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Abstract - Simplifying fuzzy rule based models is considered. 
For the rule selection process both input space and the output 
space are considered, where both spaces play important role. The 
method used is principal component analysis complemented with 
the OLS method for the selection of the rules. In this selection 
process, first the regression matrix of a common radial basis 
function (RBF) network is considered. The magnitude of the 
eigenvalues of the RBF matrix of radial basis function network is 
not central to the selection. The selection is made according to the 
energy contribution from the graded principal components, 
where eigenvectors with low eigenvalues may have relatively 
more energy contribution to the output depending on the model 
outputs. In parallel to the above gradation process, the influential 
basis functions are identified, as they are associated with the 
graded principal components of bigber ranks in this very 
gradation. This approach is extended to normalized RBF matrix 
for fuzzy systems with singular value decomposition. The 
comparative results are presented and the implication and 
importance ofthe approach is pointed out. 

I. INTRODUCTION 

The selection of a set of important fuzzy rules from a given 
rule base is an important decision-making process for effective 
fuzzy-rule-based modeling. In a fuzzy model a balance 
between reducing the fitting error and increasing the model 
complexity is essential for a satisfactory model, that is both 
accurate and transparent. Several researchers have applied 
orthogonal transformation methods for selecting important 
fuzzy rules fiom a given rule base [I-51. A comparative study 
of these methods is presented by Yen and Wang [6]. This 
paper aims at to point out how one can still improve the rule 
selection process by using orthogonal methods jointly. The 
orthogonal methods involved are orthogonal least squares 
(OLS), singular value decomposition (SVD), and principal 
component analysis (PCA). The organisation of the paper is 
as follows. Section two gives a brief description of a fuzzy 
modeling, which is a special case of Takagi-Sugeno fuzzy 
modeling dealt with in this research. Section two gives a brief 
description of orthogonal least squares method. This method 
is central to the present work due to its relevance to radial 
basis functions (RBF) network, which is closely related to 
fuzzy modeling being considered. Section three describes the 
orthogonal methods applied in this work jointly to enhance the 
efficacy of these methods for fuzzy rule selection. Section four 
presents the comparative results obtained. This is followed by 
the conclusions in section five. 

Il. FUZZY MODELING 

A fuzzy model is a set of If-Then rules that associates 
inputs to outputs. In fuzzy logic terms the inputs and outputs 
are rule antecedents, and rule consequents, respectively. There 
are two major type of fuzzy modeling. These are Mamdani 
type model and Takagi-Sugeno type model. The latter differs 
from the preceding model especially from the rule- 
consequents viewpoint. Namely, in Takagi-Sugeno type 
modeling rule consequents are linear functions of inputs rather 
than fuzzy sets. 

A .  Takagi-Sugeno Model with Constant Consequent 
Takagi-Sugeno [7] type fuzzy modeling consists of a set of 

fuzzy rules of n input variables with a local input-output 
relation in a linear form. 

(1) R, :If x I  is Ai, and ... x, is A,  
Then y.  =ajr+bi ,  

where Ri is the ith rule, X=[X,&~,.....&J~EB is the vector of 
input variables; Ai,, Ai2,. . .,Aj. are fuzzy sets and yi is the rule 
output; m is the number of rules. The estimated output y of 
the model is calculated through the weighted average of the 
rule consequents of the form 

i=1,2 ,._...., m 

. .  

In (2), pj(x) is the degree of activation of the ith rule 

(3) 

where p A v ( x j ) + [ O , l ]  is the membership function of the 

fuzzy set AV at the input (antecedent) of Ri. A special case of 
the Takagi-Sugeno model is formed if only the constant term 
in the linear consequent is retained, namely bi . In this case, 
the fuzzy model becomes equivalent to radial basis function 
(RBF) network in a neural network context under lenient 
conditions f8,9]. As to fuzzy systems, the Gaussian radial 
basis functions play the role of membership functions: 

(4) 

where cii and o, are the center and width of Gaussian function, 
respectively. In this fuzzy model the output is computed by (2) 
which takes the form 
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where pi is the normalized firing strength of the ith rule which 
is defined by 

