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Abstract — In this paper, we demonstrate that multiobjective 
genetic rule selection can significantly improve the accuracy-
complexity tradeoff curve of fuzzy rule-based classification 
systems generated by a heuristic rule extraction procedure for 
classification problems with many continuous attributes. First a 
prespecified number of fuzzy rules are extracted in a heuristic 
manner based on a rule evaluation criterion. This step can be 
viewed as fuzzy data mining. Then multiobjective genetic rule 
selection is applied to the extracted rules to find a number of 
non-dominated rule sets with respect to accuracy maximization 
and complexity minimization. This step can be viewed as a 
postprocessing procedure in fuzzy data mining. Experimental 
results show that multiobjective genetic rule selection finds a 
number of smaller rule sets with higher classification accuracy 
than heuristically extracted rule sets. That is, the accuracy-
complexity tradeoff curve of heuristically extracted rule sets in 
fuzzy data mining is improved by multiobjective genetic rule 
selection. This observation suggests that multiobjective genetic 
rule selection plays an important role in fuzzy data mining as a 
postprocessing procedure. 

I. INTRODUCTION 
 Evolutionary multiobjective optimization (EMO) is one 
of the most active research areas in the field of evolutionary 
computation [1]-[3]. Recently EMO algorithms have been 
employed in some studies on modeling and classification. 
For example, Kupinski & Anastasio [4] used an EMO 
algorithm to generate non-dominated neural networks on a 
receiver operating characteristic curve. Gonzalez et al. [5] 
generated non-dominated radial basis function networks of 
different sizes. Llora & Goldberg [6] used an EMO 
algorithm in Pittsburgh-style learning classifier systems. 
Abbass [7] used a memetic EMO algorithm (i.e., a hybrid 
EMO algorithm with local search) to speed up the back-
propagation algorithm where multiple neural networks of 
different sizes were evolved to find an appropriate network 
structure. Non-dominated neural networks were combined 
into a single ensemble classifier in [8]-[10]. The use of EMO 
algorithms to design ensemble classifiers was also proposed 
in Ishibuchi & Yamamoto [11] where multiple fuzzy rule-
based classifiers of different sizes were generated. In some 
studies on fuzzy rule-based systems, EMO algorithms were 
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used to analyze the tradeoff structure between accuracy and 
interpretability [12]-[20]. For more recent studies, see [21]. 
 In this paper, we use an EMO algorithm for fuzzy rule 
selection to examine the usefulness of multiobjective genetic 
rule selection as a postprocessing procedure in fuzzy data 
mining for pattern classification problems. A number of non-
dominated rule sets (i.e., non-dominated fuzzy rule-based 
classification systems) with respect to their accuracy and 
complexity are found by EMO-based rule selection from 
fuzzy rules extracted by a heuristic rule extraction procedure 
in fuzzy data mining.  
 Genetic fuzzy rule selection for classification problems 
was first formulated as a single-objective combinatorial 0/1 
optimization problem in Ishibuchi et al. [22], [23] where a 
fitness function of each rule set was defined as a weighted 
sum of its accuracy (i.e., the number of correctly classified 
training patterns) and its complexity (i.e., the number of 
fuzzy rules). This single-objective formulation was extended 
in [12] as a two-objective problem where non-dominated 
rule sets were found by an EMO algorithm. Then fuzzy rule 
selection was formulated as a three-objective problem in 
[13] where the total rule length (i.e., the total number of 
antecedent conditions over fuzzy rules in each rule set) was 
used as an additional complexity measure. This three-
objective formulation was also handled by a memetic EMO 
algorithm in [16] and a multiobjective fuzzy genetics-based 
machine learning algorithm in [20]. 
 This paper is organized as follows. First we briefly 
explain multiobjective optimization and fuzzy rule selection 
in Section II. We use two objectives in fuzzy rule selection: 
the minimization of the error rate on training patterns and the 
minimization of the number of fuzzy rules. Next we explain 
a heuristic procedure for extracting fuzzy classification rules 
in Section III. Several rule evaluation criteria used in the 
heuristic rule extraction procedure are compared in Section 
IV through computational experiments on some benchmark 
data sets in the UC Irvine machine learning repository. We 
also examine the accuracy-complexity tradeoff curve of 
extracted rule sets using various specifications of the number 
of fuzzy rules to be extracted. Then we demonstrate the 
usefulness of multiobjective genetic rule selection as a 
postprocessing procedure in fuzzy data mining in Section V. 
It is clearly shown that the accuracy-complexity tradeoff 
curve of heuristically extracted rule sets is improved by 
multiobjective genetic rule selection. That is, the accuracy of 
heuristically extracted rule sets is improved while their 
complexity is decreased by multiobjective genetic fuzzy rule 
selection. Finally Section VI concludes this paper.  
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II. MULTIOBJECTIVE FUZZY RULE SELECTION 
 In this section, we explain multiobjective optimization 
and multiobjective genetic fuzzy rule selection. 

