Accountable:
José Otero Rodríguez ()
|
|
|
|
Journal Contributions: Published
Jump to Year: 2009 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1991 1989 1988 1987 1986 1979 1975
2009 |
|
P.P. Balestrassi, E. Popova, A.P. Paiva, J.W. Marangon-Lima. Design of experiments on neural network's training for nonlinear time series forecasting. Neurocomputing 72:4-6 (2009) 1160-1178 |
|
|
bib |
|
2007 |
|
A. Adler, M.E. Schuckers. Comparing Human and Automatic Face Recognition Performance. IEEE Transactions on Systems, Man, and Cybernetics, Part B 37:5 (2007) 1248-1255 |
|
|
bib |
|
|
R.E. Banfield, L.O. Hall, K.W. Bowyer, W.P. Kegelmeyer. A Comparison of Decision Tree Ensemble Creation Techniques. IEEE Transactions on Pattern Analysis and Machine Intelligence 29:1 (2007) 173-180 |
|
|
bib |
|
|
S.Y. Sohn, H.W. Shin. Experimental study for the comparison of classifier combination methods. Pattern Recognition 40:1 (2007) 33-40 |
|
|
bib |
|
|
Y. Yang, G.I. Webb, J. Cerquides, K.B. Korb, J. Boughton, K.M. Ting. To Select or To Weigh: A Comparative Study of Linear Combination Schemes for SuperParent-One-Dependence Estimators. IEEE Transactions on Knowledge and Data Engineering 19:12 (2007) 1652-1665 |
|
|
bib |
|
2006 |
|
A. Ali, K.A. Smith. On learning algorithm selection for classification. Applied Soft Computing 6:2 (2006) 119-138 |
|
|
bib |
|
|
J. Demsar. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research 7 (2006) 1-30 |
|
|
bib |
|
|
C. Drummond, R.C. Holte. Cost Curves: An improved method for visualizing classifier performance. Machine Learning 65:1 (2006) 95-130 |
|
|
bib |
|
|
C.-X. J Feng, Z.-G. Yu, A. Kusiak. Selection and validation of predictive regression and neural network models based on designed experiments. IIE TRANSACTIONS 38 (2006) 13-23 |
|
|
bib |
|
|
E. Lamma, P. Mello, A. Nanetti, F. Riguzzi. Artificial intelligence techniques for monitoring dangerous infections. IEEE Transactions on Information Technology in Biomedicine 10:1 (2006) 143-155 |
|
|
bib |
|
|
B. Mascialino, A. Pfeiffer, M.G. Pia, A. Ribon, P. Viarengo. New Developments of the Goodness-of-Fit Statistical Toolkit. IEEE Transactions on Nuclear Science 53:6 (2006) 3834-3841 |
|
|
bib |
|
|
O.T. Yildiz, E. Alpaydin. Ordering and finding the best of K > 2 supervised learning algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 28:3 (2006) 392-402 |
|
|
bib |
|
|
O.T. Yildiz, E. Alpaydin. Ordering and finding the best of K > 2 supervised learning algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 28:3 (2006) 392-402 |
|
|
bib |
|
2005 |
|
W.T. Barry, A.B. Nobel, F.A. Wright. Significance analysis of functional categories in gene expression studies: a structured permutation approach. Bioinformatics 21:9 (2005) 1943-1949 |
|
|
bib |
|
|
U.M. Braga-Neto, E.R. Dougherty. Exact performance of error estimators for discrete classifiers. Pattern Recognition 38:11 (2005) 1799-1814 |
|
|
bib |
|
|
|
|
|
bib |
|
|
W.J. Fu, R.J. Carroll, S. Wang. Estimating misclassification error with small samples via bootstrap cross-validation. Bioinformatics 21:9 (2005) 1979-1986 |
|
|
bib |
|
|
M. Gal-Or, J.H. May, W.E. Spangler. Assessing the predictive accuracy of diversity measures with domain-dependent, asymmetric misclassication costs. Information Fusion 6:1 (2005) 37-48 |
|
|
bib |
|
|
