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Abstract—The conventional wisdom in the field of statistical pattern recognition (SPR) is that the size of the finite test sample

dominates the variance in the assessment of the performance of a classical or neural classifier. The present work shows that this result

has only narrow applicability. In particular, when competing algorithms are compared, the finite training sample more commonly

dominates this uncertainty. This general problem in SPR is analyzed using a formal structure recently developed for multivariate

random-effects receiver operating characteristic (ROC) analysis. Monte Carlo trials within the general model are used to explore the

detailed statistical structure of several representative problems in the subfield of computer-aided diagnosis in medicine. The scaling

laws between variance of accuracy measures and number of training samples and number of test samples are investigated and found

to be comparable to those discussed in the classic text of Fukunaga, but important interaction terms have been neglected by previous

authors. Finally, the importance of the contribution of finite trainers to the uncertainties argues for some form of bootstrap analysis to

sample that uncertainty. The leading contemporary candidate is an extension of the 0.632 bootstrap and associated error analysis, as

opposed to the more commonly used cross-validation.

Index Terms—Pattern recognition, classifier design and evaluation, discriminant analysis, ROC analysis, components-of-variance

models, bootstrap methods.
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1 INTRODUCTION

THEconventional wisdom in the field of statistical pattern
recognition (SPR) regarding the uncertainties in esti-

mates of the performance of classifiers trained and tested
with a finite number of samples may be summarized as
follows: The bias of measures of performance comes only
from the finite size of the training sample; the sampling
variance (and, thus, the error bars) of these measures comes
mainly from the finite number of test samples [1, p. 218].
The validity of this wisdom regarding the bias of accuracy
measures is well-established [1], [2], [3], [4], [5], [6], [7]. The
purpose of this paper is to investigate the issue of the
variance using a general multivariate statistical model.

Analysis of the variability in estimates of the perfor-
mance of classifiers trained and tested with a finite number
of samples has been provided by Fukunaga and Hayes [2],
[3] and extensive reviews of the problem have been given
by Fukunaga [1], Raudys and Jain [4], and Jain et al. [5],
with further elaboration by Raudys [6]. The focus of this
analysis was on the case where only a single classifier is
under evaluation. In this paper, we provide a more general
treatment for the case of either a single or of two competing
classifiers. We shall see in the light of the present work that
some previous summary rules of thumb regarding the
variability of estimates have only a narrow range of
applicability.

Results of any statistical assessmentmust be accompanied

by a statement of the level of “generalizability” of the results.

Wedefine the levelsof generalizability in thecontext ofSPRas

follows: If performance is estimated in such a way that the

effect of the finite number of test samples is explicitly

accounted for in the analysis but not the effect of the finite

number of training samples, one says that performance

estimates “generalize only to a population of testers.” The

meananderrorbarsobtainedfromsuchanalysisareestimates

of the range of performance expected if the experiment is

repeatedmany times, drawing independently fromapopula-

tion of testers on each replication but without varying the

training. If performance is estimated in such a way that the

finite number of training samples aswell as the finite number

of test samples is accounted for in the analysis, one says that

performance estimates “generalize to a population of trainers

and a population of testers.” The uncertainties are then

estimates of the range of performance expected if the

experiment is repeated many times, each time drawing

independently fromapopulationof trainers aswell as testers.
An analogous problem and set of issues have been the

subject of contemporary research in the field of medical

imaging [8], [9], [10], [11]. This problem gave rise to the

development of the field of random-effects (or multivariate)

receiver operating characteristic analysis. In the next section,

we will provide the general random-effects model for the

context of SPR. In following sections, we analyze several

problems that display the general structure of this problem

and compare the results with previous expectations. The

results have implications for themethods of resampling used

in uncertainty analysis in SPR that we discuss in the

concluding section.
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2 RANDOM-EFFECTS ROC ANALYSIS

Receiver operating characteristic (ROC) analysis (or simply
“operating characteristic” analysis [1]) is a general approach
to the assessment of systems for binary classification, i.e.,
where the task is to assign a sample to one of two classes
which, for definiteness, we shall refer to as the abnormal
versus the normal class [12], [13].1 The ROC curve describes
the trade off between the true-positive fraction (TPF), i.e.,
the percent correct on the actually abnormal cases, and the
false-positive fraction (FPF), i.e., the percent incorrect on the
actually normal cases. The normalization of these fractions
makes them independent of the prevalence of actually
abnormal or actually normal cases; thus, the ROC curve
itself—in contrast to measures such as probability of
misclassification (PMC [1], [2], [3])—is also independent
of these prevalences. The commonly used summary
measures of ROC performance include the area under the
entire ROC curve (i.e., the TPF averaged over all FPFs) [12]
and also the partial areas under the portions of the curve
above a specified TPF or below a specified FPF [14].
Although we shall use the total area to exemplify the
approach in this paper, the statistical structure of the
problem considered here does not change if partial areas are
considered or if the TPF at a given FPF (or vice versa) or
even PMC is considered. There is a rich literature on
estimation of ROC measures of accuracy and their
uncertainties (reviewed in [8], [12], [13], [15]) and validated
software for these tasks is available on the Web [16].

