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Abstract—The main objective of this paper is to expound the
singular-value-decomposition (SVD)-based reduction technique
proposed to single-input–single-outputTakagi-Sugeno(TS) fuzzy
models to multivariable cases. The use ofhigher order singular
value decompositionis proposed in this paper for the complexity
reduction of multiple-input–single-output TS fuzzy model approx-
imation. A detailed illustrative example of a nonlinear dynamic
model is also discussed.

Index Terms—Complexity reduction, higher order singular
value decomposition (SVD), SVD-based fuzzy rule base reduction.

I. INTRODUCTION

T HE Takagi-Sugeno(TS) fuzzy model is one way to
describe a nonlinear dynamic system using local linear

models [1]–[10]. Its objective is that the system dynamics can
be captured by a set of fuzzy implications, which characterize
local regions in the state space. The main feature of a TS fuzzy
model is to express the local dynamics of each fuzzy rule by
a linear system model. The overall fuzzy model is achieved
by fuzzy “blending” of the linear models. Recently, the issue
of stability of fuzzy control systems has been investigated
extensively in nonlinear stability frameworks [2]–[9], which
helps us with designing TS models, controllers, and observers.
The TS multiple-model scheme is used both for the feedback
control [2]–[4] and the design of observers for fault diagnosis
and isolation (FDI) [5]–[7]. Both are based on the principle of
parallel distributed compensation(PDC) [8], [9]. By duality,
the FDI structure is also based upon the TS fuzzy model system.
Despite the above advantages, the use of TS fuzzy models is
strictly limited by their exponentially growing complexity in
respect to their approximation accuracy [10]. This complexity
problem comes from two inevitable facts. Namely, the main
structure of the TS model is, actually, a fuzzy rule base. There-
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fore, the TS model inherits the exponential complexity problem
of fuzzy rule bases [11]–[14]. This leads to a requirement of
finding a balance between two conflicting aims in achieving a
good system performance by the TS model, such as reducing
the fitting error of TS fuzzy models and reducing the model
complexity.

In other words, the complexity problem of TS fuzzy models
is due to the fact that fuzzy logic applications are suffering from
exponentially growing computational complexity in respect to
their approximation accuracy. This difficulty comes from two
inevitable facts. The first is that the most adopted fuzzy infer-
ence techniques do not hold the universal approximation prop-
erty, if the number of antecedent sets is limited, shown by Tikk
in [15]. Furthermore, their explicit functions are sparse in the
approximation function space. This fact inspires us to increase
the density, namely, the number of fuzzy terms in pursuit of a
good approximation. This, however, may soon lead to a conflict
with the computational capacity available for the implementa-
tion, since the increasing number of antecedents exponentially
explodes the computational cost. The computational explosion
is the second fact as stated by Kóczyet al. in [14]. The effect of
this contradiction is gained by the lack of a mathematical frame-
work capable of estimating the necessary minimal number of
antecedent sets. Therefore, a heuristic setting of antecedent sets
is applied, which usually overestimates, in order to be on the
safe side, the necessary number of antecedents resulting in an
unnecessarily high computational cost. As a result, fuzzy rule
base complexity reduction techniques emerged as a new topic
in fuzzy theory. Some reduction techniques are classified re-
garding their concept in [11] and [16]. A fuzzy rule importance
based technique is proposed by Songet al. in [32]. Another re-
cent method is proposed by Sudkampet al. [34], which com-
bines rule learning with a region-merging strategy.