A. Multiobjective Optimization 
 Let us consider the following k-objective minimization 
problem: 

  Minimize ))(...,),(),(( 21 yyyz kfff= ,      (1) 
  subject to Yy ∈ ,            (2) 

where z is the objective vector, )(yif  is the i-th objective to 
be minimized,  y is the decision vector, and Y is the feasible 
region in the decision space. 
 Let a and b be two feasible solutions of the k-objective 
minimization problem in (1)-(2). If the following condition 
holds, a can be viewed as being better than b: 

  i∀ , )()( ba ii ff ≤   and  j∃ , )()( ba jj ff < .     (3) 

In this case, we say that a dominates b (equivalently b is 
dominated by a). 
 When b is not dominated by any other feasible solutions 
(i.e., when there exists no feasible solution a that dominates 
b), the solution b is referred to as a Pareto-optimal solution 
of the k-objective minimization problem in (1)-(2). The set 
of all Pareto-optimal solutions forms the tradeoff surface in 
the objective space. This tradeoff surface is referred to as the 
Pareto front. Various EMO algorithms have been proposed 
to efficiently search for Pareto-optimal solutions [1]-[3]. 

B. Multiobjective Genetic Fuzzy Rule Selection 
 Let us assume that we have N fuzzy rules extracted for a 
pattern classification problem by a heuristic rule extraction 
procedure. Multiobjective genetic fuzzy rule selection is 
used to find Pareto-optimal rule sets from these N fuzzy 
rules with respect to the two goals of knowledge extraction: 
accuracy maximization and complexity minimization. 
 Let S be a subset of the extracted N fuzzy rules. The 
accuracy of the rule set S is measured by the error rate when 
all the training patterns are classified by S. We use a single 
winner rule-based method to classify each training pattern by 
S. That is, each pattern is classified by the single winner rule 
in S that has the maximum product of the rule weight and the 
compatibility grade with that pattern as explained in the next 
section. We include the rejection rate into the error rate (i.e., 
training patterns with no compatible fuzzy rules in S are 
counted among errors in this paper).  
 On the other hand, we measure the complexity of the 
rule set S by the number of fuzzy rules in S. Thus our fuzzy 
rule selection problem is formulated as follows: 

  Minimize )(1 Sf  and )(2 Sf ,         (4) 

where )(1 Sf  is the error rate on training patterns by the rule 
set S and )(2 Sf  is the number of fuzzy rules in S. 
 Any subset S of the N fuzzy rules can be represented by a 
binary string of length N as 

  NsssS ⋅⋅⋅= 21 ,            (5) 

where 1=js  and 0=js  mean that the j-th fuzzy rule is 
included in S and excluded from S, respectively. Such a 
binary string is handled as an individual in multiobjective 
genetic fuzzy rule selection. 
 Since feasible solutions (i.e., any subsets of the N fuzzy 
rules) are represented by binary strings in (5), we can apply 
almost all EMO algorithms with standard genetic operations 
to our multiobjective fuzzy rule selection problem in (4). In 
this paper, we use the NSGA-II algorithm [24] because it is a 
well-known high-performance EMO algorithm. 
 Let P be the current population in NSGA-II. The outline 
of NSGA-II can be written as follows: 

Step 1: P := Initialize (P) 
Step 2: while a termination condition is not satisfied, do 
Step 3:     P’ := Selection (P) 
Step 4:     P’’ := Genetic Operations (P’) 
Step 5:     P := Replace (PUP’’) 
Step 6: end while 
Step 7: return (non-dominated solutions (P)) 

First an initial population is generated in Step 1 in the same 
manner as in single-objective genetic algorithms. Genetic 
operations in Step 4 are also the same as those in single-
objective genetic algorithms. Parent selection in Step 3 and 
generation update in Step 5 of NSGA-II are different from 
single-objective genetic algorithms. Pareto ranking and a 
crowding measure are used to evaluate each solution in Step 
3 for parent selection and in Step 5 for generation update. 
For details of NSGA-II, see Deb [1] and Deb et al. [24].  
 In the application of NSGA-II to multiobjective genetic 
fuzzy rule selection, we use two problem-specific heuristic 
tricks to efficiently find small rule sets with high accuracy. 
One trick is biased mutation where a larger probability is 
assigned to the mutation from 1 to 0 than that from 0 to 1. 
The other trick is the removal of unnecessary rules, which is 
a kind of local search. Since we use the single winner rule-
based method for the classification of each pattern by the 
rule set S, some rules in S may be chosen as winner rules for 
no training patterns. By removing these rules from S, we can 
improve the second objective (i.e., the number of fuzzy rules 
in S) without degrading the first objective (i.e., the error rate 
on training patterns). The removal of unnecessary rules is 
performed after the first objective is calculated and before 
the second objective is calculated.  

