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ABSTRACT
Motivation: Multiple hypothesis testing is a common problem in
genome research, particularly in microarray experiments and gen-
omewide association studies. Failure to account for the effects
of multiple comparisons would result in an abundance of false
positive results. The Bonferroni correction and Holm’s step-down
procedure are overly conservative, whereas the permutation test is
time-consuming and is restricted to simple problems.
Results: We developed an efficient Monte Carlo approach to approx-
imating the joint distribution of the test statistics along the genome.
We then used the Monte Carlo distribution to evaluate the com-
monly used criteria for error control, such as familywise error rates
and positive false discovery rates. This approach is applicable to
any data structures and test statistics. Applications to simulated and
real data demonstrate that the proposed approach provides accur-
ate error control, and can be substantially more powerful than the
Bonferroni and Holm methods, especially when the test statistics are
highly correlated.
Contact: lin@bios.unc.edu

1 INTRODUCTION
In genome research, it is common to examine a large number of fea-
tures. For example, a microarray experiment involves the expression
levels of thousands of genes. One may be interested in detecting
genes that show differential expressions across two or more bio-
logical conditions or in relating gene expression levels to clinical
outcomes. Spurred by the sequencing of the human genome and
the advances in molecular technology, there is now a proliferation of
genomewide association studies for complex diseases, which involve
hundreds or thousands of single nucleotide polymorphisms (SNPs).
It is of great interest to determine which SNPs or SNP-based haplo-
types are associated with disease phenotypes. In these studies, a large
number of hypotheses are tested simultaneously. Even a study with a
limited number of candidate genes will involve several hypotheses.

When testing multiple hypotheses, one must guard against an
abundance of false positive results. The traditional criterion for error
control is the familywise error rate (FWER), which is the probability
of rejecting one or more true null hypotheses. The most familiar
method for controlling FWER is the Bonferroni correction. It is
widely recognized that the Bonferroni method is overly conservative.
A more liberal method is the step-down procedure proposed by Holm
(1979). However, when the number of hypotheses is large there is
little difference between the single-step and step-down procedures.

These methods are designed to control FWER for all possible data
structures and can be very conservative for the specific data at hand.

Several authors, including Westfall and Young (1993) and Ge
et al. (2003), suggested the permutation resampling approach. This
approach shuffles the phenotype values among the study subjects a
number of times so as to create permuted datasets that have only
random genotype–phenotype associations. The empirical joint dis-
tribution of the test statistics over the permuted datasets then serves
as the reference distribution for determining the threshold levels.
This approach incorporates the actual data structures into the calcu-
lations and thus tends to be less conservative than the aforementioned
analytical methods.

The permutation resampling approach has its own limitations.
First, this approach is computationally demanding since the analysis
needs to be repeated for each permuted dataset. The computation
can be prohibitive if the number of hypotheses is large and the cal-
culation of each test statistic is time-consuming. More importantly,
this approach requires complete exchangeability under the null hypo-
thesis and thus may not be applicable when there are covariates or
nuisance parameters. In particular, the permutation distribution may
not be appropriate when the analysis involves covariates (e.g. disease
stage) that are correlated with both the genotype and phenotype, as
will be demonstrated in the sequel.

An alternative criterion for error control is the false discovery
rate (FDR), which is the expected proportion of falsely rejected
hypotheses. This error rate is equal to FWER when all null hypo-
theses are true but is smaller otherwise. Benjamini and Hochberg
(1995) proposed a step-down procedure to control FDR for independ-
ent test statistics. Benjamini and Yekutieli (2001) showed that the
Benjamini–Hochberg procedure controls FDR for certain depend-
ence structures. They proposed a simple, but highly conservative
modification to control FDR under arbitrary dependence. Storey
(2002) and Storey and Tibshirani (2003) argued that it is more appro-
priate to consider the positive FDR (pFDR), which is the conditional
expectation of the proportion of falsely rejected hypotheses given
that at least one hypothesis is rejected. These authors showed how
to directly calculate FDR and pFDR for independent test statistics.
Storey and Tibshirani (2001) and Ge et al. (2003) used the permuta-
tion resampling approach to calculate FDR and pFDR for potentially
dependent statistics. As mentioned above, the permutation approach
has its important limitations.