2.1 The General Random-Effects Model

Random-effects (ormultivariate)ROCanalysis is a solution to
the assessment problem when multiple random effects
contribute to the uncertainty in performance analysis. It has
become the contemporary standard in medical imaging
assessment where two obvious random effects are those
due to the variability in difficulty and finite sampling of
patient cases or images and the variability due to the range of
skill of the readers of images. Note for our present purposes
that (aside from subjective factors) the variability of reader
skill in imaging follows from the limitation and variability of
their finite training. The problem in SPR is thus in one-to-one
correspondence with that in imaging. In SPR, the random
effects are those due to the variability in difficulty and finite
sample of the test cases and the variability due to the range of
difficulty and finite sample of the training cases. It might
seem that the presence of two randomeffectswould require a
model of uncertainty with two terms. However, even for the
task of assessing a single classifier, the most general model
requires three terms. This follows since it is necessary to allow
for the possibility that the range of difficulty of the test cases
maydependon the range of difficulty of the training cases—a
so-called “interaction” effect or cross-term.When comparing
two classifiers, it is also necessary to include the interactions
of the previous three effects across classifiers, leading to the
requirement for amodelwith six terms thatwe nowdescribe.

Themodel we discuss here is referred to as a components-
of-variance model [17]. The indexing of variables and their

interactions in the model is the most general one for the
problem of random effects of training and testing and the
fixed effects of competing classifier architectures. The model
contains all terms with one, two, or three indices relevant to
this problem. For any specified accuracy measure from those
listed in Section 1, denoted here generically as A, the model
can be written for the SPR problem as (compare [8], [9], [17]):

Aijk ¼ �i þ ðtrÞj þ ðtsÞk þ ðtr�tsÞjkþ
ðm�trÞij þ ðm�tsÞik þ ðm�tr�tsÞijk:

ð1Þ

Here, i indicates a particular classification algorithm, j
denotes a particular sample training set, and k is a particular
sample test set. The term �i represents the contribution of
classifier i to the expected value of the accuracy index, while
the remaining terms are independent zero-mean random
variables—referred to as components of variance. (N.B., No
assumptions of normality are required for the approach of [9]
that we follow here.) The terms with a single index are the
pure training-sample and pure testing-sample contributions
to the variability, with variances �2tr and �2

ts, respectively. The
terms with two subscripts represent two-way interactions
between training and test set, classifier and training set, and
classifier and test set, with variances �2

tr�ts, �
2
m�tr, and �2

m�ts,
respectively. (The letterm comes from the imaging literature
where it stands for modality, modality here being the
classifier.) The term with three subscripts represents the
three-way interaction among classifier, training set, and test
set, with variance �2m�tr�ts. There are then six components of
variance in this general model.

The magnitudes of the components of variance can be
understood as follows: The variance strength �2

tr reflects the
range of training case difficulty and the finite size of the
trainingcase set. Thevariance strength�2ts reflects the rangeof
test case difficulty and the finite size of the test case sample.
The variance strength for the training-test interaction, �2

tr�ts, is
high (or low)dependingonwhether the sampled rangeof test
case difficulty depends strongly (or weakly) on the training
case difficulty (or vice versa, by the symmetry of this term).
Thecomponentsofvariancemeasuredbythese threevariance
strengths in the model are perfectly correlated across the
classification algorithms or modalities under comparison
since these components have no index formodality (i.e., they
are unchanged across modalities). The strengths of the
remaining three components of variance—�2m�tr, �

2
m�ts, and

�2m�tr�ts—correspond to analogous components that are com-
pletelyuncorrelated across classifiers in themodel since these
componentshavean indexformodality.The fact that thereare
contributions that are correlated and uncorrelated across
classifiers allows for a flexible correlation structure depend-
ing on their relative strengths.