1 p p [ -  20, 2 

(x; -cy)> 

(6) , ,  D .  = 

To form the fuzzy system model from the data set with N data 
samples, given by 

where each data sample has a dimension of n (N>>n). First 
the structure is determined, and afterwards the parameters of 
the structure are identified. The number of rules characterizes 
the structure of a fuzzy system. 
From (6), the fuzzy model as a matrix equation is given by 
y = P S + e  (8) 
where P is mxm firing strength matrix; 9 is the mxl parameter 
vector . It is interesting to note that, the formulation given by 
(8), is the general regression formalism in a lmear system 
modeling where 9 is mxl  model parameter vector; P is mxm 
regressor matrix; y is regressant or system output vector in a 
general multivariable model. The solution of this lmear model 
is well established. Referring to (9, the RBF network 
structure is central to the fuzzy model subject to application of 
orthogonal decomposition methods. Therefore, the RBF 
network is briefly described below for describing the principal 
component analysis (PCA) for the determination of the basis 
function centers and thereby corresponding basis functions. 
Based on this analysis, the application of singular value 
decomposition (SVD) will be described for fuzzy rule 
selection. 

B. Radial Basis Function Nehvork 
Considering the function approximation by the radial basis 

functions #,c) , an approximation to a functionffx) by radial 
basis function network is carried out by 

X=[x,, xz,. .... .AV1 . y=)FIYl,YZ, ....... YNIT (7) T 

M 

Y = f ( x )  = Cw,((II x --ci II)+ e (9) 
i=l 

where wi are weights; M is the number of basis functions; x is 
the sample vector; cj is the RBF center vector; e is the model 
error; &x,c) is the hasis function generally based on the 
Euclidean distance metric defmed by 

(10) llx--cj 11 2 =(X-C/)T(x--f;) 

(=exp{-l lx-c; II'/of} (1 1) 
so that 

where ai is the j-th width parameter that determines the 
effective support of the j-th basis function. The symmetric 
matrix CP formed by the elements 
( 0  =exp{- l /x j -c;  Ip / U ; }  (12) 

is referred to as RBF matrix which is used to train the 
network. For a set of input and output pairs, the approximation 
model in matrix form can be expressed as 

where y, is the desired output vector which is m x q ]  matrix in 
the multi-output case where q is the number of outputs;Q is 
the regression matrix that consists of regressor vectors and 
plays the role of P in (8), after normalisation similar to that 
given in (6) ; w is the parameter vector or output matrix which 
is Mxq matrix in the multi-output case; e is the error vector. 

C. The Orthogonal Least Squares Method 

y = Q w + e  (13) 

The orthogonal least squares (OLS) method [IO-111 makes 
orthogonal decomposition of 0 .  This is generally 
accomplished by Gram-Schmidt [ 121 orhogonalisation 
procedure: 
@=RA (14) 
where A is an upper-diagonal matrix and R is an NxMmatrix 
with orthogonal columns ri ( i= l ,  ...,M) such that 

R ' R = H ,  H =  r"' .............. ........ O 1 
10 ....... h,] 

H is MxMdiagonal matrix. With the defmitions 

R = @A-' (16) 
and, 

W R  =Aw (17) 
The matrix equation (13) in this case takes the form 

y = R  w, + e  (18) 
which has the solution for the estimation of the transformed 
parameter vector W R  as 

(19) & R = ~ - ' ~ T y  or, wR=-, r i = l , . . _ .  M 

By means of orthogonalisation process the traditional Gram- 
Schmidt computes one column of A at a time and 
orthogonalizes R at the same time. In terms of energy 
transmitted from input to the output, we can write the 
following algebraic balance equation for zero-mean output 
vector: 

~ r.'y 
I; ri 

Normalizing by DTD we obtain the relative energy 
contribution from each basis function, i.e. from each regressor 
to the outnut as 

Wi,';''; 

YTY 
zi =- ( i = l ,  ........ M) 

. .  

which is defmed as error reduction ratio. 