III. HEURISTIC FUZZY RULE EXTRACTION 
 In this section, we explain heuristic fuzzy rule extraction 
using rule evaluation criteria in data mining.  

A. Pattern Classification Problem 
 Let us assume that we have m training (i.e., labeled) 
patterns =px )...,,( 1 pnp xx , mp ...,,2,1=  from M classes 
in the n-dimensional continuous pattern space where pix  is 
the attribute value of the p-th training pattern for the i-th 
attribute ( =i 1, 2, ..., n). For the simplicity of explanation, 
we assume that all the attribute values have already been 
normalized into real numbers in the unit interval [0, 1]. That 
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is, ]1,0[∈pix  for =p 1, 2, ..., m and =i 1, 2, ..., n. Thus 
the pattern space of our pattern classification problem is the 
n-dimensional unit-hypercube n]1,0[ . 

B. Fuzzy Rules for Pattern Classification Problem 
 For our n-dimensional pattern classification problem, we 
use fuzzy rules of the following type: 

  Rule qR : If 1x  is 1qA  and  ...  and nx  is qnA  
      then Class qC  with qCF ,      (6) 

where qR  is the label of the q-th fuzzy rule, )...,,( 1 nxx=x  
is an n-dimensional pattern vector, qiA  is an antecedent 
fuzzy set ( =i 1, n...,,2 ), qC  is a class label, and qCF  is a 
rule weight (i.e., certainty grade). For other types of fuzzy 
rules for pattern classification problems, see [17], [25], [26]. 
 Since we usually have no a priori information about an 
appropriate granularity of the fuzzy discretization for each 
attribute, we simultaneously use multiple fuzzy partitions 
with different granularities in fuzzy rule extraction. In our 
computational experiments, we use four homogeneous fuzzy 
partitions with triangular fuzzy sets in Fig. 1. In addition to 
the 14 fuzzy sets in Fig. 1, we also use the domain interval 
[0, 1] as an antecedent fuzzy set in order to represent a don’t 
care condition. That is, we use the 15 antecedent fuzzy sets 
for each attribute in our computational experiments. 
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Fig. 1.  Four fuzzy partitions used in our computational experiments. 

 

C. Fuzzy Rule Generation 
 Since we use the 15 antecedent fuzzy sets for each 
attribute of our n-dimensional pattern classification problem, 
the total number of combinations of the antecedent fuzzy 
sets is n15 . Each combination is used in the antecedent part 
of the fuzzy rule in (6). Thus the total number of possible 
fuzzy rules is also n15 . The consequent class qC  and the 
rule weight qCF  of each fuzzy rule qR  are specified from 
the given training patterns in the following heuristic manner. 
 First we calculate the compatibility grade of each pattern 

px  with the antecedent part qA  of the fuzzy rule qR  using 
the product operation as  
  )(...)()( 11 pnApAp xx qnqq µµµ ⋅⋅=xA ,     (7) 

where )( ⋅qiAµ  is the membership function of qiA .  
 Next the confidence of the fuzzy rule “ hq Class⇒A ” 
is calculated for each class ( Mh ...,,2,1= ) as follows [17]: 
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 The consequent class qC  is specified by identifying the 
class with the maximum confidence: 
 })Class({max)Class(

...,,2,1
hcCc q

mh
qq ⇒=⇒

=
AA .    (9) 

The consequent class qC  can be viewed as the dominant 
class in the fuzzy subspace defined by the antecedent part 

qA . When there is no pattern in the fuzzy subspace defined 
by qA , we do not generate any fuzzy rules with qA  in the 
antecedent part. This specification method of the consequent 
class of fuzzy rules has been used in many studies since [27]. 
 The rule weight qCF  of each fuzzy rule qR  has a large 
effect on the performance of fuzzy rule-based classification 
systems [28]. Different specifications of the rule weight have 
been proposed and examined in the literature. We use the 
following specification because good results were reported 
by this specification in the literature [17], [29]: 

 ∑
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⇒−⇒=
M
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h

qqqq

q

hcCcCF
1

)Class()Class( AA .  (10) 

