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Abstract. In this paper, in order to reduce the explosive increase of the
search space as the input dimension grows, we present a new represen-
tation method for the structure of fuzzy rules, a graph structured fuzzy
system. The graph structured fuzzy system can flexibly cope with the in-
crease of the input space by selecting these fuzzy rules that significantly
affects the input space among the whole set of fuzzy rules. To obtain the
optimal structure and parameters of fuzzy systems, an approach to the
automatic design of fuzzy systems based on L-systems is also proposed.
The proposed method can efficiently construct fuzzy rules without any
need for user interaction by using the rewriting mechanism of L-systems.

1 Introduction

When defining an optimal fuzzy system for practical problems, we know in-
tuitively that the whole set of fuzzy rules is impractical, in particular, if the
problems are complex; i.e., a fuzzy system with the whole set of fuzzy rules may
have a possibility to be included inadequately defined fuzzy rules or conflicted
fuzzy rules which are very difficult to identify complex systems. Accordingly, the
form of a lookup table expressing the whole set of fuzzy rules can not represent
an optimal subset of fuzzy rules. To alleviate this problem, as the first objective
of this paper, we propose a new representation method for the structure of fuzzy
rules, a graph structured fuzzy system. The graph structured fuzzy system can
flexibly cope with the increase of the input dimension by selecting these fuzzy
rules that significantly affects the input space among the whole set of fuzzy rules.

It is pointed out that an optimal fuzzy system can be extracted from the def-
inition of both the nodes and edges in a graph structured fuzzy system. This is
because a good graph structure can generate enough fuzzy rules to precisely rep-
resent input-output relation. Genetic algorithms can be utilized to find such the
graph structure. However, previous works have mainly focused on the method
which directly encodes parameters in fuzzy systems into chromosomes [1,2]. Con-
sidering practical problems with high-dimensional input space, as the number of
the parameters increase, the complicated search space may still arise from the
direct encoding of these parameters. To overcome the problem associated with
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the encoding, as the second objective of this paper, we propose the automatic
generation method of a fuzzy system, which is is based on L-systems that can
define complex objects by successively replacing parts of a simple object using a
set of rewriting production rules. The rewriting production rules of L-systems,
which can derive the optimal set of fuzzy rules, are encoded into chromosomes
in our genetic algorithms. Therefore, our design method can find the optimal
structure of a fuzzy system with the reduced search space. Moreover, it can
reduce computational requirements for identifying a fuzzy system because the
generated system has only the essential fuzzy rules, which are eliminated the
inadequate fuzzy terms through evolutionary search.

This paper is organized as follows. In Sec. 2, we provides a brief description
of a simplified fuzzy model. Sec. 3 describes a design method of fuzzy systems
for solving the explosive increase of search space under high-dimensional in-
put spaces. In this section, we introduce a graph structured fuzzy system. The
generation method of the fuzzy system based on L-systems is given in Sec. 4.
In Sec. 5, the genetic algorithm used for letting the rewriting production rules
of L-systems to be optimized is presented. Sec. 6 shows the simulation with a
time-series prediction problem. Finally, our conclusion is given in Sec. 7.

2 Simplified Fuzzy Model

This paper uses the simplified fuzzy model [3] described by the following fuzzy
IF-THEN rules: IF x1 is Ai

1 AND, . . . , AND, xd is Ai
d, THEN y is wi. Here, Ai

j

is a fuzzy membership function for the input variable xj in the ith fuzzy rule
(i = 1, 2, . . . , n and j = 1, 2, . . . , d); wi is a real value for the output variable y;
n and d are the number of fuzzy rules and input variables, respectively.

Given the real-valued input vector x = [x1, x2, . . . , xd], the real-valued output
of the fuzzy model is inferred as follows:

f(x) =
∑n

i=1 μi · wi∑n
i=1 μi

, μi =
d∏

j=1

exp

(

−1
2

·
(

xj − ci
j

σi
j

)2
)

(1)

where, μi implies the overall truth value of the premise of the ith implication
for the input; ci

j and σi
j are the central value and the width of a gaussian fuzzy

membership function, respectively.
In order to design a sophisticated fuzzy system, three parameters ci

j , σi
j , and ωi

need to be adjusted by an identification algorithm. This paper uses a self-learning
method by the delta rules [3]. The structure identification of the simplified fuzzy
model is introduced in next section.