111. ORTHOGONAL. TRANSFORMATION METHODS 

A.  RBF network training 
Considering (13), in place of Gram-Schmidt 

orthogonalisation, the orthogonal decomposition can he 
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accomplished by principal component analysis (PCA) where 
M=N and 0 is [NxN] a symmetric positive defmite matrix; N 
is the number of data samples. By PCA decomposition, we 
write 

In (22) Q is a matrix (QT=Q') whose columns are the 
eigenvectors of RBF matrix a; A is the eigenvalue matrix. 
For the number of hidden layer nodes equal to the data 
samples the error term in (13) vanishes. In this case, fiom 
(13), we obtain 

where wR is the weight matrix corresponding to Q. Its relation 
to the weight matrix w which corresponds 0 is given by 

Note that in the Gram-Schmidt orthogonalisation procedure, 
the orthogonalisation and the ensuing selection of the RBF 
center is accomplished at the same time. However in the PCA 
case orthogonalisation and the selection of the orthogonal 
vectors is performed in two consecutive steps. Therefore in the 
case the columns of the orthogonal matrix in (22) is obtained 
after shuffling according to the descending order of magnitude 
of the corresponding eigenvalues, this information is given by 
the permutation matrix and this should be taken into account 
for tracing the graded sequence of the basis function centers. 
This is executed in the algorithm as follows. Let i represents 
the indices of the sequence obtained from the OLS algorithm 
and the array ipvt contains the indices of the sequence 
obtained from the permutation matrix. Then, the indices for 
the sequence of the basis functions is computed from ipvt(i), in 
the algorithm. For a reduced number of basis function centers 
selected from the graded sequence the OLS algorithm can be 
used second time for the weight determination of the RBF 
network with these centers. 

@=QAQ'  (22) 

y = QAQ'W = Q(AQ'W) = QW, 

w=(AQ')-'w, = (QA-' )~ ,  (24) 

(23) 

The PCA based orthogonalisation in RBF network training 
described above has major advantages. Especially in cases 
with a higher number of data samples, the Gram-Schmidt 
based orthogonalisation provides numerical instability next to 
exponentially increase of execution time. This situation occurs 
especially in complex information modeling applications for 
pattem recognition purposes, for instance in data mining 
research. Secondly, from the graded sequence of the 
eigenvectors, the most important ones can sequentially be 
selected The number of the selected eigenvectors m forms the 
number of hidden layer nodes of the RBF network. This 
number is optimal in the representation of the RBF regression 
matrix. The use of principal components of 8 is much more 
convenient for two major reasons. First, it is faster for 
modeling the data because the classical Gram-Schmidt 
orthogonalisation process in the OLS algorithm is replaced by 
the principal components. Second, it is most effective in 
influential center gradation and hence effective in data 
modeling due to optimality of this particular orthogonalisation 
process. Namely, by selection of m principal components, the 
matrix norm 

l ~ c p  -cp 1 1  is minimized over all matrices mm with rank m 
[13]. In other words, the regression matrix cp is best 
represented with m selected principal components. This 
favourable representation is reflected in the favourable 
multivariable function approximation by the RBF network. 

B. Simplifiing Fwry Rule-Based Model 
In the preceding subsection the selection of the RBF 

centers are described as m effective training method of a RBF 
network. From the fuzzy modeling viewpoint the regression 
matrix in (13) is normalized to give a fving matrix form as 
shown in (6). In this case the [Nxm] dimensional f h g  matrix 
P is subjected to singular value decomposition (SVD) where N 
is the number of samples; m is the number of rules: 
Theorem: Let A eWmXn be a matrix of rank r*in(m.n). Then, 
there are two orthogonal matrices U s%""mc2and 
V EWnXnc'and a diagonal matrix s E%"'*: such that UTAV=S 
andA=USVT. The diagonal elements of S m q  be ordered with 
decreasing values, r of them are positive, the others are zero: 

S = diag(u,, 6, ,..., u,,O ,..., 0) = [::I. The diagonal 
~ 

elements of S are called singular values of A. The singular 
values of A are uniquely defined but not the orthogonal 
matrices U and V. 

