
716 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 11, NO. 6, DECEMBER 2003

Support Vector Learning for Fuzzy Rule-Based
Classification Systems
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Abstract—To design a fuzzy rule-based classification system
(fuzzy classifier) with good generalization ability in a high di-
mensional feature space has been an active research topic for a
long time. As a powerful machine learning approach for pattern
recognition problems, support vector machine (SVM) is known
to have good generalization ability. More importantly, an SVM
can work very well on a high- (or even infinite) dimensional
feature space. This paper investigates the connection between
fuzzy classifiers and kernel machines, establishes a link between
fuzzy rules and kernels, and proposes a learning algorithm for
fuzzy classifiers. We first show that a fuzzy classifier implicitly
defines a translation invariant kernel under the assumption
that all membership functions associated with the same input
variable are generated from location transformation of a reference
function. Fuzzy inference on theIF-part of a fuzzy rule can be
viewed as evaluating the kernel function. The kernel function is
then proven to be a Mercer kernel if the reference functions meet
certain spectral requirement. The corresponding fuzzy classifier
is named positive definite fuzzy classifier (PDFC). A PDFC can
be built from the given training samples based on a support
vector learning approach with the IF-part fuzzy rules given by
the support vectors. Since the learning process minimizes an
upper bound on the expected risk (expected prediction error)
instead of the empirical risk (training error), the resulting PDFC
usually has good generalization. Moreover, because of the sparsity
properties of the SVMs, the number of fuzzy rules is irrelevant to
the dimension of input space. In this sense, we avoid the “curse of
dimensionality.” Finally, PDFCs with different reference functions
are constructed using the support vector learning approach. The
performance of the PDFCs is illustrated by extensive experimental
results. Comparisons with other methods are also provided.

Index Terms—Fuzzy classifier, fuzzy systems, kernel methods,
pattern classification, statistical learning theory, support vector
machines.

I. INTRODUCTION

SINCE THE publication of Zadeh’s seminal paper on fuzzy
sets [64], fuzzy set theory and its descendant, fuzzy logic,

have evolved into powerful tools for managing uncertainties
inherent in complex systems. In the recent twenty years, fuzzy
methodology has been successfully applied to a variety of areas
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including control and system identification [27], [30], [48],
[57], [65], signal and image processing [36], [39], [47], pattern
classification [1], [17], [20], [26], and information retrieval
[8], [34]. In general, building a fuzzy system consists of three
basic steps [61]: structure identification (variable selection,
partitioning input and output spaces, specifying the number
of fuzzy rules, and choosing a parametric/nonparametric form
of membership functions), parameter estimation (obtaining
unknown parameters in fuzzy rules via optimizing a given
criterion), and model validation (performance evaluation and
model simplification). There are numerous studies on all
these subjects. Space limitation precludes the possibility of a
comprehensive survey. Instead, we only review some of those
results that are most related to ours.

A. Structure Identification and Parameter Estimation

Deciding the number of input variables is referred to the
problem of variable selection, i.e., selecting input variables
that are most predictive of a given outcome. It is related to
the problems of input dimensionality reduction and parameter
pruning. Emamiet al. [14] present a simple method of iden-
tifying nonsignificant input variables in a fuzzy system based
on the distribution of degree of memberships over the domain.
Recently, Silipoet al. [44] propose a method that quantifies
the discriminative power of the input features in a fuzzy model
based on information gain. Selecting input variables according
to their information gains may improve the prediction perfor-
mance of the fuzzy system and provides a better understanding
of the underlying concept that generates the data.

Given a set of input and output variables, a fuzzy partition
associates fuzzy sets (or linguistic labels) with each variable.
There are roughly two ways of doing it: data independent par-
tition and data dependent partition. The former approach parti-
tions the input space in a predetermined fashion. The partition of
the output space then follows from supervised learning. One of
the commonly used strategies is to assign a fixed number of lin-
guistic labels to each input variable [56]. Although this scheme
is not difficult to implement, it has two serious drawbacks.

• The information in the given data (patterns) is not fully
exploited. The performance of the resulting system may be
poor if the input space partition is quite distinct from the
true distribution of data. Optimizing output space partition
alone is not sufficient.

• The scheme suffers from the curse of dimensionality. If
each input variable is allocated fuzzy sets, a fuzzy
system with inputs and one output needs on the order
of rules.
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Various data dependent partition methods have been pro-
posed to alleviate these drawbacks. Dickersonet al. [11] use an
unsupervised competitive learning algorithm to find the mean
and covariance matrix of each data cluster in the input/output
space. Each data cluster forms an ellipsoidal fuzzy rule patch.
Thawonmaset al. [50] describe a simple heuristic for unsu-
pervised iterative data partition. At each iteration, an input
dimension, which gives the maximum intraclass difference
between the maximum and the minimum values of the data
along that dimension, is selected. The partition is performed
perpendicular to the selected dimension. Two data group
representations, hyper-box, and ellipsoidal representations, are
compared. In [42], a supervised clustering algorithm is used
to group input/output data pairs into a predetermined number
of fuzzy clusters. Each cluster corresponds to a fuzzyIF–THEN

rule. Univariate membership functions can then be obtained by
projecting fuzzy clusters onto corresponding coordinate axes.

Although a fuzzy partition can generate fuzzy rules, results
are usually very coarse with many parameters to be learned and
tuned. Various optimization techniques are proposed to solve
this problem. Genetic algorithms [9], [49], [59] and artificial
neural networks [22], [24], [60] are two of the most popular and
effective approaches.