In this paper, we develop a Monte Carlo procedure to approxim-
ate the joint distribution of the test statistics and then use the Monte
Carlo distribution to evaluate the error rates, including FWER and
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pFDR. Since the Monte Carlo procedure incorporates the actual joint
distribution of the test statistics into the calculations, this approach
provides an accurate error control. This approach removes the afore-
mentioned drawbacks in the permutation approach. First, it does
not involve repeated analyses of simulated datasets and is thus com-
putationally less demanding. Second, it does not require complete
exchangeability and is thus widely applicable.

2 METHODS

2.1 Familywise error rates
Suppose that we are interested in testing m hypotheses H1, . . . , Hm. We
denote the corresponding p-values by p1, . . . , pm. FWER is the probability
of rejecting at least one true hypothesis:

FWER = Pr(rejecting at least one Hj ,

j = j1, . . . , jt |Hj1 , . . . , Hjt are true).

A simultaneous test procedure is said to control the FWER at α if FWER ≤ α

regardless of which subset {j1, . . . , jt } of hypotheses is true.
The simplest approach is the single-step Bonferroni procedure, which

rejects hypothesis Hj if the p-value pj is less than α/m. Since the probability
of rejecting at least one hypothesis is less than the sum of the probabilities of
rejecting m hypotheses, the Bonferroni correction is conservative.

Some improvements can be made by employing a step-down procedure.
Let p(1) ≤ p(2) ≤ · · · ≤ p(m) be the ordered p-values, and H(1), . . . , H(m)

be the corresponding hypotheses. We first test H(1) using the Bonferroni
threshold α/m. Once H(1) is rejected, we should believe that H(1) is false.
Then there are only (m − 1) hypotheses which may be true, implying
the threshold α/(m − 1) for H(2). If H(1) and H(2) are rejected, we use
α/(m − 2) for H(3) and so on. In general, we reject H(j), j = 1, 2, . . . ,
if p(j) ≤ α/(m − j + 1) provided that H(1), . . . , H(j−1) have been tested
and rejected. Holm (1979) proved that this sequential rejective algorithm
indeed controls the FWER at α. Since it is based on the Bonferroni prob-
ability inequality, this step-down procedure remains conservative, and is in
fact nearly as conservative as the single-step Bonferroni procedure when m

is large.
The overall probability of rejection depends on the joint distribution of

the test statistics. In the extreme case where the m test statistics are perfectly
correlated, no adjustment should be made for multiple testing. Thus, the afore-
mentioned analytical methods, which makes no use of the joint distribution
of the test statistics, are inevitably inaccurate, and can be very conservative
when the test statistics are highly correlated. We describe below a Monte
Carlo approach that provides an accurate control of FWER by incorporating
the actual joint distribution of the test statistics into the calculations.

As shown in the Appendix section, all the commonly used statistics can
be written in the following form or can be approximated by the statistics of
the following form: for j = 1, . . . , m,

Tj = UT
j V −1

j Uj , (1)

where

Uj =
n∑

i=1

Uji ,

n is the sample size, Uji involves only the data from the i-th subject and

Vj =
n∑

i=1

UjiU
T
ji .

When hypothesis Hj holds, Uj is approximately normal with mean zero and
covariance matrix Vj in large samples, so that Tj has approximately a χ2

distribution with rj degrees of freedom, where rj is the dimension of Uj . In
general, the Uj are correlated, and so are the Tj . Suppose that Hj1 , . . . , Hjt are

the true hypotheses. Then for large samples, (Uj1 , . . . , Ujt ) is approximately
multivariate normal with mean zero and with covariance matrix

Vjk =
n∑

i=1

UjiU
T
ki

between Uj and Uk , j , k = j1, . . . , jt .
We define

Ũj =
n∑

i=1

UjiGi ,

where G1, . . . , Gn are independent standard normal random variables that
are independent of the data. Also, define

T̃j = ŨT
j V −1

j Ũj . (2)

Conditional on the data, each Ũj is a weighted sum of independent standard
normal random variables, so that (Ũj1 , . . . , Ũjt ) is a multivariate nor-
mal with mean zero and with covariance matrix Vjk between Ũj and
Ũk , j , k = j1, . . . , jt . It follows that the conditional joint distribution of
(T̃j1 , . . . , T̃jt ) given the data is approximately the same as the unconditional
joint distribution of (Tj1 , . . . , Tjt ). Thus, we can use the former distribution
to approximate the latter distribution. We obtain realizations from the distri-
bution of (T̃j1 , . . . , T̃jt ) by repeatedly generating the normal random samples
G1, . . . , Gn while holding the data at their observed values. In calculating the
Tj and T̃j , we replace the unknown parameters in the Uji with their sample
estimators.

