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SVD-Based Reduction to MISO TS Models

Péter Baranyi, Yeung Yam, Annamaria R. Varkonyi-K6c3gnior Member, IEEEand Ron J. PattoiMember, IEEE

~ Abstract—The main objective of this paper is to expound the fore, the TS model inherits the exponential complexity problem
singular-value-decomposition (SVD)-based reduction technique of fuzzy rule bases [11]-[14]. This leads to a requirement of
proposed to single-input—single-outputTakagi-Sugena(TS) fuzzy - finging g balance between two conflicting aims in achieving a

models to multivariable cases. The use ofiigher order singular d t f by the TS del h duci
value decompositions proposed in this paper for the complexity gooad system performance Dy the model, such as reducing

reduction of multiple-input—single-output TS fuzzy model approx-  the fitting error of TS fuzzy models and reducing the model
imation. A detailed illustrative example of a nonlinear dynamic complexity.
model is also discussed. In other words, the complexity problem of TS fuzzy models
Index Terms—Complexity reduction, higher order singular is due to the fact that fuzzy logic applications are suffering from
value decomposition (SVD), SVD-based fuzzy rule base reduction. exponentially growing computational complexity in respect to
their approximation accuracy. This difficulty comes from two
inevitable facts. The first is that the most adopted fuzzy infer-
ence techniques do not hold the universal approximation prop-
HE Takagi-Sugeno(TS) fuzzy model is one way to erty, if the number of antecedent sets is limited, shown by Tikk
describe a nonlinear dynamic system using local linegf [15]. Furthermore, their explicit functions are sparse in the
models [1]-{10]. Its objective is that the system dynamics cajpproximation function space. This fact inspires us to increase
be captured by a set of fuzzy implications, which characterigge density, namely, the number of fuzzy terms in pursuit of a
local regions in the state space. The main feature of a TS fuzgyod approximation. This, however, may soon lead to a conflict
model is to express the local dynamics of each fuzzy rule Ryth the computational capacity available for the implementa-
a linear system model. The overall fuzzy model is achieve@n, since the increasing number of antecedents exponentially
by fuzzy “blending” of the linear models. Recently, the issugxplodes the computational cost. The computational explosion
of stability of fuzzy control systems has been investigated the second fact as stated by Kéetyl.in [14]. The effect of
extensively in nonlinear stability frameworks [2]-[9], whichthis contradiction is gained by the lack of a mathematical frame-
helps us with designing TS models, controllers, and observefgrk capable of estimating the necessary minimal number of
The TS multiple-model scheme is used both for the feedbagktecedent sets. Therefore, a heuristic setting of antecedent sets
control [2]-[4] and the design of observers for fault diagnosis applied, which usually overestimates, in order to be on the
and isolation (FDI) [5]-[7]. Both are based on the principle ofafe side, the necessary number of antecedents resulting in an
parallel distributed compensatiofPDC) [8], [9]. By duality, unnecessarily high computational cost. As a result, fuzzy rule
the FDI structure is also based upon the TS fuzzy model systefase complexity reduction techniques emerged as a new topic
Despite the above advantages, the use of TS fuzzy modelsisuzzy theory. Some reduction techniques are classified re-
strictly limited by their exponentially growing complexity in garding their concept in [11] and [16]. A fuzzy rule importance
respect to their approximation accuracy [10]. This complexityased technique is proposed by Sengl.in [32]. Another re-
problem comes from two inevitable facts. Namely, the maigent method is proposed by Sudkatpal. [34], which com-
structure of the TS model is, actually, a fuzzy rule base. Theligines rule learning with a region-merging strategy.
Recently, several publications have applied orthogonal trans-
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normality (NO) and extends SVD reduction with further toolsnodels expounding the approaches defined in the preliminary
to preserve SN, NN, and NO conditions of the new memberork [10]. Section VII gives a detailed example of a dynamic
ship functions. It may have a significant role if the purpossystem through numerical and analytical considerations to show
is not merely saving computational cost, but maintaining thbe effectiveness of the proposed method.

fuzzy concept and proceeding further with a theoretical study

on the reduced rule’s features. Presumably, the SVD technique

in this paper and in [12] and [13] can be replaced by other or- Il. BASIC DEFINITIONS

thogonal techniques investigated by Yen and Wang in [11]. Anrpis section will introduce some elementary definitions and

extension of [11] to multidimensional cases may also be cogscants ytilized in the further developments. Before starting
ducted in a similar fashion as the higher order SVD reductiQfyi the definitions, some comments are enumerated on the no-
technique proposed in [10], [12], and [13] and |nth|s paper. I:l{raition to be utilized. To facilitate the distinction between the
ther developments of SVD-based fuzzy reduction [12], [13] af6,e of given quantities, they will be reflected by their represen-
proposed in [10], [17], [18], and [38]. Examples of applyingyiq . scalar values are denoted by lowercase lefters . . .}

SVD reduction can be.founq in [35]__[37]' References [17] ar|§jolumn vectors and matrices are given by boldface letters as
[36] apply an Automatic Guided Vehicle system developed by, 4, 1 angrA| B, .. .}, respectively. Tensors correspond to

Kovacs [41]. The initial work in [12] and [13] can be applied re o i) jetters agA, B, ...}, tensor 1 contains values 1 only.
gardless of the inference paradigm adopted for a fuzzy rule b transpose of r7nafriA is denoted aA”. A subscript is
as shown in [12] and [38]. Presumably, the product operatiQn sistently used for a lower order of a given structure, e.g.,

in this paper can be replaced by Rudas’s ggneralized. infere $€element of matri is defined by row—column numbeéy;
operators [20]-[23]. This would have a prominent role in deve, ymbolized agA),; ; = a; ;. Systematically, theth column
oping the ability of finely tuning the TS models according Qector ofA is dencﬂ’{ed aa/»,J ie, A —[a as .--]. Fuzzy
the application at hand and/or specific purposes of system pelic are denoted by capitél lettersfasyu 4 (). To enhance the
formance.