B. Generalization Performance

After going through the long journey of structure identifica-
tion and parameter estimation, can we infer that we get a good
fuzzy model? In order to draw a conclusion, the following two
questions must be answered:

• How capable can a fuzzy model be?
• How well can the model, built on finite amount of data,

capture the concept underlying the data?

The first question could be answered from the perspective of
function approximation. Several types of fuzzy models are
proven to be “universal approximators” [28], [38], [58], [63],
i.e., we can always find a model from a given fuzzy model set
so that the model can uniformly approximate any continuous
function on a compact domain to any degree of accuracy.
The second question is about the generalization performance,
which is closely related to several well-known problems in the
statistics and machine learning literature, such as the structural
risk minimization [51], the bias variance dilemma [15], and the
overfitting phenomena [2]. Loosely speaking, a model, built on
finite amount of given data (training patterns), generalizes the
best if the right tradeoff is found between the training (learning)
accuracy and the “capacity” of the model set from which the
model is chosen. On one hand, a low “capacity” model set may
not contain any model that fits the training data well. On the
other hand, too much freedom may eventually generate a model
behaving like a refined look-up-table: perfect for the training
data but (maybe) poor on generalization.

Researchers in the fuzzy systems community attempt to
tackle this problem with roughly two approaches: 1) use the
idea of cross-validation to select a model that has the best
ability to generalize [46]; 2) focus on model reduction, which is
usually achieved by rule base reduction [43], [62], to simplify

the model. In statistical learning literature, the Vapnik–Cher-
vonenkis (VC) theory [52], [53] provides a general measure of
model set complexity. Based on the VC theory, support vector
machines (SVMs) [52], [53] can be designed for classification
problems. In many real applications, the SVMs give excellent
performance [10].

C. Our Approach

However, no effort has been made to analyze the relationship
between fuzzy rule-based classification systems and kernel
machines. The work presented here attempts to bridge this
gap. We relate additive fuzzy systems to kernel machines, and
demonstrate that, under a general assumption on membership
functions, an additive fuzzy rule-based classification system
can be constructed directly from the given training samples
using the support vector learning approach. Such additive
fuzzy rule-based classification systems are named the positive
definite fuzzy classifiers (PDFCs). Using the SVM approach to
build PDFCs has following advantages.

• Fuzzy rules are extracted directly from the given training
data. The number of fuzzy rules is irrelevant to the di-
mension of the input space. It is no greater (usually much
less) than the number of training samples. In this sense,
we avoid the “curse of dimensionality.”

• The VC theory establishes the theoretical foundation for
good generalization of the resulting PDFC.

• The global solution of an SVM optimization problem can
be found efficiently using specifically designed quadratic
programming algorithms.

The remainder of the paper is organized as follows. In Sec-
tion II, a brief overview of the VC theory and SVMs is pre-
sented. Section III describes the PDFCs, a class of additive fuzzy
rule-based classification systems with positive definite member-
ship functions, product fuzzy conjunction operator, and center
of area (COA) defuzzification with thresholding unit. We show
that the decision boundary of a PDFC can be viewed as a hyper-
plane in the feature space induced by the kernel. In Section IV,
an algorithm is provided to construct PDFC: first, an optimal
separating hyperplane is found using the support vector learning
approach, fuzzy rules are then extracted from the hyperplane.
Section V demonstrates the experiments we have performed,
and provides the results. A description of the relationship be-
tween PDFC’s and SVMs with radial basis function (RBF) ker-
nels and a discussion on the advantages of relating fuzzy sys-
tems to kernel machines are presented in Section VI. And fi-
nally, we conclude in Section VII together with a discussion of
future work.

II. VC THEORY AND SUPPORTVECTORMACHINES

This section presents the basic concepts of the VC theory and
SVMs. For gentle tutorials of VC theory and SVMs, we refer
interested readers to [5] and [35]. More exhaustive treatments
can be found in [52] and [53].

A. VC Theory

Let us consider a two-class classification problem of
assigning class label to input feature
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vector . We are given a set of training samples
that are drawn

independently from some unknown cumulative probability
distribution . The learning task is formulated as finding
a machine (a function ) that “best”
approximates the mapping generating the training set. In order
to make learning feasible, we need to specify a function space,

, from which a machine is chosen.
An ideal measure of generalization performance for

a selected machine is expected risk (or the proba-
bility of misclassification) defined as

where is an
indicator function such that for all , and

for all . Unfortunately, this is more an elegant
way of writing the error probability than practical usefulness
because is usually unknown. However, there is a
family of bounds on the expected risk, which demonstrates
fundamental principles of building machines with good gener-
alization. Here we present one result from the VC theory due
to [54]: Given a set of training samples and function space

, with probability , for any the expected risk is
bounded above by

(1)

for any distribution on . Here,
is called the empirical risk (or training error),is a nonnegative
integer called the VC dimension. The VC dimension is a mea-
sure of the capacity of a { }-valued function space. Given
a training set of size, (1) demonstrates a strategy to control ex-
pected risk by controlling two quantities: the empirical risk and
the VC dimension. Next, we will discuss an application of this
idea: the SVM learning strategy.