Beiden, Wagner, and Campbell (BWC) pointed out that,
for the analogous random-effects problem in imaging [9], it is
possible in principle to perform a family of six different
experiments on the population of readers and patients that
will allow one to solve for the strengths of the six model
variance components. Their approach translates to an
analogous set of experiments that are possible in principle
for the SPR problem. In SPR, one may intend to draw both
testers and trainers randomly on replication of the experi-
ment; in this case, testers and trainers are said to be random
effects. Or, one may intend to hold trainers fixed and draw
testers randomly on replication of the experiment; in that
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1. Rigorous generalization of the ROC paradigm to the problem of three
(or more) classes is greatly complicated by the fact that six (or more)
independent measures and their mutual trade-offs must be analyzed. A
general approach to this problem has eluded investigators for many decades;
the default condition has been to reduce the more general problem to a series
of two-class problems (i.e., one class at a time versus all of the others).



case, trainers are said to be a fixed effect and testers are said to
be a random effect. One may look at one classification
algorithm at a time or one may consider the difference in
performance between two competing classifiers—with trai-
ners fixed or random. Different (unobservable) model
variance components contribute to the (observable) experi-
mental variances, depending on the experiment. A well-
conditioned system of six linear equations describes these
experiments (see [9], translated into the SPR paradigm for
completeness in Appendix 1) and can be directly inverted to
yield the model variance components from the six observed
variances. In the practical world of a finite set of available
samples, BWC replace the population experiments with
bootstrap resampling [18] of the finite data set, obtain
bootstrap estimates of the six observable variances, and then
obtain finite-sample estimates of the six model variance
components by solving the system of equations. The
approach yields distribution-free maximum-likelihood esti-
mates in the sense of Efron and Tibshirani [18]. The finite-
sample uncertainties in these estimates of the model
variances may then be obtained using the technique of the
jackknife-after-bootstrap [11], [18]. (Appendix 2 contains an
application of the technique as a crosscheck on the work
presented below.)

2.2 Monte Carlo Simulations

To obtain insight into the structure of the random-effects
problem in the context of statistical pattern recognition, we
analyze the following construct: We suppose that we have
many institutions, each with it’s own independent set of
training samples. (Thus, the institutions are analogous to
readers in imaging.) For tractability, we limit our simula-
tions to 10 institutions. We suppose that each institution
designs two competing classifiers using its own training
patients. For our simulations and to simplify the interpreta-
tion of results, we consider the special case where the two
classifiers are constrained to have the same architecture
across institutions. Finally, we suppose that some outside
institution has provided a single independent set of test
samples to be classified by each of the training institutions.
(Variations on this experimental paradigm are possible; the
present one has been found to be the most statistically
powerful for probing the variables of interest here.) We
perform 300 Monte Carlo simulation trials of this exercise
for a number of simple but very instructive problems in
which it is desired to compare competing classifiers. We
solve for the strengths of the six components of variance
using methods developed for the imaging problem and
adapted to the SPR problem in Appendix 1.

2.3 The Tasks and the Classifiers

The problems selected for the present analysis were chosen
because they bracket a range of practical problems in our
subfield of statistical pattern recognition, namely, computer-
aided diagnosis (CADx) in medicine. All of the problems
used a feature space of nine-dimensions, with the features
taken to be independent and normally distributed. Although
theparameters chosen for thepresent analysis are inspiredby
contemporary problems in the CADx field, we emphasize
that the approach and model are completely general.

We studied two levels of mean class separability: mean
ROC areas equal to 0.88 and 0.76, corresponding to signal-to-
noise ratios or so-called detectability indexes, d0, of 1.66 and

1.0, respectively. (The quantity d0 (squared) is equivalent to
the Mahalanobis distance (squared) [6].) Roughly speaking,
the formervaluemightbe considered typical ofmatureCADx
modalities, the latter more typical of research work in that
field. Competing classifiers in this work had comparable
performance in the mean. (The “donut” problem below was
an exception.) Our focus here is on the components of
variance.

We considered the cases where a total of 125, 250, 375, or
500 samples were available for each of the two classes. The
lower half of this range corresponds to typical values
available in the CADx community. The larger numbers were
included to discover the dependence of the results on sample
numbers. We made the ratio of training samples to test
samples equal to 4:1 (but scaling lawsdeducedbelowprovide
broader coverage). For example, the 125werepartitioned into
100 and 25, i.e., each institution provided its own indepen-
dent training set of 100normal and100 abnormal cases andan
independent outside group provided the common test set
comprised of 25 normal and 25 abnormal cases (and similarly
for the other total values called out above). Since the test
sampleswere always independent from the training samples,
we have what one could call a multi-institutional version of
the holdoutmethod [1].

We simulated three different tasks that bracket a range of
practical problems in CADx (see [19] for formal definitions
of classifiers):

. Task 1. The naive Bayes classifier versus the nine- (or
19-) nearest-neighbor classifier for linearly separable
data.

. Task 2. The naive Bayes classifier versus the
quadratic discriminant for linearly separable data.