. | d ¢ reduct ff IoveraII readability characteisy, ... are in the meaning of in-
SVD is not merely used as a way of reduction of fuzzy rulge, s (countersy, J, . . . are reserved to denote the index upper
bases. A brief enumeration of some opportunities offered unds. unless stated otherwig *2xxIx is the vector
SVD, development of which was started by Beltarmi about 2%% ' '
{

i ace of real-valued{ x Is x - - - x Iy)-tenors. LettetV serves
years ago [19] and becomes one of the most fruitful tOOIS_ denote the number of dimensions of the space where the co-

linear algebra, gives ideas about its promising role in Complex'@ﬁicient matrices of TS fuzzy model are approximataflde-
reduction in general. The key idea of using SVD in complexitp{o,[es local linear models

reductionis thatthe singular values can be applied to decomposg).finition (n -mode Matrix of Tensord): Assume an Nth
a given system and indicate the degree of significance of t Rler tensord € R ¥ xxIx Then-mode matrixA ) €
decomposed parts. Reduction is conceptually obtained by 6.7 ] = [1, I contains all the vectors in theth dirrlnen-
truncation of those parts, which have weak or no contribution &bn of tensorAk. The ordering of the vectors is arbitrary, this

all to the output, according to the assigned singular values. Tgﬁiering shall, however, be consistently used later(axy,.));
advantageous feature of SVD is used in this paper to minimifge /

called anjth n -mode vectar
a given TS fuzzy model by discarding those local linear models T

hich h anif le in th f h 'Note that any matrix of which the columns are given by
which have no signi '(,:ant, rolen the overa system. The com_ ,,qe vectorgA ,,)); can evidently be restored to be tensor
plexity and its reduction is discussed in regard of the num

bgr. The restoring can be executed even in the case when some

of rules. However, reducing the number of rules does notimply, of A, are discarded since the valueffhas no role in
the computational cost reduction in any cases, since the compys ordering of(A( ))" [24]

tation also depends on the number of simultaneously fired rmesbefinition (n-mode Subtensor of Tensd): Assume anV
[42], [43]. Therefore, detailed investigation is given in the a3K_order tensord € BT *ExxIxn Then-mode sub-tensor
pect of computational time reduction in this paper. A, ., contains elements; ;. : . .. .

The presentwork constitutes adetailed investigation of the pre(y4finition (n-mode Tensor. &griifiarﬁifmf-\gsume avth
Iiminaryapproachesoutlinedin[10]andgivesapossiblesoluti%rpder tensor A € RIxEx-xIx_ 5 _mode partitions of
tothe problemanalyzed above. The algorithms proposed herel%rl%orA are B, € BRI xLioixJixlix-In denoted as
mostly developedin[12]and [13], butare restructuredinterms gf _ B, Bs --- Bpl.,wherel, =3, J,l=1---L.
tensor description in order to facilitate further developments forDefinition (Scalar PrOdl;Ct)Z The scalélr 7produ0(tA B)
TS fuzzy models. Concepts of higher order SVD (HOSVD) A two tensors A. B e RhxDx-xIn g define(z.l as
investigated in tensor forms in the work of [24]-[28]. def '

This paper is organized as follows. Section Il defines vari0L§§1> B>_ - Zil Ziz - 'Zizy biyi. i Wiy iy .
conceptsto be utilized in the proposed method. Section 11 briefly Definition (Orthogonality): Tensors of which the scalar
summarizes the main concept of TS fuzzy models. Section Rfeduct equals 0, are mutually orthogonal
examines the exponential complexity problem of TS fuzzy Definition (Frobemusd—nform): The Frobenius-norm of a
models in full accordance with [12]-[14]. Section V brieflytensorA is given by||A|| € V(A A).
summarizes those properties of HOSVD, which are significantDefinition  (n-mode  Matrix-Tensor  Product): The
in complexity reduction. Section VI presents the HOSVD basedmode product of tensord ¢ RIXIXXIn py g
reduction of multiple-input-single-output (MISO) TS fuzzymatrix U € R/*I» | denoted byA x, U is an (
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I X I X ++- X Iyoq X J X Ly X -+
of which the entries are given by x,, U
Bn) =U- A(gO LetA x4 U1 Xo Ug---
for brevity asA ' U,,n =1---N.
Theorem (Matrlx SVD): Every real-valuéd, x I )-matrix
F can be written as the product & = U -S - V7 = S x;
U x5 V, in which:
H)U=[u; u uy, |isaunitary (I; x I; )-matrix;
2) V=[vi vy vy, | isaunitary (I x I )-matrix;
3) Sis an (I; x I, )-matrix with the properties of:
a) pseudodiagonality:
S = diag(oy, 02, mln([l ,));
b) ordering: o1 > o9 2 2 Omin(1,,1,) > 0.
Theg; are the singular values df and the vectordJ; andV;
are, respectively, aith left and anith right singular vectors

x Iy )-tensor
B , where
xny Uy be noted
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Fig. 1. Structure of a TS fuzzy model.

features at the corresponding operating fuzzy points in vector

There are major differences between matrices and HO tensggaceP. Fig. 1 shows the structure of a TS fuzzy model. The

when rank properties are concerned. These differences di

regfiydel varies according to vectpre RV, which may contain

affectthe way an SVD generalization could look like. As amattgome values of the state vectoras well. The TS fuzzy infer-
of fact, there is no unique way to generalize the rank concept.dice engine is responsible for combining the local linear models

this paper, we restrict the descriptiorvtanode rank only.

according to vectop in order to find a proper model, which is

Definition (z-mode Rank of Tensor): Themode rank of assumed to be the momentary linear descriptor of the system
A, denoted byR,, = rank,(A) , is the dimension of the capable of generating output vectprfrom state vectox and

vector space spanned by themode vectors asank, (A) =
rank(A ).