B. Support Vector Machines

Let be a training
set. The SVM learning approach attempts to find a canonical
hyperplane1 that
maximally separates two classes of training samples. Here,

is an inner product in . The corresponding decision
function (or classifier) is then given by

.
Considering that the training set may not be linearly sepa-

rable, the optimal decision function is found by solving the fol-
lowing quadratic program:

(2)

where are slack variables introduced to allow
for the possibility of misclassification of training samples,

is some constant.

1A hyperplane f~x 2 : h~w; ~xi+ b = 0; ~w 2 ; b 2 g is
called canonical for a given training set if and only if~w and b satisfy
min jh~w; ~x i+ bj = 1.

How does minimizing (2) relate to our ultimate goal of
optimizing the generalization? To answer this question, we
need to introduce a theorem about the VC dimension of
canonical hyperplanes [52], which is stated as follows. For
a given set of training samples, let be the radius of the
smallest ball containing alltraining samples, and
be the set of coefficients of canonical hyperplanes defined on
the training set. The VC dimension of the function space

is bounded above by . Thus minimizing
the term in (2) amounts to minimizing the VC
dimension of , therefore the second term of the bound (1).
On the other hand, is an upper bound on the number
of misclassifications on the training set2 , thus controls the
empirical risk term in (1). For an adequate positive constant

, minimizing (2) can indeed decrease the upper bound on the
expected risk.

Applying the Karush–Kuhn–Tucker complementarity con-
ditions, one can show that a, which minimizes (2), can be
written as . This is called the dual represen-
tation of . An with nonzero is called a support vector.
Let be the index set of support vectors, then the optimal
decision function becomes

(3)

where the coefficients can be found by solving the dual
problem of (2)

and

(4)

The decision boundary given by (3) is a hyperplane in.
More complex decision surfaces can be generated by employing
a nonlinear mapping to map the data into a new fea-
ture space (usually has dimension higher than), and finding
the maximal separating hyperplane in. Note that in (4)
never appears isolated but always in the form of inner product

. This implies that there is no need to evaluate the non-
linear mapping as long as we know the inner product infor
any given . So for computational purposes, instead of
defining explicitly, a function is
introduced to directly define an inner product in. Such a func-
tion is also called the Mercer kernel [10], [52], [53]. Substi-
tuting for in (4) produces a new optimization
problem

(5)

2A training feature vector~x is misclassified if and only if1 � � < 0 or
equivalently� > 1. Let t be the number of misclassifications on the training
set. We havet � � since� � 0 for all i and� > 1 for misclassifica-
tions.
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Solving (5) for gives a decision function of the form

(6)

whose decision boundary is a hyperplane in, and translates to
nonlinear boundaries in the original space. Several techniques
of solving quadratic programming problems arising in SVM al-
gorithms are described in [23], [25], and [37]. Details of calcu-
lating can be found in [7].

III. A DDITIVE FUZZY RULE-BASED CLASSIFICATION SYSTEMS

AND POSITIVE DEFINITE FUZZY CLASSIFIERS

This section starts with a short description of an additive
fuzzy model, based on which binary fuzzy classifiers and stan-
dard binary fuzzy classifiers are defined. We then introduce the
concept of positive definite functions, and define PDFCs ac-
cordingly. Finally, some nice properties of the PDFCs are dis-
cussed.

A. Additive Fuzzy Rule-Based Classification Systems

Depending on theTHEN-part of fuzzy rules and the way to
combine fuzzy rules, a fuzzy rule-based classification system
can take many different forms [29]. In this paper, we consider
the additive fuzzy rule-based classification systems (or in short
fuzzy classifier) with constantTHEN-parts. Although the discus-
sions in this section and Section IV focus on binary classifiers.
The results can be extended to multiclass problems by com-
bining several binary classifiers.

Consider a fuzzy model with fuzzy rules of the form

(7)
where is a fuzzy set with membership function

, , , . If we choose
product as the fuzzy conjunction operator, addition for fuzzy
rule aggregation (that is what “additive” means), and COA de-
fuzzification, then the model becomes a special form of the
Takagi–Sugeno (TS) fuzzy model [48], and the input output
mapping, , of the model is defined as

(8)

where is the input. Note that (8) is not
well-defined on if for some

, which could happen if the input space is not wholly covered
by fuzzy rule “patches.” However, there are several easy fixes
for this problem. For example, we can force the output to some
constant when , or add a fuzzy rule so
that the denominator for all .
Here, we take the second approach for analytical simplicity. The
following rule is added:

(9)

where , the membership functions for
and any . Consequently, the input output

mapping becomes

(10)

A classifier associates class labels with input features, i.e., it
is essentially a mapping from the input space to the set of class
labels. In binary case, thresholding is one of the simplest ways
to transform to class labels or . In this paper, we
are interested in binary fuzzy classifiers defined as follows.

Definition 3.1: (Binary Fuzzy Classifier) Consider a fuzzy
system with fuzzy rules where Rule 0 is given by (9),
Rule , , has the form of (7). If the system uses
product for fuzzy conjunction, addition for rule aggregation, and
COA defuzzification, then the system induces a binary fuzzy
classifier, , with decision rule

(11)

where is defined in (10), is a threshold.
The following corollary states that we can assume

without loss of generality.
Corollary 3.2: For any binary fuzzy classifier given by Def-

inition 3.1 with nonzero threshold, there exists a binary fuzzy
classifier that has the same decision rule but zero threshold.

Proof: Given a binary fuzzy classifier,, with . From
(10) and (11), we have

which is identical to the decision rule of a binary fuzzy classifier
with as theTHEN-part of th fuzzy rule ( )
and zero threshold.