T. Hothorn, F. Leisch, A. Zeileis, K. Hornik. The Design and Analysis of Benchmark Experiments. Journal of Computational & Graphical Statistics 14:3 (2005) 675-699 |
|
|
bib |
|
|
J.W. Lee, J.B. Lee, M. Park, S.H. Song. An extensive comparison of recent classification tools applied to microarray data. Computational Statistics & Data Analysis 48:4 (2005) 869-885 |
|
|
bib |
|
|
D.Y. Lin. An efficient Monte Carlo approach to assessing statistical significance in genomic studies. Bioinformatics 21:6 (2005) 781-787 |
|
|
bib |
|
|
M. Markatou, H. Tian, S. Biswas, G. Hripcsak. Analysis of Variance of Cross-Validation Estimators of the Generalization Error. Journal of Machine Learning Research 0:6 (2005) 1127-1168 |
|
|
bib |
|
|
A.M. Molinaro, R. Simon, R.M. Pfeiffer. Prediction error estimation: a comparison of resampling methods. Bioinformatics 21:15 (2005) 3301-3307 |
|
|
bib |
|
|
L. Rueda. A one-dimensional analysis for the probability of error of linear classifiers for normally distributed classes. Pattern Recognitio 38:8 (2005) 1197-1207 |
|
|
bib |
|
|
C. Sima, S.N. Attoor, U.M. Braga-Neto, J. Lowey, E. Suh. Impact of error estimation on feature selection. Pattern Recognition 0:38 (2005) 2472-2482 |
|
|
bib |
|
|
Y. Pawitan, S. Michiels, S. Koscielny, A. Gusnanto, A. Ploner. False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 21:13 (2005) 3017-3024 |
|
|
bib |
|
2004 |
|
Y. Bengio, Y. Granvalet.. No Unbiased Estimator of the Variance of K-Fold Cross-Validation. Journal of Machine Learning Research 5 (2004) 1089-1105 |
|
|
bib |
|
|
U.M. Braga-Neto, E.R. Dougherty. Bolstered error estimation. Pattern Recognition 0:37 (2004) 1267-1281 |
|
|
bib |
|
|
U.M. Braga-Neto, E.R. Dougherty. Is cross-validation valid for small-sample microarray classification?. Bioinformatics 20:3 (2004) 374-380 |
|
|
bib |
|
|
U.M. Braga-Neto, R. Hashimoto, E.R. Dougherty, D.V. Nguyen, R.J. Carroll. Is cross-validation better than resubstitution for ranking genes?. Bioinformatics 20:2 (2004) 253-258 |
|
|
bib |
|
|
S. Dzeroski, B. Zenko. Is combining classifiers with stacking better than selecting the best one?. Machine learning 0:54 (2004) 255-273 |
|
|
bib |
|
|
R.L. Fernando, D. Nettleton, B.R. Southey, J.C.M. Dekkers, M.F. Rothschild, M. Soller. Controlling the proportion of false positives in multiple dependent tests. Genetics 0:166 (2004) 611-619 |
|
|
bib |
|
|
Y. Granvalet.. Bagging Equalizes Influence. Machine learning 0:55 (2004) 251-270 |
|
|
bib |
|
|
R. Mansourian, D.M. Mutch, N. Antille, J. Aubert, P. Fogel, J. Le Goff, J. Moulin, A. Petrov, A. Rytz, J.J. Voegel, M.A. Roberts. The Global Error Assessment (GEA) model for the selection of differentially expressed genes in microarray data. Bioinformatics 20:16 (2004) 2726-2737 |
|
|
bib |
|
|
R. Rifkin, A. Klautau. In Defense of One-Vs-All Classification. Journal of Machine Learning Research 0:5 (2004) 101-141 |
|
|
bib |
|
|
P. Van der Putten, M. Van Someren. Benchmarking Least Squares Support Vector Machine Classifiers. Machine Learning 0:54 (2004) 5-32 |
|
|
bib |
|
2003 |
|
S.V. Beiden, M.A. Maloof, R.F. Wagner. A General Model for Finite-Sample Effects in Training and Testing of Competing Classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 25:12 (2003) 1561-1569 |
|
|
bib |
|
|
P.B. Brazdil, C. Soares, J.P. Da Costa. Ranking Learning Algorithms: Using IBL and Meta-Learning on Accuracy and Time Results. Machine Learning 0:50 (2003) 251-277 |