. Task 3. The linear classifier versus the quadratic
discriminant for the so-called “donut” problemwhere
the means of the two classes are identical but the
variance of one class is greater than that of the other
class; thus, for this task, there is no linear separability
of the data but there is separability with the quadratic
classifier.

In all of the experiments (except the “donut” problem), the
distribution of the “normal” class is centered at the multi-
variate zero and that of the “abnormal” class at the multi-
variate unity. The value of d0 ¼ 1:0 (alternatively, 1.66) is
obtained by setting the population covariancematrix for each
class to be diagonalwith all elements equal to 9 (alternatively,
3.266). For the “donut” task, bothdistributions are centered at
the origin; the covariance matrices are taken to be propor-
tional to the identity matrix, with the ratio between
proportionalities of 2.7. For this problem, the mean area
under the ROC curve for the linear classifier is 0.5 (guessing)
and for the quadratic classifier is 0.9.

For each task, both classifiers were trained at the “10 in-
stitutions”with their own independent training sets and then
tested on the common test set as above. On eachMonte Carlo
trial, the BWC analysis was run to obtain estimates of the six
variancecomponents. In thenextsection,wepresent themean
estimates,� one standard deviation over the 300 trials.

3 RESULTS

In Fig. 1, we present the results for Task 1 with nine nearest
neighbors (9-NN), d0 ¼ 1:66, and 125 patients per class. For
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this example, the variance strengths are seen to be dominated
by the finite-test-set component (TS), i.e., the component due
to the range of difficulty of the test samples and the finite-test-
sample size. (Capital letters are used in the figures to label the
variance strength of the corresponding lower-case compo-
nent.) Recall that, if we are interested in the assessment of the
classifiers one at a time, all six of the components of variance
in the figure contribute according to the general linearmodel
[8], [9]. Thus, we see here an example of the conventional
wisdom that the sampling variance is dominated by the finite
test sample [1]. Note, however, that the test-sample size is
very small in this example (25 per class).Wewill return to this
issue below.

When one is interested in comparing the performance of
two competing classifiers, however, it is only the so-called
modality-interaction components—the last three in the
figure—that contribute uncertainty in the general model
because these are the only components that are independent
across classifiers [8], [9]; this is formalized in the subscript
notation with the presence of the classifier index i in (1). (The
first three components are identical across classifiers and,
thus, do not add randomness to the task of seeing a difference
between them.)

We see in the figure that the modality-by-test-set compo-
nent (M� TS)—i.e., the part of the test-case-sample variance
that is uncorrelated across algorithms—is negligible for this
task. It is only the modality-by-training-set (M� TR) and
modality-by-training-by-test-setcomponents(M� TR� TS)
that contribute.We thus see that the limitationof the finite size
of the training sample clearly dominates that of the finite size
of the testing sample for the task of comparing classifiers.
Although this seems intuitively reasonable or even obvious,
we have not found previous observations concerning this
critical point in the literature.

Most investigators simply study the case where the
training set is a fixed effect, i.e., the same trainers are to be
used on replications of the experiment. The analysis of such
an experiment yields results that are only generalizable to a
populationof testers for a given fixed training set. In that case,
the TR and M� TR components are not sampled and are
effectively treated as zero. The example above demonstrates
that uncertainties obtained in that paradigm can greatly
underestimate the uncertainties expected in themore general
experiment in which trainers are also a random effect.

This exercisewas for the casewhere the number of trainers
was four times the number of testers. The case where the

number of testers is increased to be equal to the number of
trainers—holding the latter fixed—will be examined below.

Wenext lookatTask1above for thecasewhere the intrinsic
class separability is only modest (d0 ¼ 1:0, mean ROC area =
0.76); the results are shown in Fig. 2 and we now see a more
elaborate picture. For the problem of assessing an individual
classifier—where all six components contribute—the predo-
minance of the finite-test-set component (TS) has almost
disappeared. It now shares the spotlight with several other
components. In this case, the conventional wisdom that the
variance is due mainly to the finite test set fails again.

For the problem of comparing the two competing
classifiers—where only the last three components of
variance are relevant—we see the same qualitative structure
as we saw above for the case of greater class separability,
but now with greater variance strength as expected because
of the lower signal-to-noise. Variability in the finite test set
is again not the dominant contribution to the masking of the
difference between competing classifiers.

Similar resultswere found for Task 2 and alsowhenTask 1
was repeatedwith 19 rather than nine nearest neighbors. The
major differences between Tasks 1 and 2 will be recorded
below in the section on scaling of results. Further details and
many more examples are available in a technical report [20].