Let t(1), . . . , t(m) be the observed values of the test statistics associated
with H(1), . . . , H(m). Our step-down procedure works as follows: starting
with hypothesis H(1), we reject H(j), j = 1, 2, . . . , if

Pr

(
max

j≤k≤m
T̃k ≥ t(j)

)
≤ α,

provided that H(1), . . . , H(j−1) have been tested and rejected. The probability
calculations are based on a large number, e.g. 10 000, realizations of the T̃j .
When m is small (<8), the numerical integration can be used instead. By
the closure principle (Marcus et al., 1976), the FWER of this procedure is
approximately α in large samples.

The p-value is the level of the test at which the null hypothesis would just
be rejected. Extending this concept to the multiple testing situation leads to
the definition of adjusted p-values. The adjusted p-value for hypothesis Hj

pertains to the smallest significance level at which Hj would be rejected by
the multiple testing procedure (Westfall and Young, 1993, p. 11). Specifically,
the FWER adjusted p-value for hypothesis Hj is

p̃j = min{α: Hj is rejected at FWER = α}.
We propose to estimate this probability by Pr(maxj≤k≤m T̃k ≥ t(j)), which
is again obtained using our Monte Carlo method. By contrast Holm’s (1979)
adjusted p-value for Hj is min{(m− j + 1)pj , 1}. The adjusted p-values are
constrained to be monotone increasing.

Unlike permutation and other resampling methods, the proposed Monte
Carlo procedure involves the simulation of normal random variables rather
than the genotype or phenotype data and does not require repeated
analyses of simulated datasets. The quantities involving the observed
data, i.e. the Uji and Vj , are calculated only once, and the evalu-
ation of the T̃j given these quantities is trivial. Thus, the proposed
approach is much less time-consuming than permutation and other res-
ampling methods. Significantly, this approach does not involve shuf-
fling of data and can thus be applied to any data structures and test
statistics.

2.2 False discovery rates
We reproduced the Table 1 of Benjamini and Hochberg (1995) below. It
is natural to define the FDR by E(R0/R), the expected proportion of
falsely rejected hypotheses among all rejected hypotheses. Different ways of
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Table 1. Frequency distribution for the hypotheses

Not rejected Rejected Total

True hypotheses W0 R0 m0

False hypotheses W1 R1 m1

Total W R m

handling the case of R = 0 result in different definitions. Setting R0/R = 0
when R = 0 yields the definition of Benjamini and Hochberg (1995):

FDR = E

{
R0

R
I(R > 0)

}
,

where I (A) indicates, by the values 1 versus 0, whether the event A occurs
or not. The pFDR (Storey, 2002) is defined as the conditional expectation of
the proportion of falsely rejected hypotheses among all rejected ones given
that at least one hypothesis is rejected

pFDR = E

{
R0

R

∣∣∣∣R > 0

}
.

Clearly, pFDR = FDR/Pr(R > 0), so that the two measures will be similar
if Pr(R > 0) is close to 1. When m is small or dependence exists, Pr(R > 0)

can be less than one, resulting in different values of FDR and pFDR.
Benjamini and Hochberg (1995) defined the following Bonferroni-type

multiple test procedure: if k is the largest j for which p(j) ≤ (j/m)q∗, then
reject all H(j), j = 1, . . . , k. This procedure controls the FDR at q∗ if the test
statistics are independent or have the so-called positive regression dependence
(Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001). Benjamini
and Yekutieli (2001) developed a highly conservative procedure to control
the FDR for arbitrarily dependent statistics.

Storey (2002) and Storey and Tibshirani (2001, 2003) proposed a direct
approach to evaluate FDRs. Suppose that we reject those hypotheses whose
p-values are less than p, then

R =
m∑

j=1

I (pj ≤ p).

Let π0 be the proportion of true hypotheses, i.e. π0 = m0/m. Storey and
Tibshirani (2001) derived the following formula:

E

(
R0

R

)
≈ π0

pm

R
. (3)

They also suggested to estimate π0 from the observed data. Let p0 be a
number between 0 and 1 such that the p-values greater than p0 correspond
mostly to the null hypotheses. A conservative estimator of π0 is

π̂0 = W(p0)

(1 − p0)m
,

where W(p0) is the number of hypotheses not rejected at level p0, i.e.