Recently, several publications have applied orthogonal trans-
formation methods for selecting important rules from a given
rule base. For instance, in 1999 Yen and Wang investigated var-
ious techniques in [11] for possible fuzzy rule base simplifi-
cation techniques such as orthogonal least-squares, eigenvalue
decomposition, singular value decomposition (SVD-QR) with
column pivoting method, total least-squares method, and direct
SVD method. [33] also proposes an SVD based technique with
examples. The SVD-based fuzzy approximation technique was
proposed in 1997 [13], which directly finds a minimal rule-base
from sampled values. Shortly after, this concept was introduced
as SVD fuzzy rule base reduction and structure decomposition
in [12], [39], and [40]. Its key idea is conducting SVD of the
consequents and generating proper linear combinations of the
original membership functions to form new ones for the reduced
set. [12], [13] characterizes membership functions by the con-
ditions of sum-normalization (SN), nonnegativeness (NN), and
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normality (NO) and extends SVD reduction with further tools
to preserve SN, NN, and NO conditions of the new member-
ship functions. It may have a significant role if the purpose
is not merely saving computational cost, but maintaining the
fuzzy concept and proceeding further with a theoretical study
on the reduced rule’s features. Presumably, the SVD technique
in this paper and in [12] and [13] can be replaced by other or-
thogonal techniques investigated by Yen and Wang in [11]. An
extension of [11] to multidimensional cases may also be con-
ducted in a similar fashion as the higher order SVD reduction
technique proposed in [10], [12], and [13] and in this paper. Fur-
ther developments of SVD-based fuzzy reduction [12], [13] are
proposed in [10], [17], [18], and [38]. Examples of applying
SVD reduction can be found in [35]–[37]. References [17] and
[36] apply an Automatic Guided Vehicle system developed by
Kovács [41]. The initial work in [12] and [13] can be applied re-
gardless of the inference paradigm adopted for a fuzzy rule base
as shown in [12] and [38]. Presumably, the product operation
in this paper can be replaced by Rudas’s generalized inference
operators [20]–[23]. This would have a prominent role in devel-
oping the ability of finely tuning the TS models according to
the application at hand and/or specific purposes of system per-
formance.

SVD is not merely used as a way of reduction of fuzzy rule
bases. A brief enumeration of some opportunities offered by
SVD, development of which was started by Beltarmi about 200
years ago [19] and becomes one of the most fruitful tools in
linear algebra, gives ideas about its promising role in complexity
reduction in general. The key idea of using SVD in complexity
reduction is that the singular values can be applied to decompose
a given system and indicate the degree of significance of the
decomposed parts. Reduction is conceptually obtained by the
truncation of those parts, which have weak or no contribution at
all to the output, according to the assigned singular values. This
advantageous feature of SVD is used in this paper to minimize
a given TS fuzzy model by discarding those local linear models,
which have no significant role in the overall system. The com-
plexity and its reduction is discussed in regard of the number
of rules. However, reducing the number of rules does not imply
the computational cost reduction in any cases, since the compu-
tation also depends on the number of simultaneously fired rules
[42], [43]. Therefore, detailed investigation is given in the as-
pect of computational time reduction in this paper.

Thepresentworkconstitutesadetailed investigationof thepre-
liminaryapproachesoutlined in [10]andgivesapossiblesolution
to the problemanalyzedabove.Thealgorithmsproposedhere are
mostlydeveloped in [12] and [13], butare restructured in terms of
tensor description in order to facilitate further developments for
TS fuzzy models. Concepts of higher order SVD (HOSVD) are
investigated in tensor forms in the work of [24]–[28].

This paper is organized as follows. Section II defines various
concepts to be utilized in theproposedmethod.Section III briefly
summarizes the main concept of TS fuzzy models. Section IV
examines the exponential complexity problem of TS fuzzy
models in full accordance with [12]–[14]. Section V briefly
summarizes those properties of HOSVD, which are significant
in complexity reduction. Section VI presents the HOSVD based
reduction of multiple-input–single-output (MISO) TS fuzzy

models expounding the approaches defined in the preliminary
work [10]. Section VII gives a detailed example of a dynamic
system through numerical and analytical considerations to show
the effectiveness of the proposed method.

II. BASIC DEFINITIONS

This section will introduce some elementary definitions and
concepts utilized in the further developments. Before starting
with the definitions, some comments are enumerated on the no-
tation to be utilized. To facilitate the distinction between the
types of given quantities, they will be reflected by their represen-
tation: scalar values are denoted by lowercase letters ;
column vectors and matrices are given by boldface letters as

and , respectively. Tensors correspond to
capital letters as , tensor 1 contains values 1 only.
The transpose of matrix is denoted as . A subscript is
consistently used for a lower order of a given structure, e.g.,
an element of matrix is defined by row–column number
symbolized as . Systematically, theth column
vector of is denoted as , i.e., . Fuzzy
sets are denoted by capital letters as . To enhance the
overall readability characters are in the meaning of in-
dexes (counters), are reserved to denote the index upper
bounds, unless stated otherwise. is the vector
space of real-valued ( )-tenors. Letter serves
to denote the number of dimensions of the space where the co-
efficient matrices of TS fuzzy model are approximated.de-
notes local linear models.

