main main
Publicaciones Soportadas por el Proyecto KEEL
  Accountable: José Otero Rodríguez (member_email)

Main Analysis of Learning Algorithms





Main  Journal Contributions: Published

Jump to Year:
        2009  2007  2006  2005  2004  2003  2002  2001  2000  1999
        1998  1997  1996  1995  1994  1991  1989  1988  1987  1986
        1979  1975



2009

  P.P. Balestrassi, E. Popova, A.P. Paiva, J.W. Marangon-Lima. Design of experiments on neural network's training for nonlinear time series forecasting. Neurocomputing 72:4-6 (2009) 1160-1178   Pdf bib
 

2007

  A. Adler, M.E. Schuckers. Comparing Human and Automatic Face Recognition Performance. IEEE Transactions on Systems, Man, and Cybernetics, Part B 37:5 (2007) 1248-1255   Pdf bib
 
  R.E. Banfield, L.O. Hall, K.W. Bowyer, W.P. Kegelmeyer. A Comparison of Decision Tree Ensemble Creation Techniques. IEEE Transactions on Pattern Analysis and Machine Intelligence 29:1 (2007) 173-180   Pdf bib
 
  S.Y. Sohn, H.W. Shin. Experimental study for the comparison of classifier combination methods. Pattern Recognition 40:1 (2007) 33-40   Pdf bib
 
  Y. Yang, G.I. Webb, J. Cerquides, K.B. Korb, J. Boughton, K.M. Ting. To Select or To Weigh: A Comparative Study of Linear Combination Schemes for SuperParent-One-Dependence Estimators. IEEE Transactions on Knowledge and Data Engineering 19:12 (2007) 1652-1665   Pdf bib
 

2006

  A. Ali, K.A. Smith. On learning algorithm selection for classification. Applied Soft Computing 6:2 (2006) 119-138   Pdf bib
 
  J. Demsar. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research 7 (2006) 1-30   Pdf bib
 
  C. Drummond, R.C. Holte. Cost Curves: An improved method for visualizing classifier performance. Machine Learning 65:1 (2006) 95-130   Pdf bib
 
  C.-X. J Feng, Z.-G. Yu, A. Kusiak. Selection and validation of predictive regression and neural network models based on designed experiments. IIE TRANSACTIONS 38 (2006) 13-23   Pdf bib
 
  E. Lamma, P. Mello, A. Nanetti, F. Riguzzi. Artificial intelligence techniques for monitoring dangerous infections. IEEE Transactions on Information Technology in Biomedicine 10:1 (2006) 143-155   Pdf bib
 
  B. Mascialino, A. Pfeiffer, M.G. Pia, A. Ribon, P. Viarengo. New Developments of the Goodness-of-Fit Statistical Toolkit. IEEE Transactions on Nuclear Science 53:6 (2006) 3834-3841   Pdf bib
 
  O.T. Yildiz, E. Alpaydin. Ordering and finding the best of K > 2 supervised learning algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 28:3 (2006) 392-402   Pdf bib
 
  O.T. Yildiz, E. Alpaydin. Ordering and finding the best of K > 2 supervised learning algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 28:3 (2006) 392-402   Pdf bib
 

2005

  W.T. Barry, A.B. Nobel, F.A. Wright. Significance analysis of functional categories in gene expression studies: a structured permutation approach. Bioinformatics 21:9 (2005) 1943-1949   Pdf bib
 
  U.M. Braga-Neto, E.R. Dougherty. Exact performance of error estimators for discrete classifiers. Pattern Recognition 38:11 (2005) 1799-1814   Pdf bib
 
    Pdf bib
 
  W.J. Fu, R.J. Carroll, S. Wang. Estimating misclassification error with small samples via bootstrap cross-validation. Bioinformatics 21:9 (2005) 1979-1986   Pdf bib
 
  M. Gal-Or, J.H. May, W.E. Spangler. Assessing the predictive accuracy of diversity measures with domain-dependent, asymmetric misclassication costs. Information Fusion 6:1 (2005) 37-48   Pdf bib
 