3 Graph Structured Fuzzy System

In the design phase of fuzzy systems, it is useful to select these fuzzy rules that
significantly affects an input space among the whole set of fuzzy rules [2]. Let
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Fig. 2. Fuzzy rules generated by a graph structure

the input space be the cube of r dimension [−L, L]r and each input domain
be partitioned into N fuzzy terms. Then, all the input spaces are partitioned
into N r. In the conventional fuzzy systems, the number of fuzzy rules is N r.
Accordingly, the total number of parameters are a · r · N + b · N r, where a is the
number of parameters for fuzzy membership functions and b is the number of
parameters for the real parts of fuzzy rules. This means that the fuzzy systems
need the order of N r fuzzy rules in order to approximate a real system. As a
result, the fuzzy systems suffer from an exponential rule explosion as the input
dimension r grows. As proven in [3,4], there exists a fuzzy system that can
approximate a practical problem. However, it is not easy to find such the fuzzy
system, in particular, if the problem is complex.

This paper defines fuzzy rules as a graph structure. In the graph structure,
nodes consist of a root one and verbal ones. Each verbal node represents a fuzzy
membership function for an input variable. The relation between two nodes is
expressed as directed edges. Fig. 1 shows an arbitrary graph structure when 5
input values and 3 membership functions are used. In this figure, R and Ai

j

represent a root node and a verbal one, respectively. A dashed line represents
edges between the root node and a verbal one. The edges between two verbal
nodes are depicted as a solid line.

The conversion of the graph structure into fuzzy rules is to search all the
paths from the root node to the verbal node which has not any more branch.
Fig. 2 shows the fuzzy rules generated by the graph structure shown in Fig. 1.
For example, the path R ��� A1

1 → A1
2 in Fig. 1 is interpreted as the fuzzy

rule whose premise part includes the verbal nodes A1
1 and A1

2 but does not
exist the input variables x3, x4, and x5. In this way, total 8 fuzzy rules are
generated.

Fig. 2 illustrates that fuzzy rules do not necessarily have to involve all the
input spaces; i.e., the structure of fuzzy rules defined in this figure can eliminate
unnecessary input variables and membership functions from the whole of the
input spaces. It should be noted that fuzzy rules can be optimized by the selective
combination of membership functions for each input variable.
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4 Generation of Fuzzy Systems by L-Systems

In this section, we describe the design method of fuzzy systems based on L-
systems, termed DOL-systems. L-systems are a mathematical formalism pro-
posed by biologist Aristid Lindenmayer in 1968 as a foundation for an axiomatic
theory of biological development [5]. The principle notion of L-systems is rewrit-
ing, where the basic idea is to define complex objects by successively replacing
parts of a simple object using a set of rewriting production rules.

It is important to define the optimal nodes and edges of a graph structured
fuzzy system in order to obtain an optimal graph structure. This paper defines
a set of rewriting production rules from which the optimal nodes and edges
of the fuzzy system can be obtained. Let us consider a definition of the nodes
that represent fuzzy membership functions. The central value of membership
functions on the input domain [L, R] is defined as follows: ci = L + i × (R−L)

C .
Here, C is a precision for the input domain [L, R] (i = 1, 2, . . . , C).

The edges representing the structure of fuzzy rules are extracted from L-
systems defined in the below. The L-systems automatically generate the nodes
and edges of a graph structure by the interpretation of the command that can
change a graph state successively. The state of a graph is defined by (x, y), where
x is the index of an input variable and y is the index of a membership function.
Then, the graph responds to the commands defined by

Fm Move forward a step of length m. The state of the graph changes to (x′, y′),
where x′ = x + m and y′ = y. A edge between two verbal nodes (x, y) and
(x′, y′) is made.

fm Move forward a step of length m. The state of the graph changes as above.
This command is applied to only between the root node R and a verbal node
(x′, y′). A edge between two nodes is also made.

+n Move right a step of length n. The state of the graph changes to (x′, y′) without
making a edge, where x′ = x and y′ = y + n.

−n Move left a step of length n. The state of the graph changes to (x′, y′) without
making a edge, where x′ = x and y′ = y − n.

In order to represent the graph structure efficiently, the alphabet of L-systems
is extended with two new symbols, ’[’ and ’]’. They are interpreted by the graph
as follows:

[ Push the current state of the graph onto a pushdown stack.
] Pop a state from the stack and replace it with the current state of the graph.