Definition ( -mode Matrix of Tensor ): Assume an Nth
order tensor . The -mode matrix

, contains all the vectors in theth dimen-
sion of tensor . The ordering of the vectors is arbitrary, this
ordering shall, however, be consistently used later on.
is called an th -mode vector.

Note that any matrix of which the columns are given by
-mode vectors can evidently be restored to be tensor
. The restoring can be executed even in the case when some

rows of are discarded since the value ofhas no role in
the ordering of [24].

Definition ( -mode Subtensor of Tensor): Assume an
th-order tensor . The -mode sub-tensor

contains elements .
Definition ( -mode Tensor Partition): Assume an th

order tensor . -mode partitions of
tensor are denoted as

, where .
Definition (Scalar Product): The scalar product

of two tensors is defined as
def

.
Definition (Orthogonality): Tensors of which the scalar

product equals 0, are mutually orthogonal.
Definition (Frobenius-norm): The Frobenius-norm of a

tensor is given by
def

.
Definition ( -mode Matrix–Tensor Product): The

-mode product of tensor by a
matrix , denoted by is an (
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)-tensor
of which the entries are given by , where

. Let be noted
for brevity as , .

Theorem (Matrix SVD): Every real-valued( )-matrix
can be written as the product of

in which:

1) is a unitary ( )-matrix;
2) is a unitary ( )-matrix;
3) is an ( )-matrix with the properties of:

a) pseudodiagonality:
diag ;

b) ordering: .
The are the singular values of and the vectors and
are, respectively, anth left and an th right singular vectors.

There are major differences between matrices and HO tensors
when rank properties are concerned. These differences directly
affect the wayan SVD generalization could look like. As a matter
of fact, there is no unique way to generalize the rank concept. In
this paper, we restrict the description to-mode rank only.

Definition ( -mode Rank of Tensor): The-mode rank of
, denoted by , is the dimension of the

vector space spanned by the-mode vectors as
.

Theorem [ -th Order SVD (HOSVD)]: Every tensor
can be written as the product , in

which:

1) is a unitary (
)-matrix called -mode singular matrix;

2) tensor of which the subtensors
have the properties of:

a) all-orthogonality: two subtensors and
are orthogonal for all possible values of, and

when ;
b) ordering:

for all possible values of .
The Frobenius-norm , symbolized by , are

-mode singular values of and the vector is an -th
singular vector. is called the core tensor.

More detailed discussion of matrix SVD and HOSVD is given
in [24], [28].

III. TS MODEL APPROXIMATION

This section is intended to discuss the fundamental form of
TS fuzzy models. For further detailed investigation of TS fuzzy
models and closely related concepts see [1]–[10] and [30]. A TS
model consists of a number of local linear models assigned to
fuzzy regions, which are designed to approximate the dynamic

Fig. 1. Structure of a TS fuzzy model.

features at the corresponding operating fuzzy points in vector
space . Fig. 1 shows the structure of a TS fuzzy model. The
model varies according to vector , which may contain
some values of the state vectoras well. The TS fuzzy infer-
ence engine is responsible for combining the local linear models
according to vector in order to find a proper model, which is
assumed to be the momentary linear descriptor of the system
capable of generating output vectorfrom state vector and
input vector .

In the following, the adopted forms of the TS fuzzy model are
discussed based on the forms of [6], [7], and [30].

Definition ( is a Model in Respect of Vector
): Assume a given model varies in the-di-

mensional parameter space

(1)

In many cases, the rows of (1) consist of more than two terms
like, for instance, in the case of observer design in [7] and [30],
where the first row of model (1) has an extra term

. Therefore, to facilitate the further notation and have gen-
eral description like in [10], the form of (2), shown at the bottom
of the page, is applied, where denotes the number of rows
in the model (1) (i.e., the number of equations describing the
model) and indicates how many terms are in the rows of the
equations, for instance, these are 2 in (1). Vector con-
sists of the model input or state vectors, wheredenotes the
number of “input” elements in . Vector contains
the output values of theth row in (2), where denotes the
number of “output” values in . This implies that the size of

is . For example, describing (1) by (2) the result
is: , and the outputs of the model
are and . Coefficient matrices be-
come: , , ,

...
...