Let the SVD of PE  9ZNXm be given by 

Then, the fuzzy model is given by 
y=Pw,+e (26) 
yields 

where W, = V'W, and therefore 

which corresponds to (8) for fuzzy model. Based on this 
result, similar to the processing presented in the preceding 
subsection the Nxm matrix US is subjected to OLS algorithm 
in place of Q matrix in the RBF network case. In this process 
the permutation matrix is obtained by SVD-QR with column 
pivoting algorithm as suggested by Mouzouris and Mendel in 
[I]. This algorithm is summarized below as follows. 
a) Compute the SVD of P as P=USVT and check the 

singular values in S=diag(a,, a*, , ..., aL) for the rank of P 
b) Determine the number of fuzzy partitions r where r 5 

P = USVT (25) 

y =USVT w+ e = US(V'W) + e = USw, + e  (27) 

w = (V').I w, (28) 

rank(p) ~. 

c) Partition V as v = , where b',, and 

d) Apply QR with column pivoting algorithm to V and 
obtain the permutation matrix P E sLxL 
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e) Form Q'[V,,' ~ z l T l p = [ R , l  R l z l  where 

E X"'orthogona1 and QQ' = I and RI,  E W"* is 

4 Define [A, A 2 ] =  APwhere L x r  matrix A,  is the 
upper triangular 

desired subset of L x L matrix A 

The permutation matrix P having been determined, this is 
combined with the graded sequence obtained from OLS using 
Nxm matrix US to trace the graded sequence of the fuzzy 
rules, with a construction ipvt(i) in the algorithm as described 
in the preceding subsection. 

N. COMPARATIVE STUDY 

The comparative study is performed by means of the data 
obtained from a second order non-linear plant model [6]. 1000 
data samples are used. y&I) and y&-2) are used as the input 
variables and the number of fuzzy rules are arbitrarily set to 
25. The Gaussian functions defined in (4) are used to express 
the membership functions of y(k-1) and y(l-2). The centers ci/ 
and the widths q of the Gaussian membership functions are 
predetermined using a k-means clustering algorithm and a 
nearest-neighbor heuristic, respectively [14]. A comparative 
study with the orthogonal transformation methods, e.g., the 
OLS algorithm, eigenvalue decomposition (ED), singular 
value decomposition with column pivoting (SVD-QR). total 
least squares(TLS). direct singular value decomposition (D- 
SVD) for clustering is reported earlier [6]. These results are 
repeated in Table I where 20 rules are retained and five rules 
are eliminated in the rule base which have altogether 25 rules. 

TABLE 1 
COMPARATIVE RESULTS [6] 

hies I i I OLS ED SVL-QR TLS D-SVD 
I 1  I 5 25 25 25 2 

P 
0 
'3 E 
a 2 

c a 

.- - 

I :  I: 

22 13 15 15 15 6 
I 20 10 16 23 17 

24 I O  20 6 5 I 
25 20 I O  1 1 10 

4 
5 8  
6 
7 
8 
9 3  
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

17 4 4 
7 7 8 

16 

21 
23 
I I  

22 
6 
7 

19 
4 

15 
14 
9 
12 
2 

18 

19 19 I2 
3 3 3 

24 24 24 
8 8 18 

23 23 7 

13 
21 21 4 
18 18 21 

22 22 
12 12 9 
9 9 14 16 

11 11 

14 14 13 22 23 

17 17 I9 13 

2 2 6 
2 16 16 

5 5 1 1  

5 
4 
8 
3 

11 
13 
9 
7 

25 
19 
15 
24 
12 
22 
23 
21 
18 
17 
14 

I 121 I 1  6 I O  20 20 I 

I I I I 

The OLS algorithm and singular value decomposition with 
column pivoting (SVD-QR) are briefly given in the preceding 
section. The methods of eigenvalue decomposition (ED), total 
least squares (TLS), and direct singular value decomposition 
(D-SVD) are given below for the sake of completeness of the 
description of the case study. 