  T. Hothorn, F. Leisch, A. Zeileis, K. Hornik. The Design and Analysis of Benchmark Experiments. Journal of Computational & Graphical Statistics 14:3 (2005) 675-699   Pdf bib
 
  J.W. Lee, J.B. Lee, M. Park, S.H. Song. An extensive comparison of recent classification tools applied to microarray data. Computational Statistics & Data Analysis 48:4 (2005) 869-885   Pdf bib
 
  D.Y. Lin. An efficient Monte Carlo approach to assessing statistical significance in genomic studies. Bioinformatics 21:6 (2005) 781-787   Pdf bib
 
  M. Markatou, H. Tian, S. Biswas, G. Hripcsak. Analysis of Variance of Cross-Validation Estimators of the Generalization Error. Journal of Machine Learning Research 0:6 (2005) 1127-1168   Pdf bib
 
  A.M. Molinaro, R. Simon, R.M. Pfeiffer. Prediction error estimation: a comparison of resampling methods. Bioinformatics 21:15 (2005) 3301-3307   Pdf bib
 
  L. Rueda. A one-dimensional analysis for the probability of error of linear classifiers for normally distributed classes. Pattern Recognitio 38:8 (2005) 1197-1207   Pdf bib
 
  C. Sima, S.N. Attoor, U.M. Braga-Neto, J. Lowey, E. Suh. Impact of error estimation on feature selection. Pattern Recognition 0:38 (2005) 2472-2482   Pdf bib
 
  Y. Pawitan, S. Michiels, S. Koscielny, A. Gusnanto, A. Ploner. False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 21:13 (2005) 3017-3024   Pdf bib
 

2004

  Y. Bengio, Y. Granvalet.. No Unbiased Estimator of the Variance of K-Fold Cross-Validation. Journal of Machine Learning Research 5 (2004) 1089-1105   Pdf bib
 
  U.M. Braga-Neto, E.R. Dougherty. Bolstered error estimation. Pattern Recognition 0:37 (2004) 1267-1281   Pdf bib
 
  U.M. Braga-Neto, E.R. Dougherty. Is cross-validation valid for small-sample microarray classification?. Bioinformatics 20:3 (2004) 374-380   Pdf bib
 
  U.M. Braga-Neto, R. Hashimoto, E.R. Dougherty, D.V. Nguyen, R.J. Carroll. Is cross-validation better than resubstitution for ranking genes?. Bioinformatics 20:2 (2004) 253-258   Pdf bib
 
  S. Dzeroski, B. Zenko. Is combining classifiers with stacking better than selecting the best one?. Machine learning 0:54 (2004) 255-273   Pdf bib
 
  R.L. Fernando, D. Nettleton, B.R. Southey, J.C.M. Dekkers, M.F. Rothschild, M. Soller. Controlling the proportion of false positives in multiple dependent tests. Genetics 0:166 (2004) 611-619   Pdf bib
 
  Y. Granvalet.. Bagging Equalizes Influence. Machine learning 0:55 (2004) 251-270   Pdf bib
 
  R. Mansourian, D.M. Mutch, N. Antille, J. Aubert, P. Fogel, J. Le Goff, J. Moulin, A. Petrov, A. Rytz, J.J. Voegel, M.A. Roberts. The Global Error Assessment (GEA) model for the selection of differentially expressed genes in microarray data. Bioinformatics 20:16 (2004) 2726-2737   Pdf bib
 
  R. Rifkin, A. Klautau. In Defense of One-Vs-All Classification. Journal of Machine Learning Research 0:5 (2004) 101-141   Pdf bib
 
  P. Van der Putten, M. Van Someren. Benchmarking Least Squares Support Vector Machine Classifiers. Machine Learning 0:54 (2004) 5-32   Pdf bib
 

2003

  S.V. Beiden, M.A. Maloof, R.F. Wagner. A General Model for Finite-Sample Effects in Training and Testing of Competing Classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 25:12 (2003) 1561-1569   Pdf bib
 