. . .
...

(2)



BARANYI et al.: SVD-BASED REDUCTION TO MISO TS MODELS 235

. For abbreviation, let us use the following no-
tation of (2):

In this paper, the firing probability of the fuzzy rules is
based on a product operator like in [1]–[10] and [30]. Here,
two formulas of a TS fuzzy model are discussed accordingly
to the types of rule bases. The first one defines uncompleted
rule base while the second takes all possible rules combined by
antecedents into account [1]–[10], [30]. Before starting with
the definition, let us initiate the following notation for theth
local linear model:

Definition (Uncompleted TS Fuzzy Model): Assume-vari-
able model consequent-based fuzzy rules as:

IF is AND is AND is THEN
model , . where is the -th an-
tecedent fuzzy set on the-th input universe. The approximated
model in respect of is

which is written frequently as

(3)

where the firing probability of the rules is
. Usually, the antecedent sets are given in

Ruspini-partition, namely, and are
normalized as

(4)

in (3) , thus, the denominator can be taken out of consideration.
In the following, a TS fuzzy model is defined where all com-

binations of the antecedent sets yields a fuzzy rule, namely,
where the rule base is completed.

Definition (Completed TS Fuzzy Model): The completed
fuzzy rules are formed by all combinations of the antecedents
as follows:

IF is AND is AND is
THEN model , where

. Consequently, the approxi-
mation becomes as (5), shown at the bottom of the page,where

is the number of antecedent sets on the-th antecedent
universe. If the antecedent sets are defined in Ruspini-partition
as above, then

(6)

In order to facilitate the further development, let (3) and (5) be
given in terms of tensor with assumption of (4) and (6). Thus,
(3) can be formulated as [10]

(7)

where is the vector of functions . Tensor
consists of matrices . The

first dimension of is assigned to functions . The next
two are assigned to the output and input vectors, respectively.

In the same way, (5) is reformulated as

(8)

where contains membership values
and the dimensional tensor

is constructed from matrices
of (5). The first dimensions

of are assigned to the dimensions of the parameter space
. The next two ones are assigned to the output and input

vectors, respectively.

IV. COMPLEXITY INVESTIGATION

This section is intended to show the main motivation of the
complexity reduction approach to be discussed here. The com-
plexity of TS fuzzy models is proportional to the number of el-
ements of tensor , which will be detailed later. The compu-
tational reduction is hence based on the reduction of the size of
tensor . The first dimensions of are assigned to the
dimensions of the parameter space, mentioned above and the
next two are assigned to the output and input vectors, respec-
tively. In the case of generalized form (7), the dimensionality
of tensor is three regardless of the dimensionality of the
parameter space. Therefore, its reduction can readily be traced
back to the SISO model investigated in the preliminary work
[10] and it is also included in the reduction of the completed
MISO TS fuzzy model as a special case, namely, it can be con-
sidered in the same way as a completed SISO TS fuzzy model.
Consequently, the discussion focuses on the completed MISO

(5)
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TS fuzzy model from now on. First, the computational com-
plexity of the model is examined. The output values are calcu-
lated by (8) as

(9)

Lemma (Complexity Explosion): The computational
complexity of the completed TS fuzzy model grows
exponentially with the number of antecedents and the size of the
model coefficients. Considering the multiplication operation
only the computational requirement is characterized as

(10)

where indicates the number of multiplications during the
calculation of a membership function.

