi’'s approach, the number of fuzzy rulesinc reference function is only 68.2% of that needed by the

increases exponentially ag*. Gaussian reference function. Compared with the linear SVM
and k-nearest neighbor approach [35], the PDFCs achieve a
B. USPS Data Set better classification rate. SVMs can be improved by using prior

) _ knowledge. For instance, the virtual SVM [35] performs better
The USPS data set contains 9298 grayscale images of hapgdy current PDFCs. However, same approach can be applied

written digits. The images are size normalized to fitin ad® {5 pyild PDFCs, i.e., PDFCs can also benefit from the same
pixel box while preserving their aspect ratio. The data set is ‘ﬁfior knowledge.

vided into a training set of 7291 samples and a testing set of
2007 samples. For each sample, the input feature vector con- VI. DISCUSSION
sists of 256 grayscale values. ) _

In this experiment, we test the performance of PDFC’s fdi- Relationship Between PDFC Kernels and RBF Kernels
different choices of reference functions givenin Table I. For dif- In the literature, it is well-known that a Gaussian RBF
ferent input variables, the reference functions are chosen tortwork can be trained via support vector learning using a
identical. Ten PDFC’s are designed, each of which separates @aissian RBF kernel [41]. While the functional equivalence
digit from the remaining nine digits. The final predicted clasbetween fuzzy inference systems and Gaussian RBF networks
label is decided by the PDFC with the maximum unthresholdésl established in [21] where the membership functions within
output. Based on the training set, we use five-fold cross-vaiach rule must be Gaussian functions with identical variance.
dation to determine thé parameter of reference functions ando connection between such fuzzy systems and SVMs with
the C' parameter in support vector learning (for each PDF@aussian RBF kernels can be established. The following
whereC takes values from {100, 1000, 10000}, addakes discussion compares the kernels defined by PDFCs and RBF
values from{1/2™ : n = 2,...,10}. For each pair ofl and kernels commonly used in SVMs.
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The kernels of PDFCs are constructed from positive defi-
nite reference functions. These kernels are translation invariant,

[43] and computational complexity issues in SVMs [6]
and kernel PCA (principal component analysis) [40].

symmetric with respect to a set of orthogonal axes, and tailing—
off gradually. In this sense, they appear to be very similar to the
general RBF kernels [16]. In fact, the Gaussian reference func-
tion defines the Gaussian RBF kernel. However, in general, the
kernels of PDFC'’s are not RBF kernels. According to the def-
inition, an RBF kernel K (Z, Z), depends only on the norm of
Z—Zzi.e,K(Z— %)= Kgrpr(]|Z — Z]|). It can be shown that

for a kernel K (Z, Z), defined by (13) using symmetric triangle,
Cauchy, Laplace, hyperbolic secant, or squared sinc reference
functions (even with identicaf for all input variables), there
exists¥y, >, 71, and Zy such that||£'1 — 51” = ||l_:2 — ZQH
andK (#,7)) # K(¥2, Z3). Moreover, a general RBF kernels
(even if it is a Mercer kernel) may not be a PDFC kernel, i.e.,

it can not be in general decomposed as product of positive def-
inite reference functions. It is worth noting that the kernel de-
fined by symmetric triangle reference functions is identical to
the B,,-splines (or order 1) kernel that is commonly used in the
SVM literature [55].

B. Advantages of Connecting Fuzzy Systems to
Kernel Machines

Kernel methods represent one of the most important direc-
tions both in theory and application of machine learning. While

The computational complexity of an SVM scales with
the number of support vectors. One way of decreasing
the complexity is to reduce the number of support-
vector-like vectors in the decision rule (6). For the class
of kernels, which can be interpreted by a set of fuzzy
IF-THEN rules, this can be viewed as fuzzy rule base
simplification.

In kernel PCA [40], given a test poiat the kth non-
linear principal componentjy, is computed by, =
Eﬁzl af K (%, #;) wherel is the number of data points

in a given data set (details of calculating € R can

be found in [40]). Therefore, the computational com-
plexity of computings, scales with. For the class of
kernels discussed in this paper, it is not difficult to de-
rive thatg;, can be equivalently viewed as the output of
an additive fuzzy system using first order moment de-
fuzzification without thresholding unit. Here; and

of parameterize thes-part andTHEN-part of theith
fuzzy rule ¢ = 1,...,1), respectively. As a result,
fuzzy rule base reduction techniques may be applied to
increase the speed of nonlinear principal components
calculation.

VIlI. CONCLUSION AND FUTURE WORK

fuzzy classifier was regarded as a method that “are cumbersom# this paper, we exhibit the connection between fuzzy classi-
to use in high dimensions or on complex problems or in profiers and kernel machines, and propose a support vector learning
lems with dozens or hundreds of features ([13, p. 194]).” Esta@Pproach to construct fuzzy classifiers so that a fuzzy classifier
lishing the connection between fuzzy systems and kernel nf&n have good generalization ability in a high dimensional fea-

chines has the following advantages.

» Anovel kernel perspective of fuzzy classifiers is providecg
Through reference functions, fuzzy rules are related i

ture space. As future work, we intend to explore in the following
irections. 1) The requirement that all membership functions
ssociated with an input variable are generated from the same
Bference function maybe somewhat restrictive. However, it can

translation invariant ke_rnels. _Fuzzy inference on e shown that this constraint can be relaxed. 2) The positivity
IF-part of a fuzzy rule is eguwalent to .evaluatmg th‘T‘equirement on reference functions can also be relaxed. In that
kerneI: !f the rgfgrence fgnctmns are restricted to the Claégse, the kernel in general will not be a Mercer kernel. But the
of positive definite functions then the k.e”‘e' wrns OUt_t_ﬂJzzy classifiers can still be related to the generalized support
be a Mercer kernel, a_nd the correspondm_g fuzzy CIass'f'\%ctor machines [31]. 3) Although our work focuses on the clas-
becomes a PDFC. S_lnce Merce_r kernel induces a featlfg oo problem, itis not difficult to extend the results to func-
Space, we can co_nS|der the decision bou_ndary ofa PD't:i.g:n approximations. Fuzzy function approximation (using posi-
asa hypg rplane n th‘f’“ spac“e. 'I_'he Sje3|gn of & PDFCl%_definite reference functions) is equivalent to support vector
then equivalent to flndln_g an “optimal .h.yper.plane. regression [55] using the kernel defined by reference functions.
A new approach to build fuzzy classifiers is prOpose&%Apply fuzzy rule base reduction techniques to reduce com-
t

Ba_sed on the link between fuz_zy systems a_nd kernel Jtational complexities of the SVM and kernel PCA.
chines, a support vector learning approach is proposed to

construct PDFCs so that a fuzzy classifier can have good
generalization ability in a high dimensional feature space.
The resulting fuzzy rules are determined by support vec- The authors would like to thank the anonymous reviewers and
tors, corresponding Lagrange multipliers, and associatdw Associate Editor for their comments which led to improve-
class labels. ments of this paper.
It points out a future direction of applying techniques
in fuzzy systems literature to improve the performance REFERENCES
of kernel me_thOd.s' The link between fuzzy SyStems_"’md[l] S. Abe and R. Thawonmas, “A fuzzy classifier with ellipsoidal regions,”
kernel machines implies that a class of kernel machines,  IEEE Trans. Fuzzy Systol. 5, pp. 358-368, June 1997.
such as those using Gaussian kernels, can be interprete@] P. L. Bartlett, “For valid generalization, the size of the weights is more
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