  P.B. Brazdil, C. Soares, J.P. Da Costa. Ranking Learning Algorithms: Using IBL and Meta-Learning on Accuracy and Time Results. Machine Learning 0:50 (2003) 251-277   Pdf bib
 
  G.C. Cawley, N.L.C. Talbot.. Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers. Pattern Recognition 36:11 (2003) 2585-2592   Pdf bib
 
  S.W. Cole, Z. Galic, J.A. Zack. Controlling false-negative errors in microarray differential expression analysis: a PRIM approach. Bioinformatics 19:14 (2003) 1808-1816   Pdf bib
 
  C. Nadeau, Y. Bengio. Inference for the generalization error. Machine learning 0:52 (2003) 239-281   Pdf bib
 
  E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V.G. Da Fonseca. Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7:2 (2003) 117-132   Pdf bib
 

2002

  D.G. Bonett, E. Seier. A test of normality with high uniform power. Computational Statistics & Data Analysis 40 (2002) 435-445   Pdf bib
 
  N. Duffy, D. Helmbold. Boosting methods for regression. Machine learning 0:47 (2002) 153-200   Pdf bib
 
  J. Pizarro, E. Guerrero, P. Galindo. Multiple comparison procedures applied to model selection. Neurocomputing 48 (2002) 155-173   Pdf bib
 
  J.A. Rafter, M.L. Abell, J.P. Braselton. Multiple Comparison Methods for Means. Society for Industrial and Applied Mathematic 44:2 (2002) 259-278   Pdf bib
 
  J.D. Storey. A direct approach to false discovery rates. Journal of the Royal Statistical Society: Series B 0:64 (2002) 479-498   Pdf bib
 

2001

  J.F. Bradford, C.E. Brodley. The Effect of Instance-Space Partition on Significance. Machine Learning 0:42 (2001) 269-286   Pdf bib
 
  C.C. McGeoch. Experimental Analysis of Algorithms. Notices of the American MAthematical Society 48:3 (2001) 304-311   Pdf bib
 

2000

  D. Curran-Everett. Multiple comparisons: philosophies and illustrations. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 279:1 (2000) 0-0   Pdf bib
 
  N.A. Diamantidis, D. Karlis, E.A. Giakoumakis. Unsupervised stratification of cross-validation for accuracy estimation. Artificial Intelligence 0:116 (2000) 1-16   Pdf bib
 
  A.K. Jain, R.P.W. Duin, J. Mao. Statistical Pattern Recognition: A Review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22:1 (2000) 4-37   Pdf bib
 
  T.S. Lim, W.Y. Loh. A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms. Machine Learning 0:40 (2000) 203-228   Pdf bib
 
  G.I. Webb. MultiBoosting: A Technique for Combining Boosting and Wagging. Machine Learning 0:40 (2000) 159-196   Pdf bib
 

1999

  E. Alpaydin. Combined 5x2 cv F Test for Comparing Supervised Classification Learning Algorithms. Neural Computation 11:8 (1999) 1885-1892   Pdf bib
 
  E. Bauer, R. Kohavi. An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Machine Learning 1-2:36 (1999) 105-142   Pdf bib
 
  I. Rivals, L. Personnaz. On Cross-Validation for Model Selection. Neural Computation 11:4 (1999) 863-870   Pdf bib
 
  S.L. Salzberg. On Comparing Classifiers: A Critique of Current Research and Methods. Data Mining and Knowledge Discovery 0:1 (1999) 1-12   Pdf bib
 

1998

  M. Adya, F. Collopy. How Effective are Neural Networks at Forecasting and Prediction? A Review and Evaluation. Journal of Forecasting 0:17 (1998) 481-495   Pdf bib
 
  T.G. Dietterich. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Computation 10:7 (1998) 1895-1924   Pdf bib
 
  B. LeBaron, A.S. Weigend. A Bootstrap Evaluation of the Effect of Data Splitting on Financial Time Series. IEEE Transactions on Neural Networks 9:1 (1998) 213-220   Pdf bib
 