|
|
bib |
|
|
G.C. Cawley, N.L.C. Talbot.. Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers. Pattern Recognition 36:11 (2003) 2585-2592 |
|
|
bib |
|
|
S.W. Cole, Z. Galic, J.A. Zack. Controlling false-negative errors in microarray differential expression analysis: a PRIM approach. Bioinformatics 19:14 (2003) 1808-1816 |
|
|
bib |
|
|
C. Nadeau, Y. Bengio. Inference for the generalization error. Machine learning 0:52 (2003) 239-281 |
|
|
bib |
|
|
E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V.G. Da Fonseca. Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7:2 (2003) 117-132 |
|
|
bib |
|
2002 |
|
D.G. Bonett, E. Seier. A test of normality with high uniform power. Computational Statistics & Data Analysis 40 (2002) 435-445 |
|
|
bib |
|
|
N. Duffy, D. Helmbold. Boosting methods for regression. Machine learning 0:47 (2002) 153-200 |
|
|
bib |
|
|
J. Pizarro, E. Guerrero, P. Galindo. Multiple comparison procedures applied to model selection. Neurocomputing 48 (2002) 155-173 |
|
|
bib |
|
|
J.A. Rafter, M.L. Abell, J.P. Braselton. Multiple Comparison Methods for Means. Society for Industrial and Applied Mathematic 44:2 (2002) 259-278 |
|
|
bib |
|
|
J.D. Storey. A direct approach to false discovery rates. Journal of the Royal Statistical Society: Series B 0:64 (2002) 479-498 |
|
|
bib |
|
2001 |
|
J.F. Bradford, C.E. Brodley. The Effect of Instance-Space Partition on Significance. Machine Learning 0:42 (2001) 269-286 |
|
|
bib |
|
|
C.C. McGeoch. Experimental Analysis of Algorithms. Notices of the American MAthematical Society 48:3 (2001) 304-311 |
|
|
bib |
|
2000 |
|
D. Curran-Everett. Multiple comparisons: philosophies and illustrations. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 279:1 (2000) 0-0 |
|
|
bib |
|
|
N.A. Diamantidis, D. Karlis, E.A. Giakoumakis. Unsupervised stratification of cross-validation for accuracy estimation. Artificial Intelligence 0:116 (2000) 1-16 |
|
|
bib |
|
|
A.K. Jain, R.P.W. Duin, J. Mao. Statistical Pattern Recognition: A Review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22:1 (2000) 4-37 |
|
|
bib |
|
|
T.S. Lim, W.Y. Loh. A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms. Machine Learning 0:40 (2000) 203-228 |
|
|
bib |
|
|
G.I. Webb. MultiBoosting: A Technique for Combining Boosting and Wagging. Machine Learning 0:40 (2000) 159-196 |
|
|
bib |
|
1999 |
|
E. Alpaydin. Combined 5x2 cv F Test for Comparing Supervised Classification Learning Algorithms. Neural Computation 11:8 (1999) 1885-1892 |
|
|
bib |
|
|
E. Bauer, R. Kohavi. An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Machine Learning 1-2:36 (1999) 105-142 |
|
|
bib |
|
|
I. Rivals, L. Personnaz. On Cross-Validation for Model Selection. Neural Computation 11:4 (1999) 863-870 |
|
|
bib |
|
|
S.L. Salzberg. On Comparing Classifiers: A Critique of Current Research and Methods. Data Mining and Knowledge Discovery 0:1 (1999) 1-12 |
|
|
bib |
|
1998 |
|
M. Adya, F. Collopy. How Effective are Neural Networks at Forecasting and Prediction? A Review and Evaluation. Journal of Forecasting 0:17 (1998) 481-495 |
|
|
bib |
|
|
T.G. Dietterich. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Computation 10:7 (1998) 1895-1924 |
|
|
bib |
|
|
B. LeBaron, A.S. Weigend. A Bootstrap Evaluation of the Effect of Data Splitting on Financial Time Series. IEEE Transactions on Neural Networks 9:1 (1998) 213-220 |