 Let S  be a set of fuzzy rules of the form in (6). A new 
pattern px  is classified by a single winner rule wR , which 
is chosen from the rule set S as follows: 

 }|)(max{)( SRCFCF qqpwp qw ∈⋅=⋅ xx AA µµ .   (11) 

 As shown in (11), the winner rule wR  has the maximum 
product of the compatibility grade and the rule weight in S. 
For other fuzzy reasoning methods for pattern classification 
problems, see Cordon et al. [25] and Ishibuchi et al. [17], 
[26]. It should be noted that the choice of an appropriate rule 
weight specification depends on the type of fuzzy reasoning 
(i.e., single winner rule-based fuzzy reasoning) used in fuzzy 
rule-based classification systems [17], [29]. 

D. Rule Evaluation Criteria 
 Using the above-mentioned procedure, we can generate a 
large number of fuzzy rules by specifying the consequent 
class and the rule weight for each of the n15  combinations 
of the antecedent fuzzy sets. It is, however, very difficult for 
human users to handle such a large number of generated 
fuzzy rules. It is also very difficult to intuitively understand 
long fuzzy rules with many antecedent conditions. Thus we 
only generate short fuzzy rules with only a small number of 
antecedent conditions. It should be noted that don’t care 
conditions with the special antecedent fuzzy set [0, 1] can be 
omitted from fuzzy rules. The rule length means the number 
of antecedent conditions excluding don’t care conditions. 
We examine only short fuzzy rules of length maxL  or less 
(e.g., =maxL 3). This restriction is to find a small number of 
short (i.e., simple) fuzzy rules with high interpretability. 
 Among short fuzzy rules, we choose a prespecified 
number of good rules by a heuristic rule evaluation criterion. 
In the field of data mining, two rule evaluation criteria (i.e., 
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confidence and support) have been often used [30], [31]. We 
have already shown the fuzzy version of the confidence 
criterion in (8). In the same manner, the support of the fuzzy 
rule “ hq Class⇒A ” is calculated as follows [17]: 
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x
A x

A
µ

.    (12) 

 In our computational experiments, we use the following 
four rule evaluation criteria to extract a prespecified number 
of short fuzzy rules for each class from numerical data: 
 Support with the minimum confidence level: Each 
rule is evaluated based on its support when its confidence is 
larger than or equal to the prespecified minimum confidence 
level. This criterion never extracts unqualified rules whose 
confidence is smaller than the minimum confidence level. 
Various values of the minimum confidence level (e.g., 0.1, 
0.2, ..., 0.9) are examined in computational experiments. 
 Confidence with the minimum support level: Each 
rule is evaluated based on its confidence when its support is 
larger than or equal to the prespecified minimum support 
level. This criterion never extracts unqualified rules whose 
support is smaller than the minimum support level. Various 
values of the minimum support level (e.g., 0.01, 0.02, ..., 
0.09) are examined in computational experiments. 
 Product of confidence and support: Each rule is 
evaluated based on the product of its confidence and support. 
 Difference in support: Each rule is evaluated based on 
the difference between its support and the total support of 
the other rules with the same antecedent part and different 
consequent classes. More specifically, the rule qR  with the 
antecedent fuzzy vector qA  and the consequent class qC  is 
evaluated as 

∑ ⇒−⇒=

≠
=

M

Ch
h

qqqq

q

hsCsRf
1

)Class()Class()( AA .    (13) 

This criterion can be viewed as a simplified version of a rule 
evaluation criterion used in an iterative fuzzy genetics-based 
machine learning algorithm called SLAVE [32]. 
 We generate a prespecified number of fuzzy rules with 
the largest values of each criterion in a greedy manner for 
each class. As we have already mentioned, only short fuzzy 
rules of length maxL  or less are examined in heuristic rule 
extraction in order to find interpretable fuzzy rules. 

IV. COMPUTATIONAL EXPERIMENT USING HEURISTIC FUZZY 
RULE EXTRACTION 

 In this section, we perform computational experiments 
using heuristic fuzzy rule extraction based on rule evaluation 
criteria. Extracted fuzzy rules are used as candidate rules in 
multiobjective genetic fuzzy rule selection in the next 
section. 