1997

  S.L. Salzberg. On Comparing Classifiers: Pitfalls to Avoidanda Recommended Approach. Data Mining and Knowledge Discovery 0:1 (1997) 317-328   Pdf bib
 

1996

  L. Breiman. Heuristics of instability and stabilization in model selection. Annals of Statistics 24:6 (1996) 2350-2383   Pdf bib
 
  R.J. Cook, V.T. Farewell. Multiplicity Considerations in the Design and Analysis of Clinical Trials. Journal of the Royal Statistical Society: Series A 0:159 (1996) 93-110   Pdf bib
 

1995

  Y. Benjamini, T. Hochberg. Controlling the False Discovery Rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B 0:85 (1995) 289-300   Pdf bib
 
  J.P. Shaffer. Multiple Hypothesis Testing. Annual Review of Psychology 46 (1995) 561-584   Pdf bib
 

1994

  O. Etzioni, R. Etzioni. Statistical Method for Analyzing Speedup Learning Experiments. Machine Learning 0:14 (1994) 333-347   Pdf bib
 

1991

  S.J. Raudys, A.K. Jain. Small Sample Size Effects in Statistical Pattern Recognition: Recommendations for Practitioners. IEEE Trans. Pattern Analysis and Machine Intelligence 13:3 (1991) 252-264   Pdf bib
 

1989

  K. Fukunaga, R.R. Hayes. Estimation of Classifier Performance. IEEE Trans. Pattern Analysis and Machine Intelligence 11:10 (1989) 1087-1101   Pdf bib
 
  K. Fukunaga, R.R. Hayes. Effects of Sample Size in Classifier Design. IEEE Trans. Pattern Analysis and Machine Intelligence 11:8 (1989) 873-885   Pdf bib
 

1988

  Y. Hochberg. A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:4 (1988) 800-802   Pdf bib
 
  G. Hommel. A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika 0:75 (1988) 383-386   Pdf bib
 
  P.C. O'Brien, M.A. Shampo. Statistical considerations for performing multiple tests in a single experiment. Mayo Clinic Proceedings 63 (1988) 813-815   Pdf bib
 

1987

  A.K. Jain, R.C. Dubes, C.C. Chen. Bootstrap techniques for error estimation. IEEE Transactions on Pattern Analysis and Machine Intellligence 9:5 (1987) 628-633   Pdf bib
 

1986

  R.J. Simes. An improved Bonferroni procedure for multiple tests of significance. Biometrika 0:73 (1986) 751-754   Pdf bib
 

1979

  S. Holm. A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics 0:6 (1979) 65-70   Pdf bib
 

1975

  I. Einot, K.R. Gabriel. A Study of the Powers of Several Methods of Multiple Comparison. Journal of the American Statistical Association 0:70 (1975) 574-583   Pdf bib
 




Main  Contributions to Books Chapters

Jump to Year:   2002



2002

  D.S. Johnson. A theoretician's guide to the experimental analysis of algorithms. In: D.S. Johnson (Eds.) Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges, American Mathematical Society, 2002, 215-251   Pdf bib
 




Main  Conference Contributions

Jump to Year:   2008  2004  2003  2002  2001  2000  1998  1996  1995



2008

  D. Hu, X. Yu, Y. Feng. Randomization Test for Importance Degree of Variables in Rough Set Theory. Computational Intelligence and Industrial Application (PACIIA08). Wuhan (China, 2008) 107-111   Pdf bib
 

2004

  R.R. Bouckaert, E. Frank. Evaluating the Replicability of Significance Tests for Comparing Learning Algorithms. VIII Pacific-Asia Conference of Advances in Knowledge Discovery and Data Mining (PAKDD'04). Lecture Notes in Computer Science 3056, Springer 2004, Sydney (Australia, 2004) 0-0   Pdf bib
 