Theorem [N-th Order SVD (HOSVD)]: Every tensot €
RlxI2xXIn can be written as the produet = S U,, , in
which:

1)U, = [win u, ur, » | is a unitary (Inx x

Iy)-matrix calledn-mode singular matrix
2) tensorS € R *12xxIn of which the subtensot% —,
have the properties of:
a) all-orthogonality: two subtensolS; -, andsS; -z
are orthogonal for all possible values of « and

B (Si,=a,Si,=3) = 0 whena # ;
b) ordering: ||S;, <1l > [ISi,=2|l = >
153, = i :
The Frobenius-norni|S; —1|| , symbolized byyi(”) , are

n-mode singular values oft and the vecton; ,, is ani-th
singular vector S is called the core tensor

More detailed discussion of matrix SVD and HOSVD is give

in [24], [28].

lll. TS MODEL APPROXIMATION

input vectoru.

In the following, the adopted forms of the TS fuzzy model are
discussed based on the forms of [6], [7], and [30].

Definition (M(p) is a Model in Respect of Vector
p € RY): Assume a given model varies in th€-di-
mensional parameter spade

A(p)-
C(p)-

In many cases, the rows of (1) consist of more than two terms
like, for instance, in the case of observer design in [7] and [30],
where the first row of model (1) has an extra tekrty (¢) —
y(t)). Therefore, to facilitate the further notation and have gen-
eral description like in [10], the form of (2), shown at the bottom
of the page, is applied, whei€ denotes the number of rows
in the model (1) (i.e., the number of equations describing the
model) andL indicates how many terms are in the rows of the
gquanns for instance, these are 2 in (1). Vegjog R con-
sists of the model input or state vectors, whérelenotes the
number of “input” elements ix;. Vectorz, € R+ contains
the output values of théth row in (2), whereO;, denotes the

x(t) + B(p) - u(?)

x(t) + D(p) - u(t) } = Mp). @

This section is intended to discuss the fundamental form nfimber of “output” values i, . This implies that the size of
TS fuzzy models. For further detailed investigation of TS fuzzB,. ;(p) is Oy, x I;. For example, describing (1) by (2) the result
models and closely related concepts see [1]-{10] and [30]. ATS x; () = x(¢), x2(¢) = u(¢) and the outputs of the model
model consists of a number of local linear models assignedarez, (t) = x(t) andzs(t) = y(¢). Coefficient matrices be-
fuzzy regions, which are designed to approximate the dynantieme:B 1 (p) = A(p), B12(p) = B(p), B2,1(p) = C(p),

z1(t) Bi11(p)

Z9o B
Mp) = :(t) _ 2,§(P)

zx (1) Br1(p)

Bi2(p) B .(p) || x1(t)
B B X9 t

2,2(P) 1,2(p) :( ) @)
Bk 2(p) Brr(p)!lxr(t)
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B, 2(p) = D(p). For abbreviation, let us use the following N0-M,, v,,....vxy = {Bu,,vs.....on k1 }- CONsequently, the approxi-
tation of (2): mation becomes as (5), shown at the bottom of dgepvhere
V,, is the number of antecedent sets on théh antecedent
M(p) = {Bri(p)}- universe. If the antecedent sets are defined in Ruspini-partition

. » . ~as above, then
In this paper, the firing probability of the fuzzy rules is

based on a product operator like in [1]-[10] and [30]. Here, Vi 2 Vx
two formulas of a TS fuzzy model are discussed accordingly Z Z Z H/‘An.vn (pn) = 1. (6)
to the types of rule bases. The first one defines uncompleted vi=lee=l vy n

rule base while the second takes all possible rules combined|R¥rder to facilitate the further development, let (3) and (5) be

antecedents into account [1]-[10], [30]. Before starting witgiven in terms of tensor with assumption of (4) and (6). Thus,
the definition, let us initiate the following notation for th¢h (3) can be formulated as [10]

local linear model:

Moo (Bl M(p) = {Bealp) = (Bra <1 £0) )} (D

wheref(p) € RV is the vector of functiong,(p). Tensor

By, € RV*OrxDi consists of matriceB, x; € R**%i. The

first dimension ofBy, ; is assigned to function, (p). The next

two are assigned to the output and input vectors, respectively.
In the same way, (5) is reformulated as

Definition (Uncompleted TS Fuzzy Model): Assuineari-
able model consequent-based fuzzy rules as:

IF P1 is Al,v AND D2 is A27rv ... AND PN is AN,'v THEN
modelM,,v = 1---V.whereA, , : jia, ,(pn) is thev -than-
tecedent fuzzy set on theth input universe. The approximated
model in respect of is

M(p) = {Bk,l(P) = (Bk,l X1 fmn (Pn))> } (8)
(N+1)

R Z Hn HA, (pn) . Bv,k,l
M(p) = { Bii(p) = =

> IL, pa., , (pn) where m,(p,) € R' contains membership values
v wA, .. (pn) and the N + 2 dimensional tensomB; €
which is written frequently as RVIXVaxoWVaxOuxi s constructed  from  matrices
By, vy, o, € RO of (5). The first N dimensions
v of By, are assigned to the dimensions of the parameter space

1f”(p)B“7k7l P. The next two ones are assigned to the output and input

3) vectors, respectively.