W(p0) =
m∑

j=1

I (pj > p0).

It then follows from formula (3) that FDR and pFDR can be estimated
conservatively by

F̂DRp0 (p) = W(p0)p

(1 − p0) max(R, 1)
, (4)

p̂FDRp0
(p) = F̂DRp0 (p)

Pr(R > 0)
. (5)

If the test statistics are independent, then Pr(R > 0) = 1 − (1 − p)m.
For potentially dependent test statistics, Storey and Tibshirani (2001) and

Ge et al. (2003) suggested to estimate this probability by permutation
resampling. As mentioned previously, permutation resampling has import-
ant limitations. We recommend to estimate this probability by our Monte
Carlo approach. Specifically, we generate a large number of replicates of
T̃1, . . . , T̃m. The proportion of the replicates in which there is at least one T̃j

whose p-value is less than p provides an estimator of the desired probability.
The FDR adjusted p-value for hypothesis Hj is defined as:

p̃∗
j = min{q∗: Hj is rejected at FDR = q∗},

which is estimated by minp≥pj
F̂DRp0 (p). For pFDR, we estimate the analog-

ous q-value (Storey, 2002) by minp≥pj
p̂FDRp0

(p), which is again obtained
using our Monte Carlo procedure.

3 RESULTS

3.1 Simulated microarray data
We simulated data from the following linear models with random
effects:

Yij = β0 + βjXi + ξi + εij , i = 1, . . . , n, j = 1, . . . , m,

where Yij represents the expression level of the j -th gene on the
i-th subject, Xi indicates whether the i-th subject belong to group 1
(e.g. cancer patients) or group 0 (normal subjects), βj is the group
difference for the j -th gene, ξi is the random effect for the i-th subject
and the εij are the random errors. We let the εij be independent zero-
mean normal with variance σ 2

ε , and the ξi be independent zero-mean
normal with variance σ 2

ξ , so that the correlation between any two

expression levels of the same subject is σ 2
ξ /(σ 2

ξ + σ 2
ε ). The null

hypotheses correspond to Hj : βj = 0, j = 1, . . . , m. We tested each
hypothesis by the two-sample t-statistic.

For the results shown in Figure 1, we set σ 2
ξ + σ 2

ε = 1, so that σ 2
ξ

becomes the intra-class correlation. In addition, we let n = 100 with
n/2 subjects in each of the two groups, m = 2000, β0 = 0 and

βj =
{

0 for j = 1, . . . , 1800;

0.6(j − 1800)/200 for j = 1801, . . . , 2000.

Thus, 200 out of 2000 genes are differentially expressed, the dif-
ferences ranging from 0.003 to 0.6 at the 0.003 increment. We set
the nominal or target familywise type I error at α = 0.10. The size
pertains to the actual probability of rejecting at least one true hypo-
thesis, and the power pertains to the actual probability of rejecting at
least one false hypothesis. These probabilities were estimated from
10 000 simulated datasets. For each dataset, the proposed Monte
Carlo method was based on 10 000 normal samples.

These results show that the proposed method has proper control
of FWER, whereas the Holm method is conservative and thus less
powerful, especially when the correlation is high. For the correlation
of 0.5, the Holm method has a power of 50% whereas the proposed
method has a power of 75%.

The permutation method is applicable to this two-sample problem.
Figure 2 compares the proposed and permutation methods in the
quantiles of the estimated null distribution of the supremum statistic
max1≤j≤m Tj for the first dataset generated under σ 2

ξ = 0.5. The
two distributions agree well except at the extreme tails. The 90 and
95% quantiles are 12.8 and 14.6 under the proposed method, and are
12.7 and 14.4 under the permutation method. Thus, the proposed and
permutation methods would have very similar power in this setting.
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Fig. 1. Empirical size/power of multiple testing procedures at the target
FWER of 0.10 for the simulated microarray experiments: the lower and upper
solid curves pertain to the size and power of the proposed method; the lower
and upper dashed curves pertain to the size and power of the Holm method.
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Fig. 2. The quantile–quantile plot of the estimated null distributions based
on the proposed and permutation methods for a simulated microarray experi-
ment: the vertical solid and dashed lines pertain to the 90 and 95% quantiles
of the proposed method, respectively.