  J. Menke, T.R. Martinez. Using permutations instead of student's t distribution for p-values in paired-difference algorithm comparisons. 2004 IEEE International Joint Conference on Neural Networks (IJCNN2004). Budapest (Hungary, 2004) 1331-1335   Pdf bib
 

2003

  R.R. Bouckaert. Choosing between two learning algorithms based on calibrated tests. Twentieth International Conference on Machine Learning (ICML 2003). Washington DC (USA, 2003) 94-99   Pdf bib
 

2002

  T. Beielstein, S. Markon. Threshold Selection, Hypothesis Tests, and DOE Methods. Evolutionary Computation 2002 (EC2002). Honolulu (USA, 2002) 777-782   Pdf bib
 
    Pdf bib
 
  P. Popela, J. Roupec, P. Osmera, R. Matousek. The formal stochastic framework for comparison of genetic algorithms. Congress on Evolutionary Computation, 2002 (CEC'2002). Honolulu (EEUU, 2002) 576-581   Pdf bib
 
  P. Popela, J. Roupec, P. Osmera, R. Matousek. The formal stochastic framework for comparison of genetic algorithms. 2002 Congress on Evolutionary Computation, (CEC'2002). Honolulu (USA, 2002) 576-581   Pdf bib
 
    Pdf bib
 

2001

  V. Grunert, C.M. Fonseca, M.A. Hall. Inferential performance assesment of stochastic optimisers and the attainment function. Evolutionary Multi-Criterion Optimization. First International Conference (EMO 2001). Lecture Notes in Computer Science 1993, Springer 2001, Zurich (Switzerland, 2001) 213-225   Pdf bib
 
  V. Grunert, C.M. Fonseca, A.O. Hall. Inferential performance assessment of stochastic optimisers and the attainment function. First International Conference on Evolutionary Multi-Criterion Optimization (EMO 2001). Lecture Notes in Computer Science 1993, Springer 2001, Zurich (Switzerland, 2001) 213-225   Pdf bib
 
  G. Shakhnarovich, R. El-Yaniv, Y. Baram. Smoothed Bootstrap and Statistical Data Cloning for Classifier Evaluation. International Conference on Machine Learning (ICML'01). Williamstown MA (USA, 2001) 521-528   Pdf bib
 
  G. Shakhnarovich, R. El-Yaniv, Y. Baram. Smoothed Bootstrap and Statistical Data Cloning for Classifier Evaluation. International Conference on Machine Learning 2001 (ICML'01). Williamstown MA (USA, 2001) 521-528   Pdf bib
 

2000

  P.B. Brazdil, C. Soares. A Comparison of Ranking Methods for Classification Algorithm Selection. A Comparison of Ranking Methods for Classification Algorithm Selection (ECML'2000). Barcelona (Spain, 2000) 63-74   Pdf bib
 
  P. Domingos. A unified bias-variance decomposition for zero-one and squared loss. Seventeenth National Conference on Artificial Intelligence (AAAI-00). Austin TX (USA, 2000) 1-6   Pdf bib
 
  D.D. Margineantu, T.G. Dietterich. Bootstrap Methods for the Cost-Sensitive Evaluation of Classifiers. 17th International Conf. on Machine Learning (ICML2000). Morgan Kaufmann, San Francisco, CA. Stanford CA (USA, 2000) 583-590   Pdf bib
 
  M. Mullin, R. Sukthankar. Complete Cross-Validation for Nearest Neighbor Classifiers. International Conference on Machine Learning (ICML'00). Standford (USA, 2000) 0-0   Pdf bib
 

1998

  J.H. Piater, P.R. Cohen, X. Zhang, M. Atighetchi. A Randomized ANOVA Procedure for Comparing Performance Curves. Fifteenth International Conference on Machine Learning (ICML-98). Madison WI (USA, 1998) 430-438   Pdf bib
 

1996

  C.C. McGeoch. A bibliography of algorithm experimentation. 5th DIMACS Challenge Workshop (DIMACS96). Piscataway (USA, 1996) 0-0   Pdf bib
 