M(p) = { Bri(p) = —;
2 fuo(p)

IV. COMPLEXITY INVESTIGATION

where the firing probability of the rules isf.(p) = This section is intended to show the main motivation of the
[[, #a, . (pn) . Usually, the antecedent sets are given 'Romplexity reduction approach to be discussed here. The com-
Ruspini-partition, namelyy,, p : 3, 11An o (pn) = Land are g ayiy of TS fuzzy models is proportional to the number of el-
normalized as ements of tensaBy, ;, which will be detailed later. The compu-
Vp - Z fo(p) =1 @) tational reductior_1 is hen.ce ba;ed on the reductiqn of the size of
P v\P tensorBy, ;. The first N dimensions of3;,; are assigned to the
Y dimensions of the parameter spdéementioned above and the
in (3), thus, the denominator can be taken out of consideratiomext two are assigned to the output and input vectors, respec-
In the following, a TS fuzzy model is defined where all comtively. In the case of generalized form (7), the dimensionality
binations of the antecedent sets yields a fuzzy rule, namaty,tensorB;,; is three regardless of the dimensionality of the
where the rule base is completed. parameter space. Therefore, its reduction can readily be traced
Definition (Completed TS Fuzzy Model): The completdzhck to the SISO model investigated in the preliminary work
fuzzy rules are formed by all combinations of the antecedefit®] and it is also included in the reduction of the completed

asfollows: MISO TS fuzzy model as a special case, namely, it can be con-
IF p1 is Ay, AND py is Asz,,... AND py is sidered in the same way as a completed SISO TS fuzzy model.
As ., THEN modelM,, ., . vy, vn = 1---V, where Consequently, the discussion focuses on the completed MISO
Vi Va VN
A A Z Z T Z Hn RA, ., (pn) . B'Uluvzy---y'UN.k.l
M(p) = { Ba(p) = "= % (5)

%5 S, ()

v1=1vo=1
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TS fuzzy model from now on. First, the computational comn multilinear algebra as well as in matrix algebra, #rebe-
plexity of the model is examined. The output values are calcoius-norm is unitary invariant. As a consequence, the fact that
lated by (8) as the squaredrrobeniusnorm of a matrix equals the sum of its
squared singular values can be generalized.
2 = (Z {Bk,l ®mn (pn)} X N2 X1T> O Property (Approximation): Letthe HOSVD dfbe given as
n (N+1) in the Theorem of HOSVD and let themode rank ofA be

l ~
equal toR,,. Define a tensord by discarding singular values

Lemma (Complexity ~Explosion): The —computationa}(’) . o\",.....o%" for given values of}, i.e., when SVD
complexity P, OF the completed TS fuzzy model grows performed on dimension discard U4, D¢ and V¢, where
exponentlall_y Wlth the number_ of antecede_nts_ an_d the size qf]ﬁe contains singular valuesf,?ll, 057)+2_/ o Ug?_ Then, we
model coefficients. Considering the multiplication operatiofyye " "
only the computational requirement is characterized as

a2 X Ry 2
A—AH < M) 11
Peomp = [ Va (Z S 0oL+ ok.) +Cp Y Vi, (10) H = ; . _XI;H (" ) (11)
n ko1 k n o

where C, indicates the number of multiplications during thel his property is the HO equivalent of the link between the SVD
calculation of a membership function of a matrix and its best approximation in a least-squares sense,
To arrive at (10), one notes that calculating the output of o & matrix of lower rank. The situation is, however, quite dif-
linear local model to a given input needs, 3, OxI; multi- ferent for tensors. By discarding the smallestode singular
plications. The number of the local linear models[fs, V,,, Vvalues, one obtains a tensémwith n-mode rank off;, . Unfortu-
which actually comes from the exponential complexity problefately, this tensor is in general not the best possible approxima-
of fuzzy rule bases shown in [14]. The outputs of {fie V, tion under the givem-mode rank constrains [24]. Nevertheless,
local linear models are weighted by the products of the meie ordering implies that the main componentsiaire mainly
bership values, which impligg,, V. - 3. O further multipli- concentrated in the part corresponding to low values of the in-
cations.C, Y, V, indicates the calculation of the membershiglexes. Consequently,dﬁ?) > 01(17) _» where actually;, corre-
values, where”, represents the number of multiplications irsponds to the numerical rank dfthen the smallen-mode sin-
the calculation of one membership value. Consequently, (1d))lar values are not significant, which implies their discarding.
shows that increasing the rule density, namely, the numberlofthis case, the obtainedlis still considered as a good approx-
antecedents in pursue of good approximation, leads to the expioation of A. According to the special terms in this topic the
sion of the computational requirement fully according to [14] following naming has emerged [12], [13].
Definition 13 (Exact/Nonexact Reduction): Assume an
V. KEY CONCEPT OFHOSVD-BASED REDUCTION N-th order tensorA € R1>*I2x-XIn Exact reduced form