A. Data Sets 
 We use six data sets in Table I: Wisconsin breast cancer 
(Breast W), diabetes (Diabetes), glass identification (Glass), 

Cleveland heart disease (Heart C), sonar (Sonar), and wine 
recognition (Wine) data sets. These six data sets are 
available from the UC Irvine machine learning repository. 
Data sets with missing values are marked by “*” in the third 
column of Table I. Since we do not use incomplete patterns 
with missing values, the number of patterns in the third 
column does not include those patterns with missing values. 
All attribute values are normalized into real numbers in the 
unit interval [0, 1]. For comparison, we show in the last two 
columns of Table I the reported results in Elomaa & Rousu 
[33] where six variants of the C4.5 algorithm were examined. 
The generalization ability of each variant was evaluated by 
ten independent runs (with different data partitions) of the 
whole ten-fold cross-validation (10CV) procedure (i.e., 

10CV10 × ) in [33]. We show in the last two columns of 
Table I the best and worst error rates on test patterns among 
the six variants reported in [33] for each data set. 
 In our computational experiments, we also use the 10CV 
procedure. As in [33], 10CV is iterated ten times (i.e., 

10CV10 × ). In each of 100 runs in 10CV10 × , error rates 
are calculated on training patterns (90% of the given 
patterns) as well as test patterns (10% of the given patterns). 
 

TABLE I 
DATA SETS USED IN OUR COMPUTATIONAL EXPERIMENTS 

C4.5 in [33] 
Data set Attributes Patterns Classes 

  Best      Worst

Breast W   9   683* 2   5.1   6.0 
Diabetes   8 768** 2 25.0 27.2 

Glass   9 214 6 27.3 32.2 
Heart C 13   297* 5 46.3 47.9 
Sonar 60 208 2 24.6 35.8 
Wine 13 178 3   5.6   8.8 

* Incomplete patterns with missing values are not included. 
** Some suspicious patterns with attribute value “0” are included.  

 

B. Performance on Training Patterns 
 In heuristic fuzzy rule extraction, various specifications 
are used as the number of extracted fuzzy rules in order to 
examine the relation between the accuracy and complexity 
of fuzzy rule-based systems. The number of extracted fuzzy 
rules for each class is specified as 1, 2, 3, 4, 5, 10, 20, 30, 40, 
50, and 100. The four rule evaluation criteria in Section 3 are 
used in heuristic rule extraction. When multiple fuzzy rules 
have the same value of a rule evaluation criterion, those 
rules are randomly ordered (i.e., random tie break). 
 The maximum rule length maxL  is specified as =maxL 2 
for the sonar data with 60 attributes and =maxL 3 for the 
other data sets. That is, fuzzy rules of length 2 or less are 
examined for the sonar data while those of length 3 or less 
are examined for the other data sets. We use such a different 
specification because only the sonar data set involves a large 
number of attributes (i.e., it has a huge number of possible 
combinations of antecedent fuzzy sets). 
 Among the four heuristic rule evaluation criteria, good 
results are obtained from the support with the minimum 
confidence level, the product of confidence and support, and 
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the difference in support. Experimental results using these 
criteria are summarized in Tables II-VII where the average 
error rate on training patterns is calculated over 10CV10 × . 
Five values of the minimum confidence level are examined 
in these tables. The best result (i.e., the lowest error rate) in 
each row is highlighted by underlined boldface. 
 From Tables II-VII, we can see that the increase in the 
number of extracted fuzzy rules does not always lead to the 
decrease in the error rates (e.g., see the last column of Table 
II). This observation suggests that the classification accuracy 
of heuristically extracted fuzzy rules can be improved by 
rule selection. We can also see that the choice of an 
appropriate rule evaluation criterion is problem-dependent. 

 
TABLE II 

ERROR RATES ON TRAINING PATTERNS (BREAST W) 

Support with the minimum confidence Number  
of rules 0.5 0.6 0.7 0.8 0.9 Product Diff.

1 9.47 9.47 8.99 7.24 9.33 5.89 5.81
2 9.08 9.08 7.53 7.77 8.24 6.41 6.32
3 7.60 7.60 5.29 6.69 6.45 6.39 6.47
4 5.30 5.30 5.20 6.48 6.60 5.18 5.64
5 5.27 5.27 5.43 6.46 6.93 4.81 4.72

10 6.37 5.78 5.38 5.20 6.08 4.29 4.20
20 5.12 4.84 4.29 4.10 4.45 3.61 3.61
30 4.26 4.12 4.23 4.35 4.44 3.78 3.75
40 4.46 4.44 4.43 4.39 4.41 3.82 3.76
50 4.42 4.34 4.29 4.18 4.37 3.83 3.73
100 3.94 3.94 3.94 3.94 4.26 3.81 3.70

 
TABLE III 

ERROR RATES ON TRAINING PATTERNS (DIABETES) 

Support with the minimum confidence Number  
of rules 0.5 0.6 0.7 0.8 0.9 Product Diff.