The membership functions for a binary fuzzy classifier de-
fined above could be any function fromto [0, 1]. However,
too much flexibility on the model could make effective learning
(or training) unfeasible. So, we narrow our interests to a class of
membership functions, which are generated from location trans-
formation of reference functions [12], and the classifiers defined
on them.

Definition 3.3: (Reference Function, [12]) A function
is a reference function if and only if

• ;
• .3

Definition 3.4: (Standard Binary Fuzzy Classifier) A binary
fuzzy classifier given by Definition 3.1 is a standard binary
fuzzy classifier if for the th input, , the mem-
bership functions, , , are generated
from a reference function through location transformation,
i.e., for some location parameter .

3Note that the original definition in [12] has an extra condition:� is nonin-
creasing on[0;1), but this condition is not needed in deriving our results and,
therefore, is omitted.
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Fig. 1. IF-part membership functions for a standard binary fuzzy classifier.
Two thick curves denote the reference functionsa (x ) anda (x ) for inputs
x andx , respectively.a (x ) = a (x + 6), a (x ) = a (x + 3), and
a (x ) = a (x �5) are membership functions associated withx . a (x ) =
a (x +5),a (x ) = a (x �3), anda (x ) = a (x �7) are membership
functions associated withx . Clearly,a (x ), a (x ), anda (x ) are location
transformed versions ofa (x ), anda (x ), a (x ), anda (x ) are location
transformed versions ofa (x ).

A simple example will be helpful for illustrating and under-
standing the basic idea of the aforementioned definition. Let us
consider a standard binary fuzzy classifier with two inputs (
and ) and three fuzzy rules (excluding Rule 0)

where and are
reference functions for inputs and , respectively, is the
membership function of , , . As shown in
Fig. 1, the membership functions, , and belong to one
location family generated by , the membership functions ,

, and belong the other location family generated by.
Corollary 3.5: The decision rule of a standard binary fuzzy

classifier given by Definition 3.4 can be written as

(12)

where ,
contains the location parameters of, ,

is a translation invariant kernel4 defined as

(13)

4A kernelK(~x; ~z) is translation invariant ifK(~x; ~z) = K(~x � ~z), i.e., it
depends only on~x � ~z, but not on~x and~z themselves.

Proof: From (10), (11), and Corollary 3.2, the decision
rule of a binary fuzzy classifier is

Since , we have

(14)

From the definition of standard binary fuzzy classifier,
, , . Substi-

tuting them into (14) completes the proof.
The decision rule (13) is not merely a different representa-

tion form of (11), it provides us with a novel perspective on
binary fuzzy classifiers (Sections III-B and III-C), and accord-
ingly leads to a new design algorithm for binary fuzzy classifiers
(Section IV).

B. Positive–Definite Fuzzy Classifiers

One particular kind of kernel, Mercer kernel, has received
considerable attention in the machine learning literature [10],
[16], [52], [53] because it is an efficient way of extending linear
learning machines to nonlinear ones. Is the kernel defined by
(13) a Mercer kernel? Before answering this question, we first
quote a theorem.

Theorem 3.6:(Mercer Theorem [10], [32]) Let be a com-
pact subset of . Suppose is a continuous symmetric func-
tion such that the integral operator

is positive, that is

(15)

for all . Then, we can expand in a uniformly
convergent series (on ) in terms of ’s eigen-functions

, normalized in such a way that , and
positive associated eigenvalues

(16)

The positivity condition (15) is also called the Mercer con-
dition. A kernel satisfying the Mercer condition is named a
Mercer kernel. An equivalent form of the Mercer condition,
which proves most useful in constructing Mercer kernels, is
given by the following lemma [10].

Lemma 3.7: (Positivity Condition for Mercer Kernels [10])
For a kernel , the Mercer condition (15)
holds if and only if the matrix is positive
semidefinite for all choices of points and all

.
For most nontrivial kernels, directly checking the Mercer con-

ditions in (15) or Lemma 3.7 is not an easy task. Nevertheless,
for the class of translation invariant kernels, to which the ker-
nels defined by (13) belong, there is an equivalent yet practi-
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TABLE I
LIST OF POSITIVE–DEFINITE REFERENCEFUNCTIONS AND THEIR FOURIER TRANSFORM

cally more powerful criterion based the spectral property of the
kernel [45].

Lemma 3.8: (Mercer Conditions for Translation Invariant
Kernels, Smolaet al. [45]) A translation invariant kernel

is a Mercer kernel if and only if the
Fourier transform

is nonnegative.
Kernels defined by (13) do not, in general, have nonnegative

Fourier transforms. However, if we assume that the reference
functions are positive definite functions, which are defined by
the following definition, then we do get a Mercer kernel (given
in Theorem 3.11).

Definition 3.9: (Positive Definite Function [18]) A function
is said to be a positive definite function if the matrix

is positive semi-definite for all choices of
points and all .

Corollary 3.10: A function is positive definite if
and only if the Fourier transform

is nonnegative.
Proof: Given any function , we can define a

translation invariant kernel as

From Lemma 3.8, is a Mercer kernel if and only if the Fourier
transform of is nonnegative. Thus, from Lemma 3.7 and Def-
inition 3.9, we conclude that is a positive definite function if
and only if its Fourier transform is nonnegative.