3.2 Simulated SNPs data
We considered a genomewide association study that scans 50 genome
regions with 20 biallelic SNPs in each region. We assumed Hardy–
Weinberg equilibrium and set the minor allele frequency for each
SNP to be 0.3. There is a linkage equilibrium among the regions, and
a linkage disequilibrium within each region. We assumed that there
are two disease-predisposing SNPs located in the last two regions,
which have dominant genetic effects and gene–gene interactions.
Specifically, we generated disease incidences from the following
logistic model:

Pr(Yi = 1) = exp(−3 + Xi,970 + Xi,990 + Xi,970 ∗ Xi,990)

1 + exp(−3 + Xi,970 + Xi,990 + Xi,970 ∗ Xi,990)
,

i = 1, . . . , n,

where Yi indicates with the values 1 versus 0 whether the i-th subject
is diseased or disease-free, Xi,j takes the value 1 if the i-th subject has
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Fig. 3. Empirical size/power of multiple testing procedures at the target
FWER of 0.10 for the simulated SNPs data: the lower and upper solid curves
correspond to the size and power of the proposed method; the lower and upper
dashed curves correspond to the size and power of the Holm method. The
horizontal axis pertains to the linkage disequilibrium coefficient (Weir, 1996,
p. 113) between two successive loci.

one or two minor alleles of the j -th SNP and the value 0 otherwise.
The overall disease rate is ∼20%. We use the Pearson χ2-statistics
to test the null hypotheses that the SNPs are unrelated to the disease
under the dominant genetic model. We let α = 0.10.

The results are shown in Figure 3. The size pertains to the actual
probability of declaring a disease-predisposing SNP in any of the
first 48 regions, and the power pertains to the actual probability of
identifying any SNP in the last two regions. These probabilities were
estimated from 10 000 simulated datasets, each with 100 subjects.
For each dataset, the proposed Monte Carlo method was based on
10 000 normal samples.

These results show that the proposed method maintains its FWER
near the nominal level and is more powerful than the Holm method,
especially under strong linkage disequilibrium. For the pairwise link-
age disequilibrium coefficient of 0.2, the power for the Holm method
is 0.48 whereas that of the proposed method is 0.67.

3.3 Lung cancer studies
There is a growing interest in relating gene expression levels to sur-
vival and other clinical outcomes. Several such studies have been
conducted in lung cancer. The objective of the CAMDA (Critical
Assessment of Microarray Data Analysis) 2003 Conference was to
discuss ways of pooling information across these studies so as to
gain new biological insights. A paper by J. S. Morris and co-workers
was voted by the attendees and the Scientific Committee as the best
presentation in the conference. In their paper, the authors combined
the data from the Harvard and Michigan studies (Bhattacharjee et al.,
2001; Beer et al., 2002) and then assessed whether the gene expres-
sion levels provide predictive information on survival beyond clinical
variables (Morris et al., 2004). Here, we apply the proposed method
to the same data.

The expression levels for 1036 probesets are available on 200
patients, 124 from the Harvard study and 76 from the Michigan study.
Following Morris et al. (2004), we fit 1036 multivariable Cox (1972)
proportional hazards models with age, stage, institution and the log-
expression of each of the 1036 genes as predictors. We obtained the
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Table 2. Top 15 genes in the lung cancer studies

Gene identity Regression Test Unadjusted FWER p-value FDR pFDR q-value
coefficient statistic p-value Holm New p-value Storey New

ENO2; enolase 2 1.46 18.45 0.00002 0.018 0.014 0.016 0.156 0.247
RRM1; ribonucleotide reductase M1 polypeptide 1.81 15.49 0.00008 0.086 0.060 0.027 0.156 0.247
OST ; oligosaccharyltransferase −1.64 15.13 0.00010 0.103 0.070 0.027 0.156 0.247
DDX3; DEAD/H box polypeptide 3 −2.37 14.72 0.00012 0.129 0.084 0.027 0.156 0.247
FCGRT ; Fc fragment of IgG receptor −2.06 14.41 0.00015 0.151 0.097 0.027 0.156 0.247
Similar to phosphoglycerate mutase 1 1.92 13.76 0.00021 0.214 0.128 0.032 0.156 0.247
CPE; carboxypeptidase E 0.72 11.95 0.00055 0.563 0.268 0.072 0.156 0.253
TBCE; tubulin-specific chaperone e −2.35 11.50 0.00070 0.716 0.315 0.080 0.156 0.253
STK25; serine/threonine kinase 25 2.29 10.05 0.00152 1.000 0.506 0.142 0.178 0.271
ATIC; IMP cyclohydrolase 1.80 10.03 0.00154 1.000 0.509 0.142 0.178 0.271
TPS1; tryptase, alpha −0.64 9.40 0.00217 1.000 0.602 0.173 0.188 0.271
CLU; clusterin −0.52 9.23 0.00238 1.000 0.628 0.173 0.188 0.271
FSCN1; fascin homolog 1, actin-bundling protein 0.66 9.18 0.00244 1.000 0.635 0.173 0.188 0.271
BZW1; basic leucine zipper and W2 domains 1 1.33 8.89 0.00286 1.000 0.678 0.188 0.198 0.273
PFN2; profilin 2 0.63 8.50 0.00355 1.000 0.736 0.218 0.223 0.273