To arrive at (10), one notes that calculating the output of one
linear local model to a given input needs multi-
plications. The number of the local linear models is ,
which actually comes from the exponential complexity problem
of fuzzy rule bases shown in [14]. The outputs of the
local linear models are weighted by the products of the mem-
bership values, which implies further multipli-
cations. indicates the calculation of the membership
values, where represents the number of multiplications in
the calculation of one membership value. Consequently, (10)
shows that increasing the rule density, namely, the number of
antecedents in pursue of good approximation, leads to the explo-
sion of the computational requirement fully according to [14]

V. KEY CONCEPT OFHOSVD-BASED REDUCTION

This section briefly discusses the fundamentals of HOSVD
in the sense of complexity reduction. Many reduction properties
of the HOSVD of HO tensors are investigated in the related lit-
erature. Let us briefly summarize those, which have prominent
roles in this paper. First of all, let the computation of HOSVD
be discussed. It is done by executing SVD on each dimeniosn of
tensor . Namely, is determined by executing SVD on the

-mode matrix of tensor . For instance, let us determine
and

where ” ” denotes ”reduced” and ”” means ”discarded, ”
which we will see later. Thus, the result is

The dimension is done in the same way. It performs SVD
on the mode matrix of and yields

Therefore,

In multilinear algebra as well as in matrix algebra, theFrobe-
nius-norm is unitary invariant. As a consequence, the fact that
the squaredFrobenius-norm of a matrix equals the sum of its
squared singular values can be generalized.

Property (Approximation): Let the HOSVD ofbe given as
in the Theorem of HOSVD and let the-mode rank of be
equal to . Define a tensor by discarding singular values

for given values of , i.e., when SVD
is performed on dimension discard , and , where

contains singular values . Then, we
have

(11)

This property is the HO equivalent of the link between the SVD
of a matrix and its best approximation in a least-squares sense,
by a matrix of lower rank. The situation is, however, quite dif-
ferent for tensors. By discarding the smallest-mode singular
values, one obtains a tensorwith -mode rank of . Unfortu-
nately, this tensor is in general not the best possible approxima-
tion under the given -mode rank constrains [24]. Nevertheless,
the ordering implies that the main components ofare mainly
concentrated in the part corresponding to low values of the in-
dexes. Consequently, if , where actually corre-
sponds to the numerical rank ofthen the smaller -mode sin-
gular values are not significant, which implies their discarding.
In this case, the obtainedis still considered as a good approx-
imation of . According to the special terms in this topic the
following naming has emerged [12], [13].

Definition 13 (Exact/Nonexact Reduction): Assume an
-th order tensor . Exact reduced form

, where “ ” denotes “reduced”, is defined by
tensor and -mode singular matrices

, which are the results of Theorem
HOSVD, where only the zero singular values and the corre-
sponding singular vectors are discarded.Nonexact reduced
form , is obtained if not only zero singular values
and the corresponding singular vectors are discarded.

VI. SVD-BASED COMPLEXITY REDUCTION OF

TS FUZZY MODELS

The main objective of the complexity reduction proposed in
this section is twofold, which is discussed via two methods.
Method 1 is aimed to minimalize values , which means the
decrease of the size of in the first dimension, namely, to
find the minimal number of fuzzy rules/local linear model. The
reduction conducts HOSVD on tensor to root out linear
dependencies by truncating zero or small singular values. In
the first case, exact and in the latter nonexact reduction is ob-
tained [10], [12], [13], [24]. First an exact reduction is dis-
cussed in this section, which means that the output of the re-
duced TS fuzzy model does not differ from the output of the
original model. Increasing the effectiveness of the reduction by
discarding nonzero singular values in HOSVD, reduction error
is obtained which will be bounded in Remark 2 at the end of this
section. A subsequent aim of the reduction methods to be pro-
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posed is to decrease values and which also appear in the
dominant term of (10). The number of input and output values
are defined by the application at hand, which implies that
and cannot directly be decreased. Similarly to [10] the key
idea of reducing these values can be viewed as the transforma-
tion of the system model to a smaller computational space of-
fline. The input values are also projected in each state step of
the model and the output values are calculated in the reduced
computational space. Finally, the output values are transformed
back to the original space. The reduction is based on executing
SVD reduction to the coefficient matrices. As a matter of fact
exact reduction cannot be obtained in this step if the coefficient
matrices are full in rank, which is usually guaranteed by mod-
eling processes. Nonexact reduction is, however, still possible at
the price of reduction error. First, let us characterize the concept
and the goal of the reduction by the following theorem.