This section briefly discusses the fundamentals of HOSVé - A? Un, \;\irlelrte:foIgenotes reduceq 1S defmeq by
in the sense of complexity reduction. Many reduction properti«%%nsorAI X% Ro ZT " ar_ld n-mode singular matrices
of the HOSVD of HO tensors are investigated in the related lit= " € R, Y : I, < I, Wh'ch are the results of Theorem
erature. Let us briefly summarize those, which have promin SV_D’ where only the zero S|r_1gular values and the corre-
roles in this paper. First of all, let the computation of HOSV ponding 51”89“'” .vector.s are d|scardellsione>§act reduced
be discussed. It is done by executing SVD on each dimenios gFn A=A" Uy, IS obtfauned if not only zero'smgular values
tensorA. Namely, U, is determined by executing SVD on theand the corresponding singular vectors are discarded.

n-mode matrixA .,y of tensorA. For instance, let us determine
U, andU, 4, VI. SVD-BASED COMPLEXITY REDUCTION OF

TS Fuzzy MODELS

Ay =[U" U?] []3 ]gd} [V” V"]T The main objective of the complexity reduction proposed in
) . , this section is twofold, which is discussed via two methods.
=[U" U"]S(,, = U,S(, Method 1 is aimed to minimalize valuds,, which means the

decrease of the size &f; ; in the first NV dimension, namely, to
find the minimal number of fuzzy rules/local linear model. The
reduction conducts HOSVD on tense¥, ; to root out linear
A=5 x,U,. dependencies by truncating zero or small singular values. In
the first case, exact and in the latter nonexact reduction is ob-
Then + 1 dimension is done in the same way. It performs SViained [10], [12], [13], [24]. First an exact reduction is dis-

where r" denotes "reduced” andd” means "discarded, ”
which we will see later. Thus, the result is

on then + 1 mode matrix ofS” and yields cussed in this section, which means that the output of the re-
, duced TS fuzzy model does not differ from the output of the

S(nt1) = Un+18au41)- original model. Increasing the effectiveness of the reduction by

Therefore, discarding nonzero singular values in HOSVD, reduction error

is obtained which will be bounded in Remark 2 at the end of this
A=5%,U, X341 Upyr1. section. A subsequent aim of the reduction methods to be pro-
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posed is to decrease valu@g andI; which also appear in the The first method shows how to find the minimal number of rules.
dominant term of (10). The number of input and output values Method 1 (Determination of the Min-
are defined by the application at hand, which implies that imal Values of Vi, V,,...,VN): Let tensor
and I; cannot directly be decreased. Similarly to [10] the key € RVIXV2X XV x) |, Oex) I e con-
idea of reducing these values can be viewed as the transforsggcted, so it contains all tensors By ;, for
tion of the system model to a smaller computational space @fstance, K - [Gi Go -+ Grgly., Where
fline. The input values are also projected in each state step@f — [Bra DBra - Bk7L]N+2, Applying HOSVD to
the model and the output values are calculated in the reduggé N + 2-dimensional tensaK in such a way that the SVD is
computational space. Finally, the output values are transformggkcuted only on dimensions .. N yields

back to the original space. The reduction is based on executing

SVD reduction to the coefficient matrices. As a matter of fact K=K" ®Tn (14)
exact reduction cannot be obtained in this step if the coefficient n
matrices are full in rank, which is usually guaranteed by mogshere 4o denotes “reduced.” Tensors
eling processes. Nonexact reduction is, however, still possiblel;;;[l € RV XVE X XV X O X are found
the price of reduction error. First, let us characterize the conceicordingly to  construction of K, thus, for
and the goal of the reduction by the following theorem. instance, K" = Gy Gy - G ]N+1 and

Theorem (TS Fuzzy Model Reduction): Equation (9) can abz = [Bf; Bp, -+ Bjly. If singular values are
ways be transformed into the following form: discarded then the size dB}, € RV xVax - xVyxOixh

is less than the size aBj,; € RVi*VaxxVaxOixhi go
» ® r R r . . . .
7 = Z |:Bk.l m’, (pn)} X N1 Ak Xys2 X Cy Vn @ V5 < V,, WhICh is the key point of the reduction. Thus,
p n for (14), we obtain
(N+1)

_ . . ®

which is equivalent to By, = By, n T,. (15)

S ® T The new antecedent sets of the rules are constructed as
7 = Ay Z By, 5, T (pn)| XN42%x; Cy (12)
l (N+1) m; (pn) = my (pn) T’n (16)

where the size 0B}, € RV *V2 X *VixOixIl may be re-  Consequently, (9) can be written in the reduced form by sub-
ducedasin : V) < V,,Vk: 0} < OpandVl: I] <1I;. stituting (15) and (16) into (9) which yields
m’,(p,) € RV~ consists of the new antecedents which define
the rules in the reduced rule base. The number of antecedents _ r Q@ . T
on then-th universe isV’. A;, € RO**%% andC; € RIXI/ 7k = (Z [Bk;l n e (p")] XN+2 X )
are applied to transform the inputs and the outputs between the (N+1)
reduced and the original computational space, which we will s@ich is in full accordance with the theorem of TS fuzzy model
later at Method 2. reduction. This finally obtained form has the same structure as
The proof of the theorem can readily be derived from the fo{9). Therefore, it represents the same structured fuzzy rule base,
lowing Methods 1 and 2. Before starting with the methods let @it with different antecedents and consequents.
have a brief digression and represent the calculation of vajues  The objectives of Method 2 are to decreégeand ;.
of the TS fuzzy model in respect &f in two different ways as ~ Method 2 (Determination of the Minimal Computational
discussed in [10]. Let tens@¥, € R *V2X X VwxOxx(3_, 1) gpace): Again, in the following steps we use SVD in exact
be given by the form of7), = [Br1 Bra2 -+ BirrL ]N+2. mode. Remark 2 discusses the error bound when SVD is
The output value, of the TS fuzzy model in respect &, is  executed in nonexact mode, namely, nonzero singular values
are discarded as well.