1995

    Pdf bib
 




Main Analysis of Optimization Algorithms





Main  Journal Contributions: Published

Jump to Year:   2009  2008  2004  2002  1999  1995  1987



2009

  G. Kou, Y. Peng, Z. Chen, Y. Shi. Multiple criteria mathematical programming for multi-class classification and application in network intrusion detection. Information Sciences 179:4 (2009) 371-381   Pdf bib
 

2008

  Z. Bosnić, I. Kononenko. Comparison of approaches for estimating reliability of individual regression predictions. Data & Knowledge Engineering 67:3 (2008) 504-516   Pdf bib
 
  S. Lessmann, B. Baesens, C. Mues, S. Pietsch. Benchmarking Classification Models for Software Defect Prediction: A Proposed Framework and Novel Findings. IEEE Transactions on Software Engineering 34:4 (2008) 485-496   Pdf bib
 

2004

    Pdf bib
 
  A. Czarn, C. MacNish, K. Vijayan, B. Turlach, R. Gupta. Statistical Exploratory Analysis of Genetic Algorithms. IEEE Transactions on Evolutionary Computation 8:4 (2004) 405-421   Pdf bib
 
  K.F. Manly, D. Nettleton, J.T. Gene-Hwang. Genomics, Prior Probability, and Statistical Tests of Multiple Hypotheses. Genome Research 14 (2004) 997-1001   Pdf bib
 

2002

  D. Whitley, J.P. Watson, A. Howe, L. Barbulescu. Testing, Evaluation and Performance of Optimization and Learning Systems. Keynote Address: Adaptive Computing in Design and Manufacturing 0 (2002) 0-0   Pdf bib
 

1999

  C.H. Chen, S.D. Wu, L. Dai. Ordinal comparison of heuristic algorithms using stochastic optimization. IEEE Transactions on Robotics and Automation 15:1 (1999) 44-56   Pdf bib
 

1995

  R.S. Barr, B.L. Golden, J.P. Kelly, M.G.C. Resende, W.R. Stewart. Designing and Reporting on Computacional Experiments with Heuristics. Journal of Heuristic 1:1 (1995) 9-32   bib
 
  J.H. Hooker. Testing Heuristics: We Have it All Wrong. Journal of Heuristics 1:1 (1995) 33-42   Pdf bib
 

1987

  R.E. Nance, R.L. Moose, R.V. Foutz. A Statistical Technique for Comparing Heuristics: An Example from Capacity Assignment Strategies in Computer Network Design. Communication of the ACM 30:3 (1987) 430-442   Pdf bib
 




Main  Conference Contributions

Jump to Year:   2005  2003  1999



2005

  C.M. Fonseca, V. Grunert, L. Paquete. Exploring the performance of stochastic multiobjective optimisers with the second-order attainment function. Evolutionary Multi-Criterion Optimization (EMO05). Lecture Notes in Computer Science 3410, Springer-Verlag 2005 (2005) 250-264   Pdf bib
 
  J. Knowles. A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers. Fifth International Conference on Intelligent Systems Design and Applications (ISDA 2005). IEEE Computer Society. Wroclaw (pOLAND, 2005) 552-557   Pdf bib
 

2003

  T. Okabe, Y. Jin, B. Sendhoff. A critical survey of performance indices for multi-objective optimisation. The 2003 Congress on Evolutionary Computation, 2003. (CEC'2003). Canberra (Australia, 2003) 878-885   Pdf bib
 

1999

  K.J. Shaw, A.L., M. Thompson, J. Love, P.J. Fleming, C.M. Fonseca. Assessing the performance of multiobjective genetic algorithms for optimization of a batch process scheduling problem. 1999 Congress on Evolutionary Computation (CEC 99). IEEE. Washington (USA, 1999) 37-45   Pdf bib
 




If you would like to add a new reference in this specific topic, please contact:
     José Otero Rodríguez (member_email)



 
 Copyright 2004-2018, KEEL (Knowledge Extraction based on Evolutionary Learning)
About the Webmaster Team
Valid XHTML 1.1   Valid CSS!