Theorem (TS Fuzzy Model Reduction): Equation (9) can al-
ways be transformed into the following form:

which is equivalent to

(12)

where the size of may be re-
duced as , and .

consists of the new antecedents which define
the rules in the reduced rule base. The number of antecedents
on the -th universe is . and
are applied to transform the inputs and the outputs between the
reduced and the original computational space, which we will see
later at Method 2.

The proof of the theorem can readily be derived from the fol-
lowing Methods 1 and 2. Before starting with the methods let us
have a brief digression and represent the calculation of values
of the TS fuzzy model in respect of in two different ways as
discussed in [10]. Let tensor
be given by the form of .
The output value of the TS fuzzy model in respect of is

The second way utilizes matrix
constructed as

. The output of the TS fuzzy
model is

...

(13)

The first method shows how to find the minimal number of rules.
Method 1 (Determination of the Min-

imal Values of ): Let tensor
be con-

structed, so it contains all tensors , for
instance, , where

. Applying HOSVD to
the -dimensional tensor in such a way that the SVD is
executed only on dimensions yields

(14)

where “ ” denotes “reduced.” Tensors
are found

accordingly to construction of , thus, for
instance, and

. If singular values are
discarded then the size of
is less than the size of , so,

, which is the key point of the reduction. Thus,
for (14), we obtain

(15)

The new antecedent sets of the rules are constructed as

(16)

Consequently, (9) can be written in the reduced form by sub-
stituting (15) and (16) into (9) which yields

which is in full accordance with the theorem of TS fuzzy model
reduction. This finally obtained form has the same structure as
(9). Therefore, it represents the same structured fuzzy rule base,
but with different antecedents and consequents.

The objectives of Method 2 are to decreaseand .
Method 2 (Determination of the Minimal Computational

Space): Again, in the following steps we use SVD in exact
mode. Remark 2 discusses the error bound when SVD is
executed in nonexact mode, namely, nonzero singular values
are discarded as well.

1) Determination of matrices , namely, the reduction of
.
Let . Applying SVD to yields:

Matrix can be restored to tensor

.
2) 2) Determination of matrices , namely, the reduction

of
Let tensor

be constructed like in (13) as
, where

tensors are defined accordingly to the result
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by step 1). Then,
let whereupon executing SVD yields

Matrix defines tensors
ac-

cordingly to and
.

The results of Method 2 are and . is
applied to transform the input values to a re-
duced space as: . The output is
calculated in the reduced computational space as:

.

The output is projected to the original space by
, which is in full accordance with the

theorem of TS fuzzy model reduction.

The ordering of executing Methods 1 and 2 is arbitrary. In the
following, some important issues and interpretability problem
of the results are discussed.

Remark 1: The functions in (16) obtained by Method 1 may
not be interpretable as fuzzy sets, since the transformation using
matrix may result in functions with negative values. An-
other crucial point is that the resulted antecedent functions do
not guaranteeRuspini-partition, which means that the denom-
inator in (5) may not be equal to 1. This fact would destroy
the whole reduction concept since calculating the denominator
with the new antecedents may get far from 1. However, if only
the saving computational cost in final implementation is the
purpose and the fuzzy concept does not have to be accommo-
dated then (9) and (8) are directly applicable to the reduced
form, namely, (12) is applicable directly. If the reduced form
is for further studies in fuzzy theory and/or Lyapunov stability,
then the reduced weighting functions should accommodate ad-
ditional characterization pertaining to specific operations. This
may require further transformations. To obtain matricesin
such a way that the reduced membership functions are bounded
by [0, 1] and holdRuspini-partition,nonnegativenessandsum-
normalizationtransformation techniques are developed in [12],
[13] as discussed in the introduction. If the SVD is accompa-
nied by these transformations then the resulted functions remain
interpretable as antecedent fuzzy sets. Furthermore, the denom-
inator of (5) becomes 1 (if it were true in the case of original
rule base as well), which ensures the theoretically correct use of
(9) and (8) in fuzzy concept. Furthermore, in some theoretical
points proposed by Duboiset al. [31] for Generalized Modus
Ponent, it is highly desired that the fuzzy sets conserve normal-
ization property, i.e., when at least one element exists in each
fuzzy set whose membership value is one. It is also calledlo-
calization of rules. In order to serve this conceptnormalization
transformation is proposed in [12]. Consequently, the computa-
tional cost of the algorithm may be decreased via the proposed
methods in final implementation, which serves our main goal,
but its price is that the interpretability of the fuzzy sets may
be degraded. Actually, this is also an interesting point itself in
fuzzy theory—how to represent and extract a rule base in dif-
ferent ways.