|
|
bib |
|
1997 |
|
S.L. Salzberg. On Comparing Classifiers: Pitfalls to Avoidanda Recommended Approach. Data Mining and Knowledge Discovery 0:1 (1997) 317-328 |
|
|
bib |
|
1996 |
|
L. Breiman. Heuristics of instability and stabilization in model selection. Annals of Statistics 24:6 (1996) 2350-2383 |
|
|
bib |
|
|
R.J. Cook, V.T. Farewell. Multiplicity Considerations in the Design and Analysis of Clinical Trials. Journal of the Royal Statistical Society: Series A 0:159 (1996) 93-110 |
|
|
bib |
|
1995 |
|
Y. Benjamini, T. Hochberg. Controlling the False Discovery Rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B 0:85 (1995) 289-300 |
|
|
bib |
|
|
J.P. Shaffer. Multiple Hypothesis Testing. Annual Review of Psychology 46 (1995) 561-584 |
|
|
bib |
|
1994 |
|
O. Etzioni, R. Etzioni. Statistical Method for Analyzing Speedup Learning Experiments. Machine Learning 0:14 (1994) 333-347 |
|
|
bib |
|
1991 |
|
S.J. Raudys, A.K. Jain. Small Sample Size Effects in Statistical Pattern Recognition: Recommendations for Practitioners. IEEE Trans. Pattern Analysis and Machine Intelligence 13:3 (1991) 252-264 |
|
|
bib |
|
1989 |
|
K. Fukunaga, R.R. Hayes. Estimation of Classifier Performance. IEEE Trans. Pattern Analysis and Machine Intelligence 11:10 (1989) 1087-1101 |
|
|
bib |
|
|
K. Fukunaga, R.R. Hayes. Effects of Sample Size in Classifier Design. IEEE Trans. Pattern Analysis and Machine Intelligence 11:8 (1989) 873-885 |
|
|
bib |
|
1988 |
|
Y. Hochberg. A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:4 (1988) 800-802 |
|
|
bib |
|
|
G. Hommel. A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika 0:75 (1988) 383-386 |
|
|
bib |
|
|
P.C. O'Brien, M.A. Shampo. Statistical considerations for performing multiple tests in a single experiment. Mayo Clinic Proceedings 63 (1988) 813-815 |
|
|
bib |
|
1987 |
|
A.K. Jain, R.C. Dubes, C.C. Chen. Bootstrap techniques for error estimation. IEEE Transactions on Pattern Analysis and Machine Intellligence 9:5 (1987) 628-633 |
|
|
bib |
|
1986 |
|
R.J. Simes. An improved Bonferroni procedure for multiple tests of significance. Biometrika 0:73 (1986) 751-754 |
|
|
bib |
|
1979 |
|
S. Holm. A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics 0:6 (1979) 65-70 |
|
|
bib |
|
1975 |
|
I. Einot, K.R. Gabriel. A Study of the Powers of Several Methods of Multiple Comparison. Journal of the American Statistical Association 0:70 (1975) 574-583 |
|
|
bib |
|
Contributions to Books Chapters
Jump to Year: 2002
2002 |
|
D.S. Johnson. A theoretician's guide to the experimental analysis of algorithms. In:
D.S. Johnson (Eds.) Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges, American Mathematical Society, 2002, 215-251 |
|
|
bib |
|
Conference Contributions
Jump to Year: 2008 2004 2003 2002 2001 2000 1998 1996 1995
2008 |
|
D. Hu, X. Yu, Y. Feng. Randomization Test for Importance Degree of Variables in Rough Set Theory. Computational Intelligence and Industrial Application (PACIIA08). Wuhan (China, 2008) 107-111 |
|
|
bib |
|
2004 |
|
R.R. Bouckaert, E. Frank. Evaluating the Replicability of Significance Tests for Comparing Learning Algorithms. VIII Pacific-Asia Conference of Advances in Knowledge Discovery and Data Mining (PAKDD'04). Lecture Notes in Computer Science 3056, Springer 2004, Sydney (Australia, 2004) 0-0 |
|
|