Task3—the“donut”problemwithparametersasabove—-
provides an interesting variation on the above theme. Here,
we compared the linear with the quadratic classifier. The
former offers no class separability for this configuration,
whereas the latter is the appropriate Bayes classifier. We
present the results in Fig. 3. The roles played by the pure test-
set and the modality-by-test-set components have now
reversed, compared to the examples in Figs. 1 and 2. Now,
there is no strength in the pure test-set component, whereas
the modality-by-test-set component carries significant
strength. Thismeans the component of variancedue to testers
is completely uncorrelated across modalities—which might
have been expected since the linear classifier is essentially
guessing with this task, whereas the quadratic classifier has
the optimal strategy. The two rightmost of the uncorrelated
components of variance across modalities have comparable
strength. Again, the finite test sample does not dominate the
variance analysis for this problem. Although this is an
extreme example, it sheds light on the practical problem
where onedoesnot in fact knowwhat the optimal classifier is.
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Fig. 1. Mean (� standard deviation over 300 Monte Carlo trials) variance

strength of the six variance components for Task 1, naive Bayes versus

9-NN, d0 ¼ 1:66, Ntrain ¼ 100 per class, Ntest ¼ 25 per class.

Fig. 2. Mean (� standard deviation over 300 Monte Carlo trials) variance

strength of the six variance components for Task 1, naive Bayes versus

9-NN, d0 ¼ 1:0, Ntrain ¼ 100 per class, Ntest ¼ 25 per class.



3.1 Dependence on Sample Numbers

We have studied the scaling of all of the above results as a
function of the number of trainers per class, Ntrain, and the
number of testers per class, Ntest. In Fig. 4, we show the
dependence of the six variance components on the inverse
of Ntrain for Task 2 with d0 ¼ 1:66. In Fig. 5, we show the
dependence of these components on the inverse of N2

train.
Since Ntrain and Ntest were made proportional to each other
in the present work, the power-law dependence of curves in
these figures includes the effect of both Ntrain and Ntest.
Fig. 4 shows that only the pure test-set component and the
modality-by-test-set component (the latter trivially zero
here) exhibit a linear dependence on the number of
samples. Fig. 5 shows that the remaining four components
exhibit an approximately quadratic dependence on the
number of samples. We note that the error bars in these
figures (as in Figs. 1, 2, and 3) are standard deviations over
the 300 Monte Carlo trials. Thus, the mean values shown in
those figures are known approximately to within those
error bars diminished by the root of 300. The mean
dependences indicated by the lines therefore have very
little uncertainty.

These dependences are interpreted as the dominant
lowest-order Taylor series terms in an expansion of the total
variance in twovariables,Ntrain andNtest.Apriori, onewould
expect the TR, TS, M� TR, and M� TS terms to have the
inverse linear dependences on the appropriate sample
numbers that are typical of variances in statistical estimation
theory because they contain a single random variable; the
TR� TS andM� TR� TS termswould be expected to have
inverse quadratic dependences because they contain two
random variables—which scale together in the present
simulations. Fukunaga and Hayes [1], [2], [3] have pointed
out, however, that the first-order term in the numbers of
trainers—realized here by the TR and M� TR terms—goes
to zero for the case of Bayes classifiers with normally
distributed data; for those cases, the leading terms are then
quadratic in the number of trainers. This is consistent with
whatweobserve inFig. 5when comparing twoclassifiers that
are both approximations to the Bayes classifier for Task 2.We
note that it is this quadratic dependence on the number of
trainers that has provided the basis for the conventional
wisdom that the contribution of the finite training sample to
the variance is small. That wisdom ignores departures from

its assumptions and the relative strengths of the Taylor terms

that then result.
We exhibit a summary of the scaling behavior of the mean

results observed in our simulations for Tasks 1 and 2 in

Table 1. (For Task 1, the number of nearest neighbors was

made to scale with the overall sample size.) The scaling did

not reduce to a single term for those training-sample-related

termsmarkedwith an asterisk (�) as the class separabilitywas

reduced from d0 ¼ 1:66 to d0 ¼ 1:0. The dominant behavior is

quadratic at the higher signal-to-noise, but admixture of a

linear contribution begins to emerge as the signal-to-noise

decreases; this is manifested by roughly three-fold as

opposed to four-fold scaling as the sample numbers are

changed by a factor two. Thus, a single Taylor term is, in

general, insufficient to describe those training-set-related

terms, as foreshadowed by the analysis of [1], [2], [3].
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Fig. 3. Mean (� standard deviation over 300 Monte Carlo trials) variance

strengthof the six variancecomponents for Task3, linear versusquadratic

discriminant, equal class means, variance of abnormal class = 2.7 �
variance of normal class, Ntrain ¼ 100 per class, Ntest ¼ 25 per class.