A. Eigenvalue Decomposition Method 
This method is used in [I51 to constmct reduced RBF 

networks and Volterra series polynomials. Namely, instead of 
considering the original linear equation in (8), the following 
equaion is considered: 
@,6 = aPv 
where = P'P E TI"" and ow = p r y  E 8" 
are called the correlation matrix and cross-conelation vector, 
respectively. The eigenvalue decomposition of 
mpp = VSVT is performed and from the descending order of 

the eigenvalues the entries of Bin (8) is determined. Selecting 
the entries of B corresponding to r number of larger 
eigenvalues of Vrelative to M-r smaller ones. The resuling r- 
dimensional parameter vector 8'" = [e,, e, ,..., e, 1, was 
solved fiom the reduced normal equation 
cp!jeW 

B. Total Least Squares 
In this method the linear equation of the form Ax = b is 

considered. It is straightforward to derive the algebraic 
condition that guarantees the existence of at least one solution: 
rank[Ab] = rank[A] 
However, often this condition is not satisfied due to 
measurement inaccuracies, limited machine precision, 
simplification or approximation of the original problem, non- 
linearities etc. The solution is to extract a least squares 
solution x' fiom the following minimization procedure: 
x':llh'-bl+min, IIAt-bll 
Then the total linear least squares problem formulation is to 
find x' such that A'x'=b' [16-181 : 
ll[A' b'l-[A 61 I l f = m i n e , . , , ~ ~ [ s . ] = ~ ~ ~ j a )  II[Bzl-[Abl IIF 

where F indicates the Frobeniusnorm. Stated in this way, the 
total least squares solution is obtained from the SVD of the 
extended matrix [A b] [19]. In the present case the extended 
matrix becomes [P y]. 

C. Direct SVD Method 
The direct SVD method is the name of the method where 

as result of SVD process also the entries to the fuzzy rules are 
obtained at the same time based on the descending order of the 
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singular values. Generally this information is given by the 
permutation matrix as mentioned in the preceding section. 

D. Comparative Studies 
Using the same data in [6], the results of this research 

obtained from the same analysis is given in Table 11, where in 
contrast with Table I, there is one additional column indicating 
the results obtained from the joint orthogonal method namely 
OLS-SVD, introduced by the present research. This is the 
rightmost column in Table 11. 

TABLE ll 

B 

COMPARATIVE RESULTS FROM THE PRESENT RESEARCH 
Rules 1 i I 01s ed svd-qr tls d-svd 01s-svd 

I 1  I 5 2 5 2 5  8 4 4 

20 1 16 16 11 14 2 

21 2 15 6 1 IO 5 
22 14 6 15 5 5 1 

7 1  
4 4 17 25 I 1 :  I g  7 7 12 6 13 

21 19 19 13 9 
23 3 3 22 18 2: I 
19 8 8 7 23 14 

24 24 3 17 I I I i; 13 13 21 21 17 
8 23 23 25 7 
3 14 14 4 19 gi 1 

22 17 17 24 16 25 
22 22 18 24 11 1;; 1 :  21 21 23 3 1;l 

14 7 18 18 19 2 8 

l2 I 12 12 9 22 I I ii I 1: 9 9 14 13 IO 

2 2 2  I 5 5 6 12 18 

9 l  I .I n I :: I i: IO IO 20 1 15 
1 20 IO 15 

I 2 I 2 5  I 2 0  20 I 15 20 20 I 
I I I I 

The comparison of Table I and Table I1 indicates 
approximately the same results for five mutual orthogonal 
methods applied, i.e., OLS algorithm, eigenvalue 
decomposition (ED), singular value decomposition with 
column pivoting (SYD-QR). total least squares (TLS) and 
direct singular value decomposition (D-SVD. The minor 
differences are attributed to numerical round-off errors. The 
results from these five orthogonal transformation methods are 
apparently consistent in both cases. It is interesting to note 
that, OLS method gives a slightly different sequence. This 
may be attributed to two different reasons as explained below. 

The fust reason is due to the Gram-Schmidt 
orthogonalisation. Namely, the objective of the OLS method is 
to fmd the smallest subset of a fmed original basis. For this, 
the possibilities available to the procedure are restricted to the 
various combinations of the original basis vectors where these 
are the principal components. The OLS algorithm is 
effectively trying to approximate these principal components 

7 

as closely as possible. This attitude may be good enough for 
the data set at hand for a compact energy representation which 
means fewer rules in the model. However, this may be 
disadvantageous to represent the general characteristics of the 
model that it should have. This different attitude in the 
orthogonalisation procedure manifests itself clearly in the 
eliminated rules. 