Remark 2: An advantage of the proposed algorithm is that it
has error controllable property, i.e., if the HOSVD is executed in
nonexact mode then the original and the reduced approximation
differ and the difference can be estimated during executing the
reduction technique. In Section V, it is shown that discarding
nonzero singular values results in reduction error, which can
be bounded by (11). References [12], [13], and [16] bound
the maximum reduction error by the sum of the discarded
singular values. As a matter of fact, the reduction errors of the
proposed methods also depend on the antecedent sets applied.
In this regard, various cases of antecedents are discussed in
[16]. Generally speaking, it can be said that if the original
antecedents are given inRuspini-partitions then the maximum
reduction error is the sum of the discarded singular values.
For more details about the error bound of SVD reduction
see [12], [13], and [16].

Remark 3: Method 1 may result in membership functions
which cannot be analytically simplified and, hence, their shapes
are rather complicated and their computational loads may be
greater than that of the original ones. Observing (10), it is
concluded that is not in the dominant part of (10) which
implies that this computational increase is dispensable compared
to the exponential feature of the dominant term. In the worst
case, the membership values of the observations are calculated
by the original functions and the membership values of the
reduced antecedents are simply determined by (16) in each
step of the system. Consequently, the worst case is bounded
by

(17)

where extra term indicates the extra computational load
of calculating the membership values of the observation in the
reducedantecedentsonthe-thuniverse. and
are form the computation requirement of the transformation
between the original and the reduced computational spaces.
Consequently, the effectiveness of the reduction is shown by
the equation at the bottom of the next page.

In the case of a dense or higher dimensional rule base its
dominant part is

Remark 4: Method 1 could be modified in such a way that the
reduction results in one fuzzy rule base for each row or column
of (2) like in [10]. Furthermore, one rule base could be resulted
for each coefficient tensor . The advantage of the reduction
of each is that the size of some may decrease. This
is due to the fact that the-mode rank of tensor is less or
equal to the -mode rank of tensor in (14). In the worst case,
its maximum could be .
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Fig. 2. Example: mass–spring–damper system.

Consequently, replacing in (14) with , the following is
obtained:

and via (16) the new antecedents are:
, where antecedents defined by

are assigned to the rule base approximating . Again, the
benefit is that the size of each is less or equal to the
common resulted by Method 1. As a matter of fact, the cal-
culation of the antecedents may increase since the membership
values should be calculated for each rule base, however this
extra calculation is not included in the exponentially dominant
part of (10) and (17). This pinpointing of the reduction is
burdened by the fact, that one has to check, whether performing
the reduction for each coefficient tensor separately would yield
a better computational reduction or not.

VII. EXAMPLE

This example, taken from [4] and [10], is a design for a simple
nonlinear mass–spring–damper mechanical system depicted
in Fig. 2. The main goal of this example is to approximate the
mass–spring–damper mechanical system (like a dynamically
unknown one) by TS fuzzy model over a dense fuzzy partition.
The reason for applying dense rule base is the goal of achieving
a small approximation error. Then, the example performs
the proposed reduction technique to find the minimal fuzzy
partition. The differential equations of the mechanical system
are analytically given in the minimal form of a TS fuzzy model
as well as in order to evaluate the effectiveness of the reduction.
The goal here is to show that the minimal form resulting from
the proposed methods from training data is the same, in the
sense of complexity, as the analytically derived TS model.