The regression coefficient pertains to the log hazard ratio. A negative coefficient indicates that survival is improved with a larger expression level of the gene. The test statistic is
based on the likelihood ratio. For the FWER adjusted p-values and the pFDR q-values, the results under the new method are based on the simulation of 100 000 normal samples.

Table 3. Numbers of genes significantly related to survival according to the Holm and proposed methods of controlling FWER

Method FWER
0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Holm 1 2 4 5 6 6 6 7 7 8 8 8
Proposed 1 5 6 6 7 8 8 10 14 18 27 1036

p-value for each gene by the likelihood ratio statistic. The results
for the 15 most significant genes are shown in Table 2. Morris et al.
(2004) provided a good description on these genes.

Morris et al. (2004) obtained somewhat different p-values by ran-
domly permuting the gene expression values across the subjects while
keeping the clinical variables fixed. This strategy is likely to inflate
the type I error because the gene expression levels and stage are
correlated. It would be even more problematic to permute the data
without fixing the clinical variables because the clinical variables
are related to survival. Another potential problem is that censoring
may be related to clinical variables and possibly to gene expression
levels. This example amplifies the point made earlier that it may not
be possible to obtain a suitable permutation distribution when the
analysis involves covariates or nuisance parameters.

The results for the FWER analysis are summarized in Tables 2
and 3. The adjusted p-values are considerably smaller under the
proposed method than under the Holm method. One would declare
more significant genes using the proposed method than by using the
Holm method. At the target FWER of 10%, for instance, the proposed
method would identify five genes, whereas the Holm method would
only identify two.

Figure 4 shows the distribution of the 1036 p-values. The histo-
gram looks fairly flat for p-values greater than 0.4, which indicates
that there are mostly null p-values in this region. The estimates of π0

are ∼0.9 based on p0 > 0.4. Using the estimate of 0.9, we obtained
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Fig. 4. Density histogram of the 1036 p-values from the lung cancer data.

the estimated FDR and pFDR shown in Figure 5. The corresponding
FDR adjusted p-values and pFDR q-values are presented in Table 2.
When R is small, the proposed method, which accounts for the
dependence of the test statistics, provides considerably smaller estim-
ates of Pr(R > 0) than what would be expected under independence,
and thus yields appreciably higher estimates of pFDR. When R is
large, Pr(R > 0) is close to 1, so that the estimates under dependence
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Fig. 5. Estimates of FDR and pFDR for the lung cancer studies: the dotted
curve pertains to FDR, the dashed curves to pFDR based on Storey’s method,
and the solid curve to pFDR based on the proposed method.

and under independence are similar to each other and to the
estimated FDR.

As shown in Table 2, the estimated FDR adjusted p-values
are smaller than their FWER counterparts, although the proposed
method yields a slightly smaller value for the first gene. One would
declare 8 significant genes at the FDR of 0.1 and 14 significant genes
at the FDR of 0.2. Using Storey’s (2002) method, one would also
identify the 14 genes at the pFDR of 0.2, but none at the pFDR of 0.15
or less. If the dependence of the test statistics is taken into account,
then no gene would be declared significant at the pFDR of 0.2 or
less, although six would be at the pFDR of 0.25.

4 DISCUSSION
We have developed an efficient Monte Carlo approach to evalu-
ate error rates for arbitrary test statistics in genome studies. This
approach is computationally less demanding than the permutation
and other resampling methods and is applicable to more general data
structures. Our approach requires a reasonably large sample size. We
do not consider this as a serious limitation because properly powered
association studies will enroll at least several hundred subjects and
even the microarray experiments that are conducted nowadays tend
to involve more than 100 subjects. If the sample size is indeed small,
then it may be more appropriate to use the permutation test.