1 34.43 33.53 26.39 26.73 46.44 34.27 26.39
2 34.96 33.02 26.48 26.44 41.65 34.13 26.44
3 34.96 31.28 28.57 26.42 38.21 34.59 27.45
4 34.90 31.55 29.04 26.34 35.63 33.57 28.02
5 34.90 31.48 29.11 26.11 34.07 32.44 28.79

10 34.90 30.40 29.13 26.15 31.14 30.17 29.72
20 34.90 30.23 29.78 26.18 28.33 30.63 30.22
30 34.66 30.34 30.13 26.41 26.96 30.47 30.34
40 33.06 30.29 30.31 26.59 25.79 30.47 30.42
50 31.74 30.29 30.37 26.72 24.61 30.61 30.51
100 31.14 30.75 30.32 26.86 22.77 30.78 30.65

 
TABLE IV 

ERROR RATES ON TRAINING PATTERNS (GLASS) 

Support with the minimum confidence Number  
of rules 0.5 0.6 0.7 0.8 0.9 Product Diff.

1 47.49 43.51 38.53 63.65 76.77 45.30 39.81
2 44.06 42.76 37.58 61.63 76.43 44.67 39.87
3 42.54 42.15 37.08 59.78 76.02 44.52 39.70
4 42.67 41.92 36.76 58.46 75.78 44.22 39.68
5 42.92 41.53 36.55 57.63 75.69 43.75 39.29

10 40.97 39.84 36.18 55.14 74.40 40.08 38.64
20 39.70 38.09 34.76 52.64 72.54 38.37 38.25
30 38.41 37.41 33.97 51.96 71.07 37.69 37.78
40 38.00 36.68 33.41 51.42 70.18 37.06 37.18
50 37.91 35.76 33.07 50.68 68.84 36.67 36.43
100 35.92 33.16 32.79 49.39 66.96 35.16 34.72

TABLE V 
ERROR RATES ON TRAINING PATTERNS (HEART C) 

Support with the minimum confidence Number 
of rules 0.5 0.6 0.7 0.8 0.9 Product Diff.

1 44.46 41.98 49.18 51.51 57.60 49.37 53.27
2 44.32 42.91 47.22 50.13 57.61 48.68 53.09
3 44.79 43.79 44.79 50.12 57.57 48.17 53.01
4 44.88 43.81 44.58 50.06 57.44 46.99 52.40
5 44.54 42.93 42.43 45.52 56.57 45.37 50.47

10 44.78 42.94 41.14 43.91 55.83 41.58 47.39
20 44.41 42.49 39.72 42.35 54.45 40.72 43.51
30 44.09 42.00 39.01 41.07 53.29 40.25 41.48
40 43.84 41.52 38.59 40.40 51.11 39.91 40.02
50 43.61 40.99 38.00 39.61 49.54 39.68 39.15
100 42.75 39.45 36.91 36.97 45.61 38.41 36.76

 
TABLE VI 

ERROR RATES ON TRAINING PATTERNS (SONAR) 

Support with the minimum confidence Number 
of rules 0.5 0.6 0.7 0.8 0.9 Product Diff.

1 47.12 24.86 25.65 40.34 43.90 46.97 25.20
2 46.69 25.13 24.42 35.00 36.75 45.20 24.74
3 46.21 25.13 23.86 32.56 30.72 43.86 24.13
4 46.31 24.80 23.47 30.31 28.67 42.93 23.74
5 46.14 24.71 23.28 28.78 27.58 42.57 23.46

10 43.81 23.85 22.44 24.96 25.34 40.80 22.79
20 42.84 23.53 21.12 22.51 22.60 42.01 22.21
30 45.08 23.80 21.06 22.23 21.34 41.18 21.91
40 45.71 23.69 21.28 22.16 19.70 39.70 21.60
50 45.41 23.55 21.31 22.41 17.88 37.20 21.35
100 45.92 23.77 21.64 22.55 12.71 28.65 20.84

 
TABLE VII 

ERROR RATES ON TRAINING PATTERNS (WINE) 

Support with the minimum confidence Number 
of rules 0.5 0.6 0.7 0.8 0.9 Product Diff.