bib |
|
|
J. Menke, T.R. Martinez. Using permutations instead of student's t distribution for p-values in paired-difference algorithm comparisons. 2004 IEEE International Joint Conference on Neural Networks (IJCNN2004). Budapest (Hungary, 2004) 1331-1335 |
|
|
bib |
|
2003 |
|
R.R. Bouckaert. Choosing between two learning algorithms based on calibrated tests. Twentieth International Conference on Machine Learning (ICML 2003). Washington DC (USA, 2003) 94-99 |
|
|
bib |
|
2002 |
|
T. Beielstein, S. Markon. Threshold Selection, Hypothesis Tests, and DOE Methods. Evolutionary Computation 2002 (EC2002). Honolulu (USA, 2002) 777-782 |
|
|
bib |
|
|
|
|
|
bib |
|
|
P. Popela, J. Roupec, P. Osmera, R. Matousek. The formal stochastic framework for comparison of genetic algorithms. Congress on Evolutionary Computation, 2002 (CEC'2002). Honolulu (EEUU, 2002) 576-581 |
|
|
bib |
|
|
P. Popela, J. Roupec, P. Osmera, R. Matousek. The formal stochastic framework for comparison of genetic algorithms. 2002 Congress on Evolutionary Computation, (CEC'2002). Honolulu (USA, 2002) 576-581 |
|
|
bib |
|
|
|
|
|
bib |
|
2001 |
|
V. Grunert, C.M. Fonseca, M.A. Hall. Inferential performance assesment of stochastic optimisers and the attainment function. Evolutionary Multi-Criterion Optimization. First International Conference (EMO 2001). Lecture Notes in Computer Science 1993, Springer 2001, Zurich (Switzerland, 2001) 213-225 |
|
|
bib |
|
|
V. Grunert, C.M. Fonseca, A.O. Hall. Inferential performance assessment of stochastic optimisers and the attainment function. First International Conference on Evolutionary Multi-Criterion Optimization (EMO 2001). Lecture Notes in Computer Science 1993, Springer 2001, Zurich (Switzerland, 2001) 213-225 |
|
|
bib |
|
|
G. Shakhnarovich, R. El-Yaniv, Y. Baram. Smoothed Bootstrap and Statistical Data Cloning for Classifier Evaluation. International Conference on Machine Learning (ICML'01). Williamstown MA (USA, 2001) 521-528 |
|
|
bib |
|
|
G. Shakhnarovich, R. El-Yaniv, Y. Baram. Smoothed Bootstrap and Statistical Data Cloning for Classifier Evaluation. International Conference on Machine Learning 2001 (ICML'01). Williamstown MA (USA, 2001) 521-528 |
|
|
bib |
|
2000 |
|
P.B. Brazdil, C. Soares. A Comparison of Ranking Methods for Classification Algorithm Selection. A Comparison of Ranking Methods for Classification Algorithm Selection (ECML'2000). Barcelona (Spain, 2000) 63-74 |
|
|
bib |
|
|
P. Domingos. A unified bias-variance decomposition for zero-one and squared loss. Seventeenth National Conference on Artificial Intelligence (AAAI-00). Austin TX (USA, 2000) 1-6 |
|
|
bib |
|
|
D.D. Margineantu, T.G. Dietterich. Bootstrap Methods for the Cost-Sensitive Evaluation of Classifiers. 17th International Conf. on Machine Learning (ICML2000). Morgan Kaufmann, San Francisco, CA. Stanford CA (USA, 2000) 583-590 |
|
|
bib |
|
|
M. Mullin, R. Sukthankar. Complete Cross-Validation for Nearest Neighbor Classifiers. International Conference on Machine Learning (ICML'00). Standford (USA, 2000) 0-0 |
|
|
bib |
|
1998 |
|
J.H. Piater, P.R. Cohen, X. Zhang, M. Atighetchi. A Randomized ANOVA Procedure for Comparing Performance Curves. Fifteenth International Conference on Machine Learning (ICML-98). Madison WI (USA, 1998) 430-438 |
|
|
bib |
|
1996 |
|
C.C. McGeoch. A bibliography of algorithm experimentation. 5th DIMACS Challenge Workshop (DIMACS96). Piscataway (USA, 1996) 0-0 |