Given a string v and an initial state of the graph (x0, y0), a graph structure is
generated by successively rewriting the graph produced by the interpretation of
rewriting production rules. Here, v is composed of an initial symbol S and a set
of rewriting production rules {p1, p2, . . .}. The graph structure shown in Fig. 1
can be obtained by interpreting the strings of the following L-system: w : S, S →
p1|p2|p3|p4, p1 → +1f1[+0F1]+1F2+0F2,p2 → +2f1−1F2[+0F1+1F1]+1F1,
p3 → +2f4, p4 → +3f1[−1F1 + 0F1 + 0F2][+0F3 + 0F1] + 0F2 + 0F2.
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5 Optimization of Production Rules

This section describes genetic algorithms for optimizing the rewriting production
rules by which an optimal graph structure can be obtained.

5.1 Encoding

Since an initial symbol is always S, only the rewriting production rules are en-
coded into a chromosome. The chromosome is subdivided into three subchromo-
somes: one is for commands, the others are for push and pop operations in a push-
down stack. For example, the rewriting production rule p4 is encoded as follows:
{{+3f1−1F1+0F1+0F2+0F3+0F1+0F2+0F2}, {010010000}, {000010100}}.
Here, commands are encoded into first part of the chromosome. For push and
pop symbols, the integers which are correspondent with the number of ’[’ and ’]’
are encoded into second and third part of the chromosome, respectively.

5.2 Genetic Operations

Since rewriting productions rules have a variable length, each chromosome has
also a variable length. Accordingly, to allow a proper derivation and interpreta-
tion of genotypes, genetic operations must produce offspring with a valid graph
structure. With this consideration, four main operators are designed: two kinds
of crossovers and two kinds of mutations.

– Crossover: This operator introduces information exchange between two
chromosomes to create offsprings. According to the substrings to be ex-
changed, two kinds of crossovers are designed.

a. Production Crossover: This is applied to the unit of rewriting production
rules. Since a production rule can be interpreted to several fuzzy rules,
the information exchanged between two parents is also fuzzy rules. Uni-
form crossover is used for this crossover.

b. Symbol Crossover:This is inspired by the Genetic Programming crossover
[6]. Koza’s Lisp subtrees can be considered analogous to correctly sub-
strings within a L-system. This crossover can search finer fuzzy rules by
exchanging the unit of commands.

– Mutation: This operator introduces random variations in rewriting produc-
tion rules.

a. Symbol Mutation: For the symbols ’+’ and ’−’, this mutation changes ’+’
into ’−’ or vice verse with a given probability. m and n each is replaced
by the value of the randomly selected integer within the given range of
values. The value of the genes represented for push and pop operations
is also replaced by the value of a randomly selected integer.

b. Block Mutation: A randomly selected block in a rewriting production
rule is replaced by the random string which is syntactically correct.
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5.3 Fitness Function

The graph structure generated by the interpretation of L-systems is applied to
the evaluation of a chromosome. Accordingly, a fitness function is based on the
phenotype representing a graph structure. Generally, as a proper criterion for
the verification of fuzzy systems, a learning error has been used [1,2]. Also, the
number of fuzzy rules can be used as the design objective of fuzzy systems in
order to minimize computational complexity. The fitness function with these
objectives is defined by f(si) = 1

αe·e+αr ·r . Here, f(si) is a fitness value for the
ith chromosome si; e and r denote a learning error and the number of fuzzy
rules, respectively; αe and αr are nonnegative weights for a learning error and
the number of fuzzy rules, respectively.

6 Simulation and Results

To demonstrate the efficiency of the proposed method, we apply the proposed
one to the time series prediction problem. The time series used in this paper is
generated by the chaotic Mackey-Glass differential delay equation [3] defined as

dx(t)
dt

=
0.2x(t − τ)

1 + x10(t − τ)
− 0.1x(t). (2)