Fig. 4. Mean (� standard deviation over 300 Monte Carlo trials) variance
strength versus 1=Ntrain for naive Bayes versus quadratic discriminant,
d0 ¼ 1:66. Test-set component TS (and M� TS component which is
zero) is consistent with this linear dependence; all others are
inconsistent (cf. Fig. 5). (Note that Ntrain and Ntest are proportional for
these simulations.) Component labels as in other figures.

Fig. 5. Mean (� standard deviation over 300 Monte Carlo trials) variance
strength versus 1=N2

train for naive Bayes versus quadratic discriminant,
d0 ¼ 1:66. Test-set component TS is inconsistent with this dependence
(also M� TS which is zero); all others are consistent with a quadratic
dependence (cf. Fig. 4). (Note that Ntrain and Ntest are proportional for
these simulations.) Component labels as in other figures.



The scaling forTask 3departs from thepattern exhibited in
Table 1 mainly in that the M� TR� TS term now scales
linearly (rather than quadratically) for the several cases we
have studied, while the TR� TS term scales closer to a
quadratic dependence; the same behavior was observed,
respectively, for the M� TR and TR terms. Thus, as the
number of samples increases, the uncorrelated-across-mod-
alities M� TR� TS and M� TR terms will dominate their
correlated-across-modalities counterparts (TR� TS and
TR). This is consistent with the fact that the training of a
classifier that is essentially guessing decorrelates asymptoti-
cally from the trainingof anoptimal one. Finally,wenote that,
for all tasks and parameters we have investigated, the
dependence of the TS and M� TS terms is unambiguously
linear in the inverse of the number of testers, as expected.

Since the scaling law for test-set contributions is always
inverse-linear, we can use this law to generate good estimates
of the mean results for situations other than the four-to-one
ratio between trainers and testers considered above. In
particular, if we are interested in the case where the number
of testers is increased to be equal to the number of trainers,we
can reduce by a factor four all of the test-set (TS containing)
contributions in theprevious analysisdisplayed inFig. 1. This
simple operation can be carried out by inspection of themean
results in that figure to obtain expected results when
100 trainers and 100 testers per class are used. It is then
readily appreciated that almost all of the variability would
come fromthe finite sizeof the training set for that case. So, the
conventional wisdomwould also be greatlymisleading here.
The paradigm of this example has special standing because
the equality of the size of the training and test sets means the
results are effectively normalized per unit case, independent
of whether the case is a trainer or a tester.

The analysis of uncertainties in terms of components of
variancemaybeusedtodesign large trialsbasedontheresults
of smaller trials and scaling laws, as has been previously
pointed out in the imaging problem [9]. Similarly in SPR, it
may be used to design and size a database for training and
testing of competing classifiers [21], as suggested in [22].
Regarding the entries in Table 1 that show amixture of linear
and quadratic dependences (marked with the asterisk �), the
conservative approach would be to assume a linear scaling.

4 DISCUSSION AND CONCLUSIONS

We have presented here an application to the problem of
statistical pattern recognition of a general components-of-
variance model developed recently for random-effects

ROC studies in medical imaging. Our examples and analysis
show that one cannot assume that the variance of accuracy
measures comes mainly from the finite test set. This is true
only for a limited class of problems, namely: where only a
single classifier is being studied at a time,where the finite test
set is almost obviously the limiting factor due to the small test
sample size, and only at the high-performance end of the
signal-to-noise ratio scale. In that limited case, the finite-test
sample may indeed make the dominant contribution to the
varianceoroveralluncertainty in theassessment.Outsidethat
context, however, the finite-training sample contributes
comparable or greater strength to that variance. In particular,
if we are interested in comparing competing classifiers, the
contribution to theuncertainty in thedifference inperformance
from the finite test sample tends to be dominated by the
contribution fromthe finite trainingsample. In retrospect, this
result seems intuitively obvious because trainers essentially
becomepartof theclassificationalgorithm,but thispointdoes
not seem to have been remarked upon in previous literature.

There is no reason to expect that the effects observed here
will be diminished in importance as the dimensionality of the
feature space and/or the complexity of the classifier increase
beyond the examples considered here (cf. [6]). We base this
statement on the fact that the Bayes classifier can only get
more difficult to estimate. Thus, there is no evident case for
ignoring either the first-order terms in the inverse of the
number of training samples or the cross-terms in trainers and
testers [1]. Also—unless the two competing classifiers are
very similar—there will be no basis for expecting the
interaction between training samples and classifier to be
negligible. The examples analyzed in previous literature [1],
[2], [3], [4], [5], [6], [7] are not sufficiently general to address
these points. We hope to address them in further detail in
future investigations.