Theorem 3.11:(PDFC) A standard binary classifier given by
Definition 3.4 is called a PDFC if the reference functions,

, , are positive–definite functions. The
translation invariant kernel (13) is then a Mercer kernel.

Proof: From Lemma 3.8, it suffices to show that the trans-
lation invariant kernel defined by (13) has nonnegative Fourier
transform. Rewrite (13) as

where , ,
. Then

which is nonnegative since , , are positive defi-
nite functions (Corollary 3.10).

It might seem that the positive definite assumption on refer-
ence functions is quite restrictive. In fact, many commonly used
reference functions are indeed positive definite. An incomplete
list is given in Table I.

More generally, the weighted summation (with positive
weights) and the product of positive–definite functions are still
positive–definite (a direct conclusion from the linearity and
product/convolution properties of the Fourier transform). So,
we can get a class of positive definite membership functions
from those listed previously. It is worthwhile noting that the
asymmetric triangle and the trapezoid membership functions
are not positive definite.

C. PDFC and Mercer Features

Recall the expansion (16) given by the Mercer theorem. Let
be an space. If we define a nonlinear mapping

as

(17)

and define an inner product in as

(18)

then (16) becomes

(19)

is sometimes referred to as the Mercer features.
Equation (19) displays a nice property of Mercer kernels:
Mercer kernel implicitly defines a nonlinear mappingsuch
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that the kernel computes the inner product in the spacemaps
to. Therefore a Mercer kernel enables a classifier, in the form
of (12), to work on Mercer features (which usually reside in
a space with dimension much higher than that of the input
space) without explicitly evaluating the Mercer features (which
is computationally very expensive). The following theorem
illustrates the relationship between the PDFCs and Mercer
features.

Theorem 3.12:Given positive–definite reference func-
tions, , , and a compact set ,
we define a Mercer kernel
where , . Let be an

space, be the nonlinear mapping given by (17),
and be an inner product in defined by (18). Given a
set of points , we define a subspace
as , and a function space on

as
. Then we have the following results.

1) For any , there exists a PDFC with ,
, as reference functions such that the decision

rule, , of the PDFC satisfies , .
2) For any PDFC using , , as reference func-

tions, if contains location parameters of theIF-part
membership functions associated with theth fuzzy rule
for (as defined in Corollary 3.5), then there
exists such that the decision rule,, of the PDFC
satisfies , .

Proof:

1) Given , we have . Since
, it can be written as a linear combination of

’s, i.e., . Thus, becomes

Now, we can define a PDFC using , ,
as reference functions. For , let contain
location parameters of the IF-part membership functions
associated with theth fuzzy rule (as defined in Corollary
3.5), and be theTHEN-part of the th fuzzy rule. The
THEN-part of Rule 0 is . Then, from (12) and (19), the
decision rule is

Clearly, , .

2) For a PDFC described in the theorem, let be the
THEN-part of the th fuzzy rule, and be theTHEN-part
of Rule 0. Then, from (12) and (19), the decision rule is

Let and ,
then and , .

This completes the proof.
Remark 3.13:The compactness of the input domainis re-

quired for purely theoretical reason: it ensures that the expan-
sion (16) can be written in a form of countable sum, thus the non-
linear mapping (17) can be defined. In practice, we do not need
to worry about it provided that all input features (both training
and testing) are within certain range (which can be satisfied via
data preprocessing). Consequently, it is reasonable to assume
that is also in for because this essentially
requires that all fuzzy rule “patches” center inside the input do-
main.

Remark 3.14:Since defines
a hyperplane in , Theorem 3.12 relates the decision boundary
of a PDFC in to a hyperplane in . The theorem implies
that given any hyperplane in, if its orientation (normal direc-
tion pointed by ) is a linear combination of vectors that have
preimage (under ) in , then the hyperplane transforms to a de-
cision boundary of a PDFC. Conversely, given a PDFC, one can
find a hyperplane in that transforms to the decision boundary
of the given PDFC. Therefore, we can alternatively consider the
decision boundary of a PDFC as a hyperplane in the feature
space , which corresponds to a nonlinear decision boundary
in . Constructing a PDFC is then converted to finding a hyper-
plane in .

Remark 3.15:A hyperplane in is defined by its normal
direction and the distance to the origin, which is determined
by for fixed . According to the proof of Theorem 3.12,and

are defined as and , respectively,
where is the set of location parameters of the
IF-part fuzzy rules, and is the set of constants
in the THEN-part fuzzy rules. This implies that theIF-part and
THEN-part of fuzzy rules play different roles in modeling the
hyperplane. TheIF-part parameters, , defines a set
of feasible orientations, , of the
hyperplane. TheTHEN-part parameters select an
orientation, , from . The distance to the origin
is then determined by theTHEN-part of Rule 0, i.e., .

IV. SVM A PPROACH TOBUILD PDFCS

A PDFC with inputs and , which is unknown, fuzzy
rules is parameterized by, possibly different, positive–def-
inite reference functions ( , ),
a set of location parameters ( ) for the
membership functions of theIF-part fuzzy rules, and a set
of real numbers ( ) for the constants in the
THEN-part fuzzy rules. Which reference functions to choose is
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an interesting research topic by itself [33]. However, it is out
of the scope of this article. Here, we assume that the reference
functions , are predetermined.
So the remaining question is how to find a set of fuzzy rules
( and ) from the given training
samples so that the
PDFC has good generalization.