Our approach provides accurate control of FWER. It is difficult
to accurately control FDR and pFDR for two reasons. First, there
are sampling variations associated with the estimators of these error
rates. (The Monte Carlo error can be made negligible by using a large
number of replicates.) Second, formula (3) tends to be too conservat-
ive for dependent test statistics. Unfortunately, there does not exist a
better approximation. When the vast majority of the null hypotheses
are true, as would be the case in association studies, we recommend
the use of FWER. It is particularly desirable to use FWER for can-
didate genes and other confirmatory studies. For studies involving a
large number of false null hypotheses, it may be more appealing to
use FDR and pFDR.

In association studies, it is useful to assess the effects of SNP-based
haplotypes on disease phenotypes. When there are a large number
of SNPs, one possible approach is to use the moving windows of

5–10 SNPs and test for the haplotype-disease association in each
window. Since all but one SNPs are common between two adjacent
windows, the test statistics tend to be highly correlated. In such
situations, it would be wise to use the proposed approach rather than
the Bonferroni-type correction since the latter would be extremely
conservative.

The asymptotic theory presented in the Appendix section assumes
that m is fixed and n → ∞. Such an asymptotic theory may not work
well when m � n. Our simulation studies show that the proposed
asymptotic approximations yield proper control of FWER for com-
monly used statistics when n > 100 and m is a few hundreds to a
few thousands. Further theoretical and numerical investigations are
warranted.

We have focused on two-sided tests so far. It is trivial to modify the
formulas to handle one-sided tests for scalar statistics (i.e. rj = 1 for
all j ). If the Uj s are multidimensional, then formulas (1) and (2) will
need to changed considerably. Since this is not a common situation,
we omit the details here.

It is customary to conduct genomewide linkage analysis, in which a
large number of genetic markers are measured and in which possible
genetic linkage is tested at all possible positions along the genome.
The proposed approach can be applied to this setting, although ‘sub-
ject’ now corresponds to ‘family’ and the test statistics are typically
one-sided (Lin and Zou, 2004).

Zaykin et al. (2002) developed the truncated product method that
combines evidence from all the tests whose significance exceeds
certain threshold. Dudbridge and Koeleman (2003) considered a
complementary strategy by forming the product of the K most sig-
nificant p-values and demonstrated its advantages in genomewide
association scans. They suggested to use the permutation test to
adjust for the dependence of the test statistics. We can use the
proposed Monte Carlo approach to combine evidence from the
correlated test statistics in an accurate and flexible manner.
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APPENDIX: SOME THEORETICAL DETAILS
All the commonly used statistics are related to the score statistics
under parametric or semiparametric regression models. For example,
the two-sample t-statistic and the Pearson χ2 statistic used in the sim-
ulation studies correspond to the score statistics under the normal

linear model and logistic regression model with a binary predictor,
while the likelihood ratio statistic used in the lung cancer studies
is asymptotically equivalent to the (partial-likelihood) score stat-
istic for testing one parameter in the presence of other (nuisance)
parameters under the semiparametric proportional hazards model
(Cox, 1972).

LetUj be the efficient score function forβj . In the presence of nuis-
ance parameters, the efficient score function is the projection of the
score function for βj on the orthocomplement of the space of the
score functions for the nuisance parameters (Bickel et al., 1993,
p. 30). For a random sample of n subjects,

Uj =
n∑

i=1

Uji , (A1)

where Uji involves the data from the i-th subject only. For parametric
models, the expressions for Uji can be found in mathematical stat-
istics texts (Bickel et al., 1993, p. 28). For the proportional hazards
model, the expressions are given by Lin and Wei (1989). For the Wil-
coxon statistics with potentially censored outcomes, the expressions
can be found from Wei and Lachin (1984).

We are interested in testing the hypotheses Hj : βj = β0j ,
j = 1, . . . , m, where β0j is zero or some other null value. Sup-
pose that hypotheses Hj1 , . . . , Hjt

are true. In view of Equation (A1),
the multivariate central limit theorem implies that the random vec-
tor n−1/2(Uj1 , . . . , Ujt

) is asymptotically multivariate normal with
mean 0 and with the limit of n−1 ∑

i UjiU
T
ki as the covariance matrix

between n−1/2Uj and n−1/2Uk . In calculating the test statistics, we
evaluate the Uji at βj = β0j and replace the unknown parameters
with their sample estimators.
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