The conclusions here regarding the role of the finite
training sample argue for the necessity of using some form of
resampling strategy that includes training samples as well as
testing samples when assessing—and, especially, when
comparing—classifiers under conditions where generaliz-
ability to a population of training samples as well as to a
population of testing samples is desired. A counterargument
might be offered bypractitionerswho intend to “freeze” their
classifier algorithm after the initial training. However, in
practice, such an initial stance is almost always modified as
more samples become available downstream and the
classifier is modified accordingly. Thus, the contributions of
the finite training sample will always manifest themselves:
There will be more variance than expected on the basis of the
finite test set alone. We therefore close with some comments
on resampling strategies to address this issue.

The most commonly used resampling strategy for the
training and testing of classifiers in SPR is the so-called cross-
validation paradigm,where different partitionings of a given
data set into trainers and testers are considered [19], [23]. In
general, however, the conventional cross-validation ap-
proach cannot provide an estimate of uncertainty that
includes the appropriate contribution from the finite-training
set. This is clear from the limiting case of cross-validation
embodied in leave-one-out training and testing. In that case,
the training sets are almost identical and, so, the finite training
set contribution to uncertainty is essentially unsampled.
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A growing appreciation of the utility or even necessity of
using some formof the bootstrap rather than cross-validation
resampling in classifier assessment has developed over the
last decade or so [19], [24], [25], [26], [27], [28], [29] (cf. also [1],
[2], [3], [4], [5], [6]). For example, Efron compared the
bootstrapwith cross-validation and indicated that the former
has lower variability than the latter but suffers from bias [25].
At the time of the reviewbyEfron andTibshirani [18], Efron’s
version of the bootstrapknownas the 0.632 estimator [25]was
found to perform “the best among all methods,” but they
suggested that further evidence was required before making
more general recommendations. It is remarkable (and
perhaps surprising) that the focus of most of this work was
on estimation of mean performance but not of uncertainties
and the associated issues of generalizability of error bars that
are our focus here.

More recently, Efron and Tibshirani have extended the
0.632 bootstrap to what they call the 0:632þ bootstrap [28]
and have provided methods for estimating the resulting
uncertainties. We summarize the major features of the
0:632þ bootstrap here, starting with its 0.632 predecessor.
The latter is made up of two contributions: 1) performance
based on training using all of the original samples and
testing on the very same samples, the so-called “apparent
error” and 2) a bootstrap approach in which—for each
original data sample—one keeps track of classification
performance only from those bootstrap training sets that
do not contain that data sample (the “leave-one-out boot-
strap”). The 0.632 bootstrap is obtained by weighting the
apparent error by a factor 1=e and the leave-one-out
bootstrap by a factor ð1� 1=eÞ, or 0.632 (the large-sample
limit of the expected fraction of distinct original observa-
tions in a bootstrap sample). The 0:632þ bootstrap contains
one further step that involves measuring performance when
the input class labels are randomized (the no-information
case) to obtain a correction for overfitting. The overall
process reduces to the 0.632 bootstrap when there is no
overfitting and to the leave-one-out bootstrap when the
overfitting is maximum. These methods may be thought of
as generalized cross-validation [28].

From the point of view of our present work, the most
attractive feature of the more recent paper [28] is that the
authors provide a formal approach not only to estimating
mean performance but also to estimating the resulting
uncertainties—using the original bootstrap samples. Alter-
natively, a conceptually straightforward (but computation-
ally prohibitive) approach to estimating the uncertainties in
bootstrap estimates is to bootstrap the bootstrap procedure.
More practically, one can replace the second bootstrap with
the so-called jackknife-after-bootstrap procedure [11], [18]. A
lemmadue toEfronandTibshirani reduces the secondstep, in
practice, to simplya sortingof theoriginal bootstrapdata [18].

For the present, we recommend the 0:632þ bootstrap
procedure, together with the methods for estimating stan-
dard errors in [28] or the alternative of the jackknife-after-
bootstrap procedure [11], [18]. A subject for future investiga-
tion is to determine the properties of these estimates of
uncertainty and their generalizability, i.e., the connection
between such estimates of uncertainty and the general
structure of the problem uncovered in the present work.
The general picture of uncertainty analysis in the field of SPR
is thus still incomplete.