As given in (13), for a PDFC, a Mercer kernel can be
constructed from the positive definite reference functions. The
kernel implicitly defines a nonlinear mapping that maps
into a kernel-induced feature space. Theorem 3.12 states that
the decision rule of a PDFC can be viewed as a hyperplane in

. Therefore, the original question transforms to: given training
samples ,
how to find a separating hyperplane in that yields good
generalization, and how to extract fuzzy rules from the obtained
optimal hyperplane. We have seen in Section II.B that the SVM
algorithm finds a separating hyperplane (in the input space or
the kernel induced feature space) with good generalization by
reducing the empirical risk and, at the same time, controlling
the hyperplane margin. Thus we can use the SVM algorithm
to find an optimal hyperplane in. Once we get such a hyper-
plane, fuzzy rules can be easily extracted. The whole procedure
is described by the following algorithm.

Algorithm 4.1: SVM Learning for PDFC
Inputs: Positive definite reference func-
tions , , associated with

input variables, and a set of training
samples .
Outputs: A set of fuzzy rules parame-
terized by , , and . ( )
contains the location parameters of the
IF -part membership functions of the th
fuzzy rule, ( ) is the THEN-part
constant of the th fuzzy rule, and
is the number of fuzzy rules.
Steps:
1 Construct a Mercer kernel, , from the

given positive–definite reference func-
tions according to (13) .
2 Construct an SVM to get a decision rule

of the form (6) :
1) Assign some positive number to , and

solve the quadratic program defined by (5)
to get the Lagrange multipliers .

2) Find (details can be found in, for
example, [7] ).
3 Extracting fuzzy rules from the deci-

sion rule of the SVM:

FOR TO
IF

END IF
END FOR

It is straightforward to check that the decision rule of the re-
sulting PDFC is identical to (6).

Once reference functions are fixed, the only free parameter in
the previous algorithm is . According to the optimization cri-
terion in (2), weights the classification error versus the upper
bound on the VC dimension. Another way of interpretingis
that it affects the sparsity of (the number of nonzero entries
in ) [4]. Unfortunately, there is no general rule for picking.
Typically, a range of values of should be tried before the best
one can be selected.

The aforementioned learning algorithm has several nice prop-
erties.

• The shape of the reference functions andparameter are
the only prior information needed by the algorithm.

• The algorithm automatically generates a set of fuzzy rules.
The number of fuzzy rules is irrelevant to the dimension of
the input space. It equals the number of nonzero Lagrange
multipliers. In this sense, the “curse of dimensionality” is
avoided. In addition, due to the sparsity of, the number
of fuzzy rules is usually much less than the number of
training samples.

• Each fuzzy rule is parameterized by a training sample
and the associated nonzero Lagrange multiplier

where specifies the location of theIF-part member-
ship functions, and gives theTHEN-part constant.

• The global solution for the optimization problem can al-
ways be found efficiently because of the convexity of the
objective function and of the feasible region. Algorithms
designed specifically for the quadratic programming
problems in SVMs make large-scale training (for ex-
ample 200 000 samples with 40 000 input variables)
practical [23], [25], [37]. The computational complexity
of classification operation is determined by the cost of
kernel evaluation and the number of support vectors.

• Since the goal of optimization is to lower an upper bound
on the expected risk (not just the empirical risk), the re-
sulting PDFC usually has good generalization, which will
be demonstrated in the coming section.

V. EXPERIMENTAL RESULTS

Using Algorithm 4.1, we design PDFCs with different
choices of reference functions.5 Based on the IRIS data set [3]
and the USPS data set,6 we evaluate the performance of PDFCs
in terms of generalization (classification rate) and number of
fuzzy rules. Comparisons with fuzzy classifiers described in
[19] and results in [35] are also provided.

A. IRIS Data Set

The IRIS data set consists of 150 samples belonging to three
classes of iris plants namely Setosa, Versicolor, and Verginica.
Each class contains 50 samples, and each sample is represented
by four input features (sepal length, sepal width, petal length,
and petal width) and the associated class label. The Setosa class

5The SVMLight [23] is used to implement the SVM’s. This software is avail-
able at http://svmlight.joachims.org.

6The USPS data set is available at http://www.kernel-machines.org/data.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Performance of PDFC’s in terms of the mean classification rate and the mean number of fuzzy rules for the IRIS data set. (a) and (d) give the mean
classification rate and the mean number of fuzzy rules, respectively, of PDFCs designed to separate Setosa class from the other two classes. (b) and (e) give the
mean classification rate and the mean number of fuzzy rules, respectively, of PDFCs designed to separate Versicolor class from the other two classes.(c) and (f)
give the mean classification rate and the mean number of fuzzy rules, respectively, of PDFC’s designed to separate Verginica class from the other two classes.

is linearly separable from the Versicolor and Verginica classes,
the latter are not linearly separable from each other. Clearly, this
is a multi-class classification problem. However, the Algorithm
4.1 only works for binary classifiers. So we design three PDFCs,
each of which separates one class from the rest two classes.
The final predicted class label is decided by the winner of three
PDFCs, i.e., one with the maximum unthresholded output.

The generalization performance is evaluated via two-fold
cross-validation. The IRIS data set is randomly divided into
two subsets of equal size (75 samples). A PDFC is trained two
times, each time with a different subset held out as a validation
set. The classification rate is then defined as the number of
correctly classified validation samples divided by the size of
the validation set. We repeat the two-fold cross-validation
200 times using different partitions of the IRIS data set, and
compute the mean of the classification rates. This quantity is
viewed as an estimation of the generalization performance.