l

Zp = <[Gk ®rnn (pn)} Xnio [xT xT - X“) ) 1) Determination of matriced, namely, the reduction of
n (N+1) Op.
The second way utilizes matrix LetSi = (Gr)q)- Applying SVD toS; yields:
H, e RV VxR 00N constructed  as St =A;,-D,-V,=A;-S,.
H; = [Biy By Bgilyy, The output of the TS fuzzy )
model is Matrix 8!, € R IL.V» 2201t can be restored to tensor
. G € RNV xVaxOEx(E, 1),
Z; o 2) 2) Determination of matrice€;, namely, the reduction
. = <|:[H1 Hy --- HL] mn(pn)} of 1
: " Let tensor H. e  RYIXV2XxVaox}l, Owxi
ZL be constructed like in (13) as

Xyio[xT xT' ... xf]) . (13) Hj = [B1. _Bé,l B_}(J]NH* where
(N+1) tensors B; ;, are defined accordingly to the result
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Gy =[By1 Bra - Bpplyyo bystepl). Then, Remark2: Anadvantage of the proposed algorithm is that it
let M; = (Hj)(~+2) Whereupon executing SVD yields has error controllable property, i.e., if the HOSVD is executed in
nonexact mode then the original and the reduced approximation
differ and the difference can be estimated during executing the
reduction technique. In Section V, it is shown that discarding
nonzero singular values results in reduction error, which can

M, =C;-D- V| =C,- M,

. , .
gf‘t”x . M %legif.'.r.‘fﬁ\,xowl €M% be bounded by (11). References [12], [13], and [16] bound
ko , ” the maximum reduction error by the sum of the discarded
cordingly to M; = (H)(n+2) and
1 singular values. As a matter of fact, the reduction errors of the
H" =[B7, Béz B}(I]N

proposed methods also depend on the antecedent sets applied.
In this regard, various cases of antecedents are discussed in
applied to transform the input values; to a re- . . s . .
- T . [16]. Generally speaking, it can be said that if the original

duced space asx; = C; - x;. The output is . L o )

: . antecedents are given Ruspinipartitions then the maximum
calculated in the reduced computational space as: : . X .
. . ® T reéduction error is the sum of the discarded singular values.
z, = (Zz [Bk,lnmn(pn)] XN+2 (X7) )(N+1 * For more details about the error bound of SVD reduction
The outputz], is projected to the original space bysee [12], [13], and [16].
z, = Ay -z}, which is in full accordance with the Remark 3: Method 1 may result in membership functions
theorem of TS fuzzy model reduction. which cannot be analytically simplified and, hence, their shapes

The ordering of executing Methods 1 and 2 is arbitrary. In tf¥€ rather complicated and their computational loads may be
following, some important issues and interpretability proble@reater than that of the original ones. Observing (10), it is
of the results are discussed. concluded that”, is not in the dominant part of (10) which

Remark 1: The functions in (16) obtained by Method 1 maymplies thatthis computational increase is dispensable compared
not be interpretable as fuzzy sets, since the transformation usi@¢ghe exponential feature of the dominant term. In the worst
matrix T,, may result in functions with negative values. Ancase, the membership values of the observations are calculated
other crucial point is that the resulted antecedent functions 89 the original functions and the membership values of the
not guarante®uspinipartition, which means that the denomreduced antecedents are simply determined by (16) in each
inator in (5) may not be equal to 1. This fact would destro§tep of the system. Consequently, the worst case is bounded
the whole reduction concept since calculating the denominaf®t
with the new antecedents may get far from 1. However, if only
the saving computational cost in final implementation is thg _ HV; <ZZ OrIr + ZOZ) +C, Z v,
purpose and the fuzzy concept does not have to be accommo- 7 T ’ ~
dated then (9) and (8) are directly applicable to the reduced
form, namely, (12) is applicable directly. If the reduced form +ZVnV; + ZOk e Zfsz (17)
is for further studies in fuzzy theory and/or Lyapunov stability, k 1
then the reduced weighting functions should accommodate %ere extra ternV, V"

indicates the extra computational load
ditional characterization pertaining to specific operations. Thbsf calculating the membership values of the observation in the

may require further transformations. To obtain matrittgsin reduced antecedents onthéhuniversey", 0,07 ands™, 1,1}
such a way that the reduced membership functions are boungg form the computation requirement' of the transformation

by [0, Il] atndnfsold?fuspln’rtparttltIOE nonnegatl\(/jenelssndzum 12 etween the original and the reduced computational spaces.
”1°3rma'ff 10 rands_ortnrﬁ]a '.O': ZC T_|quelsf ‘;:e S?\//S ope in{ onsequently, the effectiveness of the reduction is shown by
[13] as discussed in the introduction e is accompa- e equation at the bottom of the next page.

nied by these transformations then the resulted functions remain. ihe case of a dense or higher dimensional rule base its
interpretable as antecedent fuzzy sets. Furthermore, the den B
q inant part is
inator of (5) becomes 1 (if it were true in the case of origina
rule base as well), which ensures the theoretically correct use of