|
|
bib |
|
1995 |
|
|
|
|
bib |
|
|
|
|
Journal Contributions: Published
Jump to Year: 2009 2008 2004 2002 1999 1995 1987
2009 |
|
G. Kou, Y. Peng, Z. Chen, Y. Shi. Multiple criteria mathematical programming for multi-class classification and application in network intrusion detection. Information Sciences 179:4 (2009) 371-381 |
|
|
bib |
|
2008 |
|
Z. Bosnić, I. Kononenko. Comparison of approaches for estimating reliability of individual regression predictions. Data & Knowledge Engineering 67:3 (2008) 504-516 |
|
|
bib |
|
|
S. Lessmann, B. Baesens, C. Mues, S. Pietsch. Benchmarking Classification Models for Software Defect Prediction: A Proposed Framework and Novel Findings. IEEE Transactions on Software Engineering 34:4 (2008) 485-496 |
|
|
bib |
|
2004 |
|
|
|
|
bib |
|
|
A. Czarn, C. MacNish, K. Vijayan, B. Turlach, R. Gupta. Statistical Exploratory Analysis of Genetic Algorithms. IEEE Transactions on Evolutionary Computation 8:4 (2004) 405-421 |
|
|
bib |
|
|
K.F. Manly, D. Nettleton, J.T. Gene-Hwang. Genomics, Prior Probability, and Statistical Tests of Multiple Hypotheses. Genome Research 14 (2004) 997-1001 |
|
|
bib |
|
2002 |
|
D. Whitley, J.P. Watson, A. Howe, L. Barbulescu. Testing, Evaluation and Performance of Optimization and Learning Systems. Keynote Address: Adaptive Computing in Design and Manufacturing 0 (2002) 0-0 |
|
|
bib |
|
1999 |
|
C.H. Chen, S.D. Wu, L. Dai. Ordinal comparison of heuristic algorithms using stochastic optimization. IEEE Transactions on Robotics and Automation 15:1 (1999) 44-56 |
|
|
bib |
|
1995 |
|
R.S. Barr, B.L. Golden, J.P. Kelly, M.G.C. Resende, W.R. Stewart. Designing and Reporting on Computacional Experiments with Heuristics. Journal of Heuristic 1:1 (1995) 9-32 |
|
bib |
|
|
J.H. Hooker. Testing Heuristics: We Have it All Wrong. Journal of Heuristics 1:1 (1995) 33-42 |
|
|
bib |
|
1987 |
|
R.E. Nance, R.L. Moose, R.V. Foutz. A Statistical Technique for Comparing Heuristics: An Example from Capacity Assignment Strategies in Computer Network Design. Communication of the ACM 30:3 (1987) 430-442 |
|
|
bib |
|
Conference Contributions
Jump to Year: 2005 2003 1999
2005 |
|
C.M. Fonseca, V. Grunert, L. Paquete. Exploring the performance of stochastic multiobjective optimisers with the second-order attainment function. Evolutionary Multi-Criterion Optimization (EMO05). Lecture Notes in Computer Science 3410, Springer-Verlag 2005 (2005) 250-264 |
|
|
bib |
|
|
J. Knowles. A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers. Fifth International Conference on Intelligent Systems Design and Applications (ISDA 2005). IEEE Computer Society. Wroclaw (pOLAND, 2005) 552-557 |
|
|
bib |
|
2003 |
|
T. Okabe, Y. Jin, B. Sendhoff. A critical survey of performance indices for multi-objective optimisation. The 2003 Congress on Evolutionary Computation, 2003. (CEC'2003). Canberra (Australia, 2003) 878-885 |
|
|
bib |
|
1999 |
|
K.J. Shaw, A.L., M. Thompson, J. Love, P.J. Fleming, C.M. Fonseca. Assessing the performance of multiobjective genetic algorithms for optimization of a batch process scheduling problem. 1999 Congress on Evolutionary Computation (CEC 99). IEEE. Washington (USA, 1999) 37-45 |
|
|
bib |
|
|
If you would like to add a new reference in this specific topic, please contact:
José Otero Rodríguez ()
|
|