The prediction problem is to predict the value at some point in the future t+P ,
x(t + P ), using the past values of the time series up to time t, {x(t), x(t −
Δt), . . . , x(t − (n − 1)Δt)}. According to the selection of Δt and n for P , the
number of input dimensions and the property of the problem are determined. In
our simulation, the values P = Δt = 6 and n = 6 are used. We use the fourth
order Runge-Kutta method to find the numerical solution for (2). Also, the time
step used in the simulation is 0.1, initial condition x(0) is 0.8, and τ is 30. In this
way, we extract 1000 data from 130 ≤ t ≤ 1129. First 500 pairs are used as train-
ing data and the remaining 500 pairs used as checking data. The membership
functions for all the input variables are defined in the range [0.15, 1.35] and each
input domain are partitioned into nine parts; i.e., C = 9. We assign 10 rewriting
production rules to each chromosome. The probabilities of crossover and muta-
tion are 0.3 and 0.1, respectively. In order to compare the proposed method with
other design one, we use the normalized mean squared error (NMSE) defined as
the root mean squared error divided by the data standard deviation.

After 100 generations, our genetic algorithm finds the L-system shown in
Fig. 3. In the initial phase of the genetic algorithm, 10 rewriting production
rules are randomly encoded into chromosomes, but finally only 8 rewriting pro-
duction rules are used for constructing the graph structure shown in Fig. 4. Since
remaining two rewriting production rules generate an invalid graph state, they
are excluded from the construction of the graph structure.

By the graph interpretation of the rewriting production rules, we obtained
15 membership functions and 15 fuzzy rules. Initially, each input space is parti-
tioned into nine parts and therefore total 54 membership functions can be used
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w : S,
S → p1 | p2 |p3 | p4 | p5 | p6 | p7 | p8,
p1 → +5f4[−2F1] − 0F1[−3F1][−1F1],
p2 → [+4f2] + 4f1[−3f2],
p3 → +3f6,
p4 → +5f5[−3F1][−1F1] + 2F1,
p5 → +1f1 + 0F1,
p6 → +8f1,
p7 → +8f5[−0F1],
p8 → +4f6.

Fig. 3. L-system obtained by evolutionary search
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Fig. 5. Prediction results

as verbal nodes. In case of the lookup table structure of fuzzy rules, entire 54
membership functions are used in fuzzy systems without any elimination for the
illegal definition of membership functions. Such fuzzy systems will have diffi-
culty in partitioning input domains correctly for a given problem. However, our
method selects only 15 membership functions which significantly affect the input
space. The fuzzy rules constructed by all the combinations of 15 fuzzy member-
ship functions would be 90 (3×2×1×1×3×5), but our method produces only 15
fuzzy rules by the selective combination of the membership functions; i.e., when
defining fuzzy rules, it can use only the membership functions that significantly
affect the input space through evolutionary search. It should be noted that the
fuzzy systems based on L-systems can generate only the fuzzy rules that can
correctly express input-output relation for a given problem.

Fig. 5(a) shows the real curve of time series prediction problem and the pre-
dicted curve by our method. In this figure, a dashed line represents the real
curve and a solid line the predicted curve. Two curves are visually indistinguish-
able. Fig. 5(b) shows the residual errors that indicate the difference of the real
values from the predicted values at each time. Although the time series used
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Table 1. Comparison of prediction results

Conventional method Proposed method
Fuzzy rules 29 15

NMSE training 0.0509 0.0385
checking 0.1637 0.1164

for checking data are more complex than training data, it is obvious that our
method can well predict the real curve for checking data as well as for training
data. Table 1 compares the results of our method with those of the conventional
one where a graph structure is directly encoded into chromosomes. It shows
that our method can generate much less NMSE than the conventional one, even
though a few fuzzy rules are used.

7 Conclusion

An approach to the automatic design of fuzzy systems by L-systems was pro-
posed in this paper. In order to reduce the explosive increase of the search space
as the input dimension grows, both membership functions and fuzzy rules are
constructed by using the rewriting mechanism of L-systems. The generated fuzzy
system has only the essential membership functions and fuzzy rules, which are
obtained by eliminating inadequately defined fuzzy rules and unnecessary mem-
bership functions from all the input spaces through evolutionary search.

The simulation showed that our method can generate much less NMSE than
the conventional one, even though a few fuzzy rules are used. From the obtained
results, we concluded that our method can consistently reduce the computa-
tional complexity for designing fuzzy systems by efficiently reducing both the
parameters of fuzzy systems and the search space.

We have evaluated with a specific time series prediction to show its feasibility
on high-dimensional input spaces. To verify the applicability of our method in
various areas, several simulations are being carried out.
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