+
The results of Method 2 areAk and C;. C; is

(9) and (8) in fuzzy concept. Furthermore, in some theoretical IL, Viy <Z O+ O;)
points proposed by Dubost al. [31] for Generalized Modus N~ k1 k .
Ponent, it is highly desired that the fuzzy sets conserve normal- I, Vi <Z S Oule + 3 Ok)
ization property, i.e., when at least one element exists in each "O\FT ko

fuzzy set whose membership value is one. It is also cadled

calization of rulesIn order to serve this concepbrmalization Remark 4: Method 1 could be modified in such away that the
transformation is proposed in [12]. Consequently, the comput&duction results in one fuzzy rule base for each row or column
tional cost of the algorithm may be decreased via the proposafd2) like in [10]. Furthermore, one rule base could be resulted
methods in final implementation, which serves our main godfr each coefficient tensds;, ;. The advantage of the reduction
but its price is that the interpretability of the fuzzy sets magf eachB, ; is that the size of som®&; , may decrease. This
be degraded. Actually, this is also an interesting point itself ia due to the fact that the-mode rank of tensoBy, ; is less or
fuzzy theory—how to represent and extract a rule base in dégual to the:-mode rank of tensoK’ in (14). In the worst case,
ferent ways. its maximum could benin (3, ; rank, (B.1), rows((K)(n))-
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nonlinearity

*u
M J lx m-E+g(z, %)+ k(x)=¢ (%) u (18)

wherem is the mass and represents the forcé:(x) is the
nonlinear or uncertain term with respect to the sprifg. ) is

the nonlinear or uncertain term with respect to the damjgen

is the nonlinear term with respect to the input term. Assume
thatg(z, ) = d(c1z + cai?), k(z) = c3z + cyz®, ande(i) =

Fig. 2. Example: mass—spring-damper system. 1+c5@>. Furthermore, assume that [—a, a], © € [-b,b] and

a,b > 0. The above parameters are set as follows4]= 1,

d = 1, c1 = 001, Cop = 01, C3 = 001, Cqp = 067, Cy; = 0,

a = 1.5 andb = 1.5. Equation (18) then becomes

K D

Consequently, replacing’ in (14) with By, ;, the following is
obtained:

® i =—0.14% - 0.02z — 0.672> + w. (19)
By, = By, " Ty i
The nonlinear terms are0.1:* and—0.67z3. Let us proceed
and via (16) the new antecedents amet) , ,(p.) = further in the same way as done in [4] and give a TS fuzzy model
m,, (pn)Th ki, Where antecedents defined hy! , ,(p,) 0f (19) with minimal number of, namely, four fuzzy rulesand
are assigned to the rule base approximatig. Again, the i have the following conditions:
benefit is that the size of each] ; is less or equal to the
commonB;, , resulted by Method 1. As a matter of fact, the cal- { —1.5075z < —0.672* < 0-x, >0
culation of the antecedents may increase since the membership 0-2<—0.672° < —1.5075z, =<0
values should be calculated for each rule base, however taigl
extra calculation is not included in the exponentially dominant
part of (10) and (17). This pinpointing of the reduction is —0.2256 < —0.1i3 < %-0, z>0
burdened by the fact, that one has to check, whether performing {0 b < —0143 < —(1225;1‘:7 <0’
the reduction for each coefficient tensor separately would yield
a better computational reduction or not. This fact means that the nonlinear term can be represented by
the upper and the lower bound$).67z* = fi1(z)z - 0 —
(1 — fi1(x)) - 1.50752 and —0.1i3 = foq1(%)i - 0 — (1 —
VIl. EXAMPLE f2,1(2)) - 0.2252, wheref,, ., (&) € [0,1], V,, = 2. This leads
to fuzzy setdy'; : f')(z) = 1—(x?)/2.25, (“a” means that the

This example, taken from [4] and [10], is a design for asimplginction is obtained analyticallyfift, : f#,(z) = (22)/2.25;
nonlinear mass—spring—damper mechanical system depicpagd1 L fo (@) = 1 — (d2)/2.25; Fga’2 : f2“’2(a':) = (i2)/2.25.
in Fig. 2. The main goal of this example is to approximate thfe antecedent functions are depicted in Fig. 4. Thus, the fol-
mass-spring—damper mechanical system (like a dynamically;ing rules are obtained analytically:

unknown one) by TS fuzzy model over a dense fuzzy partition.
The reason for applying dense rule base is the goal of achieving
a small approximation error. Then, the example performs
the proposed reduction technique to find the minimal fuzzy
partition. The differential equations of the mechanical system
are analytically given in the minimal form of a TS fuzzy model Ny A N .
as well as in order to evaluate the effectiveness of the reduction. T (1) i F\2 AND @(?) is F5y THEN & = —0.02254 —
The goal here is to show that the minimal form resulting from 1.5275 + u.
the proposed methods from training data is the same, in th&consequently, the TS fuzzy model in matrix representation
sense of complexity, as the analytically derived TS model. takes the form

First let us discuss the dynamic model from “design example ) )
2" of [4]. Itis assumed that the stifiness coefficient of the sprindf #(¢) is FT,, AND i(t) is Fy,,, THEN
the damping coefficient of the damper and the input term have x(t) = Ay, 0,%x(t) + By, w,u(t) (20)

IF z(t) is F*, AND #(t) is F¢, THEN & = —0.02z + u
IF z(t) is F*, AND i(t) is F¢, THEN Z = —0.0225i —
0.022 4 u ’

IF2(t) is Ffty AND a(t) is Fgy THEN G = —1.5275z+u

vy (zzozn; T zoz) O, Ve VAV 4 0005+ S L
k1 k n n k l

/]7:

IL. Va (%;Oklk—l-%Ok) +Cp§Vn
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7] 215 f1,1() f,4008)  We sample the dynamic system at points = —1.5 + (v; —
£, £1,400(x) 1)3/400 and,, = —1.5 + (v2 — 1)3/400, which imitates the
result of an identification algorithm like in [10]. The dense fuzzy
------------------ model becomes

| IF x(t) is F},, AND i(t) is F} ,, THEN

R
; <>t )
15 0,003 N E(t) = vy 0% + by 0, T + Cop 0, U
Fig. 3. Example: dense fuzzy partition to achieve a good approximation. where Goy o _ _0'1(_1'5 n (U2 _ 1)3/400)2’
boywe = —0.02 — 0.67(—=1.5 + (v; — 1)3/400)? and
where Coy v, = 1. In matrix form,
A= [0 —0.02
N ) IF =(t) is Fy,,, AND i(t) is Fy ,, THEN
(1] x(t) =A,, »,x(t) + By, w,u(t), V,, = 400.
B1,1 =lo
[_0.925 —0.02 Executing Method 2 on matrices,, .,, hamely, on tensor
Aip = 1 0 } A € RA00x400x2X2 (note that matriceB,, ,, are equal) re-
21- sults in two nonzero singular values such as 461.640dnd
By = 0 156.5663. . to the first dimension and after performing SN and
L NN transformation two, such as 100.8708and 1.8970.. to
Ay, —|° —1-0270} the second dimension. The resulting coefficient matrices are
’ 1 0
1] . [—169.595... —2.87186...
By = 0] A= i 1 0 }
[—0.225 —1.5275 . [338.965... —2.87186...
Azz = ! 0 ] Alp = 1 0 }
By — 1 . N —169.595... 3.89595...
LY ] ’ i 1 0
_ _ . ” [338.965... 3.89595...
The analytically obtained TS fuzzy model, consisting of four Ab, = 1 ° °0 © } . (21)

models, exactly represents the nonlinear system. The model has

two antecedents |n_ eac_h parameter dlme_nsmn, wh|c_h IS SlJffI'This means that two antecedent sets are sufficient on each
cient for the approximation. The next step is to approximate t

del (18) with a d le b ft hich }a?mension, which is in full accordance with the analytical TS
model ( .)W' a dense rule base, atter which we can .assuﬂ]?zy model design. As a result, we conclude that instead of
that (18) is unknown and then go about generating a minim

le b by th t techni In order to simolify th plying the identified 40& 400 rules only four rules are suf-
rule base by the present technique. In order to simplify the cient for the same approximation and the resulted antecedents

ample, let us define one of the simplest TS rule base types mintain theRuspinipartition. The PDC design and linear ma-

S|m_ply s_amplmgthe d|ﬁerent|a_| equa_tlo_ns over a 40900 g_”d trix inequality (LMI) computations can be restricted to the re-
whichyields 160 000 rules. This can imitate a fuzzy learning. Aﬁllting four rules instead of the trained 160 000 rules.

a matter of fact, learning frpm the training d?ta set of the differ- We show analytically in the following that the obtained model
ential equation may result in a rule base which have a much I?Sc'sequivalent to (20). The new antecedent sets are piecewise
number of rules than 160 000. There is, however, no guaranjg

ear. We approximate the break points of the pieces, which
that the learning approaches lead to the minimum four rules bp P P ’

discussed in the introduction. The HOSVD technique can be e actually the elements in the columnsIof [16], by a poly-

- Hpmial fitting, which results in
ecuted on both the learned and on the sampled rule base in the 9

same way. Therefore, without the loss of generality, we utilize

r . fr _ 2
the sampled rule base here. The aim is to show that the HOSVD Fiy1: fia(@) =oq + fra”,
technique finds the minimal four rules even from this over dis- Fy ot flo(z) =1— f{ (),
tended sampled rule base. Fy o fo(@) =1 — f3,(2)
Let intervalsi, z € [—1.5, 1.5] be divided by 400 triangular BT () — 302 29
shaped fuzzy sets (see Fig. 3). 221 f32(8) =z + ot (22)
The following rules are completed by the identification:
wing T P y the igentificat where oy = 0578614..., B = 0.098997...,
I SN b as = 0.333480... and By = —0.000442. The antecedent
IFQ.:(t) IS F7,, AND i(t) is F3,,, THEN functions are depicted in Fig. 4. Indeed, the rule base with
x(t) =Ay, 0, x(t) + By, w,u(t), where antecedents given by (22) and consequents of (21) is a variant

V,, =400. form of (20).
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1 1
el el
> d a
l‘1,1 FZ,I
Fr / Fr FZ’,I’
0.5 L7 T2 0.5 ,
Fz,z\
F{, F3, / \
0 s +15 x 0 s +15 x

Fig. 4. Example: antecedent sets of the original rule base via analytical derivation and reduced sets extracted from training data.

VIII. CONCLUSION [12]

In this paper, we have argued that the identification of TS
fuzzy models from training data needs to consider an importarit3!
feature between data fithess and model complexity. We empha-
sise the importance of these features by pointing out that a T34]
fuzzy model with a large number of fuzzy rules may encounterf !
the risk of having an approximation capable of fitting training
data well, but be incapable of running at low satisfactory com-
putational cost. In order to help the developments of TS fuzz2©l
models to find a balance between the two conflicting modeling
objectives, we introduced a HOSVD-based TS fuzzy model ref17]
duction technique. Using the proposed method, we have demon-
strated the application of HOSVD to constructing minimal sized[18]
local linear model consequent based fuzzy rule base. This ap-
proach is expounded from single-variable SVD-based reducﬁg]
tion technique of SISO TS models proposed in [10] to HOSVD-

based reduction capable of dealing with MISO TS models.  [20]
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