For all input variables, we use the Gaussian reference func-
tion given in Table I. PDFCs are designed for different values of

(in Algorithm 4.1) and (of the Gaussian reference function).
The mean classification rate and the mean number of fuzzy
rules for different values of and are plotted in Fig. 2. Sep-
arating the Setosa class from the other two classes is relatively
easy since they are linearly separable. Consequently, as shown
in Fig. 2(a), the PDFCs generalizes perfectly for all values of

and . Separating the Versicolor (or Verginica) class from
the rest two classes requires slightly more efforts. Fig. 2(b) and
(c) show that the generalization performance depends on the
choices of and . However, for different values of , we get
very similar generalization performance by picking a proper
value. In Fig. 2(b), the maximum mean classification rates for

, 1000, and 10 000 are 96.81% ( ), 96.61%
( ), and 96.45% ( ), respectively. In Fig. 2(c),
the maximum mean classification rates for , 1000, and
10 000 are 96.57% ( ), 96.61% ( ), and
96.56% ( ), respectively. Moreover, Fig. 2(d)–(f)
demonstrate that affects the number of fuzzy rules. For a
fixed value of , a larger value corresponds to a smaller mean
number of fuzzy rules. This complies with the observation in
the SVM literature that the number of support vectors decreases
when is large.

To get the final multi-class classifier, we need to combine
three PDFCs (each one is designed to separate one class from
the rest two classes). Here, we use the following strategy.

• Pick three PDFC’s with the sameand values.
• The predicted class label is given by the PDFC with the

maximum unthresholded output.

This strategy is by no means optimal. However, it is very simple,
and works very well. The results for , , 1/2, 1/4,
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TABLE II
MEAN CLASSIFICATION RATE r AND MEAN NUMBER OF FUZZY RULESm (FOR MULTI-CLASS CLASSIFIERS). A COMPARISON OFMULTICLASS CLASSIFIERS

CONSTRUCTEDFROM THREE PDFCS AND FUZZY CLASSIFIERSBUILT FROM ISHIBUCHI’S APPROACHUSING THE IRIS DATA SET

TABLE III
USPS DATA SET. MEAN CLASSIFICATION RATE r� STANDARD DEVIATION AND MEAN NUMBER OF FUZZY RULESm (FOR ONE PDFC) USING

DIFFERENTREFERENCEFUNCTIONS

1/8, and 1/16 are summarized in Table II, where we also cite the
results reported by Ishibuchiet al. [19]. In their approach, input
features are normalized to the interval [0, 1], and each axis of
the input space is assigned uniformly distributed fuzzy sets.
The rule weights andTHEN-part of fuzzy rules are determined
by a reward-and-punishment scheme [19]. Clearly, the number
of fuzzy rules for such a system is .

From Table II we can see that the classification rates of clas-
sifiers built on PDFCs (with a range ofvalues) are higher than
those of the classifiers constructed from Ishibuchi’s approach.
Moreover, the number of fuzzy rules used by PDFCs is less than
that of Ishibuchi’s approach (except for which gives
a less favorable classification rate of 91.73%). In addition, for
a PDFC, the number of fuzzy rules is bounded above by the
number of training samples since each fuzzy rule is parame-
terized by a training sample with nonzero Lagrange multiplier.
While, using Ishibuchi’s approach, the number of fuzzy rules
increases exponentially as .

B. USPS Data Set

The USPS data set contains 9298 grayscale images of hand-
written digits. The images are size normalized to fit in a 1616
pixel box while preserving their aspect ratio. The data set is di-
vided into a training set of 7291 samples and a testing set of
2007 samples. For each sample, the input feature vector con-
sists of 256 grayscale values.

In this experiment, we test the performance of PDFC’s for
different choices of reference functions given in Table I. For dif-
ferent input variables, the reference functions are chosen to be
identical. Ten PDFC’s are designed, each of which separates one
digit from the remaining nine digits. The final predicted class
label is decided by the PDFC with the maximum unthresholded
output. Based on the training set, we use five-fold cross-vali-
dation to determine the parameter of reference functions and
the parameter in support vector learning (for each PDFC)
where takes values from {100, 1000, 10 000}, andtakes
values from . For each pair of and

, the average cross-validation error is computed. The optimal
and are the values that gives the minimal mean cross-val-

idation error. Based on the selected parameter, the PDFCs are
constructed and evaluated on the testing set. The whole process
is repeated five times. The mean classification rate (and the stan-
dard deviation) on the testing set and the mean number of fuzzy
rules (for one PDFC) are listed in Table III. For comparison pur-
pose, we also cite the results from [35]: linear SVM (classifica-
tion rate 91.3%), -nearest neighbor (classification rate 94.3%),
SVM with Gaussian kernel (classification rate 95.8%), and vir-
tual SVM (classification rate 97.0%).

Note that the Gaussian reference function corresponds to
the Gaussian RBF kernel used in the SVM literature. For
the USPS data, all six reference functions achieve similar
classification rates. The number of fuzzy rules varies signif-
icantly. The number of fuzzy rules needed by the squared
sinc reference function is only 68.2% of that needed by the
Gaussian reference function. Compared with the linear SVM
and -nearest neighbor approach [35], the PDFCs achieve a
better classification rate. SVMs can be improved by using prior
knowledge. For instance, the virtual SVM [35] performs better
than current PDFCs. However, same approach can be applied
to build PDFCs, i.e., PDFCs can also benefit from the same
prior knowledge.