1 32.46 14.36 11.14 9.60 9.81 10.03 10.15
2 25.05 12.36 9.26 5.65 7.32 7.32 6.80
3 14.03 13.24 8.10 5.44 6.01 6.21 6.77
4 13.03 12.62 7.10 5.53 5.39 5.44 5.65
5 13.42 11.76 5.96 5.56 5.32 5.54 5.38

10 12.86 7.38 5.49 5.17 3.53 5.82 4.90
20 9.47 5.07 5.11 4.91 3.45 4.90 4.11
30 6.25 5.14 5.11 4.64 3.56 4.44 3.86
40 5.03 4.96 5.01 4.31 3.46 4.05 3.63
50 5.03 4.86 4.80 4.07 3.28 3.85 3.55
100 4.43 4.69 4.09 3.34 3.09 3.46 3.22

 

C. Performance on Test Patterns 
 Experimental results on test patterns are summarized in 
Tables VIII-XI (Due to the page limitation, we only show 
experimental results for the first four data sets). During ten 
iterations of the whole 10CV procedure, average error rates 
in Tables VIII-XI are calculated on test patterns while those 
in Tables II-VII in the previous subsection are calculated on 
training patterns. We have almost the same observations 
from Tables VIII-XI for test patterns as Tables II-VII for 
training patterns. That is, the choice of an appropriate rule 
evaluation criterion is problem-dependent. The increase in 
the number of extracted fuzzy rules does not always increase 
their classification accuracy. 
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TABLE VIII 
ERROR RATES ON TEST PATTERNS (BREAST W) 

Support with the minimum confidence Number  
of rules 0.5 0.6 0.7 0.8 0.9 Product Diff.

1 9.60 9.60 9.07 7.35 9.35 6.59 6.49
2 9.16 9.16 8.30 8.13 8.70 7.01 6.90
3 8.34 8.34 5.62 7.09 6.65 7.07 7.06
4 5.71 5.71 5.46 6.87 6.68 5.95 6.38
5 5.54 5.54 5.46 6.62 7.06 5.42 5.27

10 6.50 6.02 5.58 5.33 6.31 4.53 4.54
20 5.41 5.26 4.77 4.42 4.72 3.76 3.81
30 4.45 4.28 4.47 4.55 4.64 3.97 3.95
40 4.69 4.61 4.58 4.53 4.58 4.03 4.04
50 4.51 4.45 4.44 4.31 4.48 4.14 4.06
100 4.00 4.00 3.98 3.97 4.45 4.17 4.04

 
TABLE IX 

ERROR RATES ON TEST PATTERNS (DIABETES) 

Support with the minimum confidence Number  
of rules 0.5 0.6 0.7 0.8 0.9 Product Diff.

1 34.37 33.18 26.57 26.92 46.97 34.30 26.57
2 34.97 32.33 26.67 26.53 42.28 34.21 26.59
3 34.95 30.63 29.00 26.63 39.02 34.64 28.27
4 34.90 31.03 29.30 26.55 36.45 34.24 28.79
5 34.90 30.93 29.37 26.18 34.75 33.06 29.29

10 34.90 30.41 29.63 26.57 31.87 30.42 30.09
20 34.90 30.34 30.07 26.80 29.17 30.76 30.39
30 34.78 30.54 30.32 27.15 27.87 30.73 30.56
40 33.44 30.48 30.54 27.10 27.07 30.64 30.59
50 32.19 30.45 30.63 27.37 26.17 30.75 30.67
100 31.43 30.86 30.60 27.53 24.52 30.84 30.84

 
TABLE X 

ERROR RATES ON TEST PATTERNS (GLASS) 

Support with the minimum confidence Number  
of rules 0.5 0.6 0.7 0.8 0.9 Product Diff.

1 52.24 49.57 42.59 71.58 81.75 49.05 46.86
2 49.14 49.10 41.94 70.79 81.61 48.16 47.24
3 47.08 48.76 41.28 69.05 81.19 47.98 47.34
4 47.40 48.76 41.09 68.07 81.05 48.26 47.63
5 47.32 48.11 41.42 67.37 80.86 48.21 47.29

10 46.19 47.13 42.46 65.48 80.01 47.34 47.72
20 46.44 47.27 41.90 63.14 78.44 47.09 47.38
30 46.53 47.04 41.38 62.30 76.48 47.71 46.82
40 46.80 46.37 40.86 61.59 75.88 47.29 47.06
50 47.04 46.14 41.39 60.44 74.42 47.15 46.18
100 46.03 45.55 41.21 58.87 72.79 45.76 44.31

 

TABLE XI 
ERROR RATES ON TEST PATTERNS (HEART C) 

Support with the minimum confidence Number  
of rules 0.5 0.6 0.7 0.8 0.9 Product Diff.