APPENDIX 1

THE MODEL EQUATIONS

The BWC approach [9] was inspired by a general analysis of
components-of-variance models due to Roe and Metz [17].
The latter authors describe a large family of population
experiments whose observed variances can be expressed as a
linear combination of a small set of common underlying but
unobserved model variance components; the particular mix
of model components depends on the experiment. BWC [9]
noted that one could solve for estimates of the underlying
model components from a finite-sample data set of the form
described in the present paper; this is done by replacing the
set of population experiments with the corresponding set of
bootstrap experiments and replacing the population var-
ianceswith bootstrapvariance estimates. Inparticular, for the
class of problems discussed in the present paper, there are six
relevant population experiments and these will be included
here for completeness. A central contribution of the Roe and
Metz analysis [17] is their unambiguous and unifying
subscript notation for the variance of an accuracy index A.
Following their scheme, subscripts to the left of the vertical
bar in the equations below refer to random effects, i.e.,
variables that aredrawn randomly from thepopulationwhen
the experiment is replicated. Subscripts to the right of the
vertical bar refer to fixed effects, i.e., variables that remain
unchanged when the experiment is replicated.

The expected variance for the experiment in which both
training samples and test samples are random but the
classifier is fixed contains all of the components in the
present model:

varðATR;TSjMÞ ¼ �2
tr þ �2

ts þ �2
tr�ts þ �2

m�tr þ �2
m�ts þ �2

m�tr�ts: ð2Þ

The expected variance for the experiment in which only
test samples are random is:

varðATSjTR;MÞ ¼ �2
ts þ �2

tr�ts þ �2
m�ts þ �2m�tr�ts: ð3Þ

That is, �2
tr and �2

m�tr do not contribute because they
correspond to fixed effects for this experiment; however,
terms that include tr with ts do contribute because the
presence of tsmakes these random effects. (See [8], [9], [17].)

The remaining four experiments are those in which a
difference in accuracy measures between competing classi-
fiers is measured:

varðATR;TSjM �ATR;TSjM 0 Þ ¼ 2ð�2m�tr þ �2m�ts þ �2
m�tr�tsÞ ð4Þ

varðATSjTR;M �ATSjTR0;MÞ ¼ 2ð�2
tr�ts þ �2

m�tr�tsÞ ð5Þ
varðATSjTR;M �ATSjTR;M 0 Þ ¼ 2ð�2m�ts þ �2

m�tr�tsÞ ð6Þ
varðATSjTR;M �ATSjTR0;M 0 Þ ¼ 2ð�2

tr�ts þ �2
m�ts þ �2

m�tr�tsÞ: ð7Þ

These include comparisons between the same (M andM)
or different (M andM 0) classifiers and between the same (TR
and TR) or different (TR and TR0) training sets. Comparison
of these results with those in the multiple-reader imaging
problem [9] shows that the two problems are isomorphic.
Bootstrap experiments are performed to obtain finite-sample
estimates of the population variances on the left-hand sides.
The system is then solved for estimates of the model
components on the right-hand sides. Estimates of uncertain-
ties in the estimates of themodel components can be obtained
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using the second-order resampling strategy of the jackknife-

after-bootstrap [11], [18].

APPENDIX 2

JACKKNIFE-AFTER-BOOTSTRAP MONTE CARLO

CHECK

Weconsider here a finite data set in the formof a singleMonte

Carlo trial in the paradigm of this paper. One can obtain

estimates of the components of variance for this data set as

discussed in the body of the paper using the family of

bootstrap experiments of Appendix 1. Onemay also estimate

theuncertainty in thoseestimatesbasedon thatdata set. This is

achieved by means of a second resampling procedure called

the jackknife-after-bootstrap [11], [18]. If one then progresses

through a series of Monte Carlo replications of this entire

exercise, one canalso explore thedistributionof the jackknife-

after-bootstrap estimates of uncertainty and perform an

overall consistency check as follows.
Figs. 1, 2, and 3 of the text displayed the mean estimates

of the variance components and the standard deviation of
these estimates over the population as represented by the
Monte Carlo trials. The standard deviations from the case of
Fig. 2 are redisplayed in Fig. 6 as the asterisks (*). Also
shown in that figure is the root of the mean over the Monte
Carlo trials of the estimate of the variance in the estimates of
the variance components obtained on individual trials using
the technique of the jackknife-after-bootstrap described in
[11], [18]. Comparing these results we see that one may
indeed obtain approximately unbiased estimates of not only
the variance components [9] but also the uncertainties in
those estimates from a data set of the kind represented by a
single Monte Carlo realization of the experiment described
in this paper. We note, however, that a great number of
bootstraps (� 25; 000) is required before the TR and
M� TR components achieve the level of convergence
shown in the figure. With only 15,000 bootstraps—the
number typically used in multiple-reader ROC studies in
medical imaging as well as the present paper—the bias was
roughly twice that shown in the figures. This exercise
provides a check on the consistency of the present work.
Further validation of the approach is provided in [9].
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