VI. DISCUSSION

A. Relationship Between PDFC Kernels and RBF Kernels

In the literature, it is well-known that a Gaussian RBF
network can be trained via support vector learning using a
Gaussian RBF kernel [41]. While the functional equivalence
between fuzzy inference systems and Gaussian RBF networks
is established in [21] where the membership functions within
each rule must be Gaussian functions with identical variance.
So connection between such fuzzy systems and SVMs with
Gaussian RBF kernels can be established. The following
discussion compares the kernels defined by PDFCs and RBF
kernels commonly used in SVMs.
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The kernels of PDFCs are constructed from positive defi-
nite reference functions. These kernels are translation invariant,
symmetric with respect to a set of orthogonal axes, and tailing
off gradually. In this sense, they appear to be very similar to the
general RBF kernels [16]. In fact, the Gaussian reference func-
tion defines the Gaussian RBF kernel. However, in general, the
kernels of PDFC’s are not RBF kernels. According to the def-
inition, an RBF kernel, , depends only on the norm of

, i.e., . It can be shown that
for a kernel, , defined by (13) using symmetric triangle,
Cauchy, Laplace, hyperbolic secant, or squared sinc reference
functions (even with identical for all input variables), there
exists , , , and such that
and . Moreover, a general RBF kernels
(even if it is a Mercer kernel) may not be a PDFC kernel, i.e.,
it can not be in general decomposed as product of positive def-
inite reference functions. It is worth noting that the kernel de-
fined by symmetric triangle reference functions is identical to
the -splines (or order 1) kernel that is commonly used in the
SVM literature [55].

B. Advantages of Connecting Fuzzy Systems to
Kernel Machines

Kernel methods represent one of the most important direc-
tions both in theory and application of machine learning. While
fuzzy classifier was regarded as a method that “are cumbersome
to use in high dimensions or on complex problems or in prob-
lems with dozens or hundreds of features ([13, p. 194]).” Estab-
lishing the connection between fuzzy systems and kernel ma-
chines has the following advantages.

• A novel kernel perspective of fuzzy classifiers is provided.
Through reference functions, fuzzy rules are related to
translation invariant kernels. Fuzzy inference on the
IF-part of a fuzzy rule is equivalent to evaluating the
kernel. If the reference functions are restricted to the class
of positive definite functions then the kernel turns out to
be a Mercer kernel, and the corresponding fuzzy classifier
becomes a PDFC. Since Mercer kernel induces a feature
space, we can consider the decision boundary of a PDFC
as a hyperplane in that space. The design of a PDFC is
then equivalent to finding an “optimal” hyperplane.

• A new approach to build fuzzy classifiers is proposed.
Based on the link between fuzzy systems and kernel ma-
chines, a support vector learning approach is proposed to
construct PDFCs so that a fuzzy classifier can have good
generalization ability in a high dimensional feature space.
The resulting fuzzy rules are determined by support vec-
tors, corresponding Lagrange multipliers, and associated
class labels.

• It points out a future direction of applying techniques
in fuzzy systems literature to improve the performance
of kernel methods. The link between fuzzy systems and
kernel machines implies that a class of kernel machines,
such as those using Gaussian kernels, can be interpreted
by a set of fuzzyIF–THEN rules. This opens interesting
connections between fuzzy rule base reduction techniques

[43] and computational complexity issues in SVMs [6]
and kernel PCA (principal component analysis) [40].

– The computational complexity of an SVM scales with
the number of support vectors. One way of decreasing
the complexity is to reduce the number of support-
vector-like vectors in the decision rule (6). For the class
of kernels, which can be interpreted by a set of fuzzy
IF–THEN rules, this can be viewed as fuzzy rule base
simplification.

– In kernel PCA [40], given a test point, the th non-
linear principal component, , is computed by

where is the number of data points
in a given data set (details of calculating can
be found in [40]). Therefore, the computational com-
plexity of computing scales with . For the class of
kernels discussed in this paper, it is not difficult to de-
rive that can be equivalently viewed as the output of
an additive fuzzy system using first order moment de-
fuzzification without thresholding unit. Here, and

parameterize theIF-part andTHEN-part of the th
fuzzy rule ( ), respectively. As a result,
fuzzy rule base reduction techniques may be applied to
increase the speed of nonlinear principal components
calculation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we exhibit the connection between fuzzy classi-
fiers and kernel machines, and propose a support vector learning
approach to construct fuzzy classifiers so that a fuzzy classifier
can have good generalization ability in a high dimensional fea-
ture space. As future work, we intend to explore in the following
directions. 1) The requirement that all membership functions
associated with an input variable are generated from the same
reference function maybe somewhat restrictive. However, it can
be shown that this constraint can be relaxed. 2) The positivity
requirement on reference functions can also be relaxed. In that
case, the kernel in general will not be a Mercer kernel. But the
fuzzy classifiers can still be related to the generalized support
vector machines [31]. 3) Although our work focuses on the clas-
sification problem, it is not difficult to extend the results to func-
tion approximations. Fuzzy function approximation (using posi-
tive–definite reference functions) is equivalent to support vector
regression [55] using the kernel defined by reference functions.
4) Apply fuzzy rule base reduction techniques to reduce com-
putational complexities of the SVM and kernel PCA.
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