First let us discuss the dynamic model from “design example
2” of [4]. It is assumed that the stiffness coefficient of the spring,
the damping coefficient of the damper and the input term have

nonlinearity

(18)

where is the mass and represents the force. is the
nonlinear or uncertain term with respect to the spring. is
the nonlinear or uncertain term with respect to the damper.
is the nonlinear term with respect to the input term. Assume
that , , and

. Furthermore, assume that , and

. The above parameters are set as follows [4]: ,
, , , , , ,

and . Equation (18) then becomes

(19)

The nonlinear terms are0.1 and 0.67 . Let us proceed
further in the same way as done in [4] and give a TS fuzzy model
of (19) with minimal number of, namely, four fuzzy rules.and

have the following conditions:

and

This fact means that the nonlinear term can be represented by
the upper and the lower bounds:

and
, where , . This leads

to fuzzy sets , (“ ” means that the
function is obtained analytically), ;

; .
The antecedent functions are depicted in Fig. 4. Thus, the fol-
lowing rules are obtained analytically:

IF is AND is THEN
IF is AND is THEN

IF is AND is THEN
IF is AND is THEN

.

Consequently, the TS fuzzy model in matrix representation
takes the form

IF is AND is THEN

(20)
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Fig. 3. Example: dense fuzzy partition to achieve a good approximation.

where

The analytically obtained TS fuzzy model, consisting of four
models, exactly represents the nonlinear system. The model has
two antecedents in each parameter dimension, which is suffi-
cient for the approximation. The next step is to approximate the
model (18) with a dense rule base, after which we can assume
that (18) is unknown and then go about generating a minimum
rule base by the present technique. In order to simplify the ex-
ample, let us define one of the simplest TS rule base types by
simply sampling the differential equations over a 400400 grid
which yields 160 000 rules. This can imitate a fuzzy learning. As
a matter of fact, learning from the training data set of the differ-
ential equation may result in a rule base which have a much less
number of rules than 160 000. There is, however, no guarantee
that the learning approaches lead to the minimum four rules as
discussed in the introduction. The HOSVD technique can be ex-
ecuted on both the learned and on the sampled rule base in the
same way. Therefore, without the loss of generality, we utilize
the sampled rule base here. The aim is to show that the HOSVD
technique finds the minimal four rules even from this over dis-
tended sampled rule base.

Let intervals be divided by 400 triangular
shaped fuzzy sets (see Fig. 3).

The following rules are completed by the identification:

IF is AND is THEN

where

We sample the dynamic system at points
and , which imitates the

result of an identification algorithm like in [10]. The dense fuzzy
model becomes

IF is AND is THEN

where ,
and

. In matrix form,

IF is AND is THEN

Executing Method 2 on matrices , namely, on tensor
(note that matrices are equal) re-

sults in two nonzero singular values such as 461.6404and
156.5663 to the first dimension and after performing SN and
NN transformation two, such as 100.8708and 1.8970 to
the second dimension. The resulting coefficient matrices are

(21)

This means that two antecedent sets are sufficient on each
dimension, which is in full accordance with the analytical TS
fuzzy model design. As a result, we conclude that instead of
applying the identified 400 400 rules only four rules are suf-
ficient for the same approximation and the resulted antecedents
maintain theRuspini-partition. The PDC design and linear ma-
trix inequality (LMI) computations can be restricted to the re-
sulting four rules instead of the trained 160 000 rules.

We show analytically in the following that the obtained model
is equivalent to (20). The new antecedent sets are piecewise
linear. We approximate the break points of the pieces, which
are actually the elements in the columns of [16], by a poly-
nomial fitting, which results in

(22)

where , ,
and . The antecedent

functions are depicted in Fig. 4. Indeed, the rule base with
antecedents given by (22) and consequents of (21) is a variant
form of (20).
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Fig. 4. Example: antecedent sets of the original rule base via analytical derivation and reduced sets extracted from training data.

VIII. C ONCLUSION

In this paper, we have argued that the identification of TS
fuzzy models from training data needs to consider an important
feature between data fitness and model complexity. We empha-
sise the importance of these features by pointing out that a TS
fuzzy model with a large number of fuzzy rules may encounter
the risk of having an approximation capable of fitting training
data well, but be incapable of running at low satisfactory com-
putational cost. In order to help the developments of TS fuzzy
models to find a balance between the two conflicting modeling
objectives, we introduced a HOSVD-based TS fuzzy model re-
duction technique. Using the proposed method, we have demon-
strated the application of HOSVD to constructing minimal sized
local linear model consequent based fuzzy rule base. This ap-
proach is expounded from single-variable SVD-based reduc-
tion technique of SISO TS models proposed in [10] to HOSVD-
based reduction capable of dealing with MISO TS models.
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