The second reason is due to DC component at the output. It 
should be pointed out that in this research, to compare the 
results with the earlier ones reported, in the OLS algorithm, 
the DC component is not removed. Althougb it is relatively 
small, it can be significant in the configuration of the rules. 
Especially for the rules lower in the gradation, the energy 
contribution to output is rather small, meaning that the DC 
component can have much significance relative to them. The 
DC removal of the output in OLS training is important. An 
additional node in the OLS algorithm can take this care oE 
The slightly different performance of OLS deserves a further 
investigation to gain insight into the matter. 

The important observation from results of the OLS-SVD 
method in Table 2 is the replacement of rule 9 with the rule 10 
so that the rule 9 is eliminated. This is in contrast with the 
outcomes of other methods. Also, the method has its own 
gradation for the rules, although the eliminated rules almost 
corroborates with those given by the rest of the methods. To 
identify the implication of this new gradation of rules requires 
new research in this direction. However, the important 
implications of this new approach is presented in the next 
section. 

V. CONCLUSIONS 

In a fuzzy model, a balance between reducing the fitting 
error and increasing the model complexity is essential. In the 
majority of the previous works, the input space is the essential 
concem for rule selection. In this work there are two essential 
points. First, for the rule selection process both the output 
space of the fuzzy model as well as the input space are 
considered. Investigation on the clustering process using 
input-output training samples together in connection with RBF 
network training has been reported [ZO]. Also, the OLS and 
total least squares methods both include the output space for 
rule selection. However, in these applications output space has 
a relatively marginal role in contrast to the present work where 
output space has a primary role. The work addresses two 
different issues. These are RBF network training by OLS and 
rule selection for a fuzzy model by OLS. In the RBF network 
training, since the regression matrix is non-negative defmite 
and symmetric, the PCA analysis is applied first, which is 
complemented by OLS afterwards. By means of this approach, 
a higher energy compaction by PCA is obtained. This implies 
that, the global energy characteristics of the data set are better 
observed in the model development. The main characteristic 
of this novel approach is the replacement of the Gram-Scbmidt 
orthogonalisation by the eigenvalue decomposition. The 
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gradation of the components is accomplished according to 
their contribution to the output on the basis of output variance 
reduction, so that output space is explicitly plays the role in 
rule selection. Note that in this selection process the 
magnitude of the eigenvalues of the rule base is not cenkal to 
the selection. Principal components with low eigenvalues may 
however have relatively more energy contribution to the 
output depending on the data set at hand. The case 
corroborates the result that selecting principal components on 
the basis of variance reduction does not necessarily imply that 
the corresponding component is unimportant in the regression 
[13]. Following above gradation process for the eigenvalues, 
the influential rules are selected according their rank in this 
gradation by integrating the information from the permutation 
matrix into this process. Referring to energy compaction, 
another research along this line is reported earlier [21]. Next to 
efficient training of RBF network, this method is important in 
data mining applications where the number of data samples 
may be high in number. In this context, for some situations it 
may have significance for fuzzy systems as well. Using soft 
data from a building technological design the application of 
the present method in data mining context is presented in 
another work for determining the functional attribute relations 
between selected pairs of design variables [22]. Conceming 
the fuzzy rule selection, the same method above is applied 
where SVD replaced PCA, because of the peculiarity of the 
firing matrix in this case. SVD method is complemented with 
the OLS method for the selection of the rules. Namely, by 
SVD the orthogonal transformation of the data samples is 
accomplished and the orthogonal vectors are scaled by the 
singular values. The OLS algorithm accomplishes the 
gradation of the scaled orthogonal vectors, and the graded 
rules are obtained by the help of SVD-QR column pivoting 
method which is integrated to the results obtained from the 
OLS method for a final outcome of rule selection. The 
comparative studies reported here are not enough to determine 
the exact added value of the orthogonal transformation method 
introduced. However, the new method, has desirable features 
in the orthogonal transformation process and therefore most 
appealing. It basically gives compatible results with the results 
of general orthogonal transformation methods and it preserves 
its own properties and merits at the same time. These 
properties and merits are subject to exploration for enhanced 
performance in fuzzy modeling applications. 
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