1 46.81 47.56 56.61 58.66 63.23 57.05 61.20
2 46.24 47.02 53.95 56.90 63.23 56.41 60.99
3 46.24 46.34 49.79 56.90 63.23 55.54 60.96
4 46.21 46.31 49.28 56.73 63.09 53.92 59.78
5 46.14 46.34 47.62 51.12 62.65 52.77 57.79

10 46.11 45.94 47.29 49.24 61.78 49.74 56.08
20 45.91 45.87 46.55 48.74 60.73 48.38 52.70
30 45.87 45.74 46.41 48.16 61.11 46.77 50.95
40 45.77 45.88 46.34 48.10 58.92 46.64 49.04
50 45.77 45.94 46.17 48.06 57.81 46.07 48.46
100 45.74 46.00 46.00 47.52 56.67 46.04 47.58

V. COMPUTATIONAL EXPERIMENT USING MULTIOBJECTIVE 
GENETIC FUZZY RULE SELECTION 

A. Settings of Computational Experiments 
 For each data set, we choose a heuristic rule evaluation 
criterion from which the lowest error rate on test patterns 
was obtained for the case of 100 fuzzy rules for each class in 
the previous subsection. For example, the support criterion 
with the minimum confidence level 0.8 is chosen for the 
Wisconsin breast cancer data set (see Table VIII). 
 As in the previous section, we iterate the whole ten-fold 
cross-validation procedure ten times ( CV1010 × ). In each of 
100 runs in CV1010 × , we generate 300 fuzzy rules for each 
class (i.e., 300M rules in total for an M-class classification 
problem) from training patterns using the chosen heuristic 
rule evaluation criterion for each data set. Multiobjective 
genetic rule selection based on the NSGA-II algorithm is 
applied to the extracted 300M fuzzy rules for each data set 
using the following parameter specifications: 

Population size: 200 strings, 
Crossover probability: 0.8 (uniform crossover), 
Biased mutation probabilities: 
  Mp 300/1)10(m =→   and  =→ )01(mp 0.1, 
Stopping condition: 5000 generations. 

 Multiple non-dominated rule sets are obtained by the 
NSGA-II algorithm in each of 100 runs in CV1010 × . We 
calculate the error rates of each rule set on training patterns 
and test patterns. Then the average error rates on training 
patterns and test patterns are calculated over obtained rule 
sets with the same number of fuzzy rules among 100 runs. 
Only when rule sets with the same number of fuzzy rules are 
found in all the 100 runs, we report the average error rates 
for that number of fuzzy rules. 

B. Performance on Training Patterns 
 Experimental results on training patterns are shown in 
Fig. 2 where open circles denote the performance of non-
dominated rule sets obtained by multiobjective genetic rule 
selection. For comparison, we show in Fig. 2 experimental 
results of heuristic rule extraction using the same rule 
evaluation criterion as in the candidate rule generation in 
multiobjective genetic rule selection. For example, closed 
circles in Fig. 2 (a) correspond to the error rates in Table II 
by the support criterion with the minimum confidence level 
0.8. This criterion is used in the candidate rule generation as 
explained in the previous subsection. 
 We can see from Fig. 2 that the accuracy of heuristically 
extracted fuzzy rules on training patterns is improved by 
multiobjective genetic rule selection for all the six data sets. 

C. Performance on Test Patterns 
 Experimental results on test patterns by multiobjective 
genetic rule selection are shown in Fig. 3 together with those 
by heuristic rule extraction. The reported results by the C4.5 
algorithm in [33] are also shown in Fig. 3 for comparison 
(see the last two columns of Table I). 
 From Fig. 3, we can see that the generalization ability of 
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heuristically extracted fuzzy rules is improved for the five 
data sets (except for Heart C in Fig. 3 (d)) by multiobjective 
genetic rule selection. In Fig. 3 (d), we observe the increase 
in the error rates of obtained non-dominated fuzzy rule sets 

due to the increase in the number of fuzzy rules. We can also 
see that the generalization ability of obtained non-dominated 
fuzzy rule sets is comparable to the reported results by the 
C4.5 algorithm in many cases (except for Fig. 3 (c)). 
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Fig. 2. Error rates on training patterns. 
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Fig. 3. Error rates on test patterns. 
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VI. CONCLUSIONS 
 We showed that multiobjective genetic rule selection can 
decrease the number of heuristically extracted fuzzy rules 
while improving their classification accuracy on training 
patterns. Their generalization ability for test patterns was 
also improved by multiobjective genetic rule selection in 
many cases. Since a large number of fuzzy rules are usually 
extracted in a heuristic manner, our experimental results 
suggest the usefulness of multiobjective genetic fuzzy rule 
selection as a postprocessing procedure in fuzzy data mining 
with respect to the understandability of extracted knowledge. 
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