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On Cross-Validation for Model Selection
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In response to (Zhu and Rower, 1996), a recent communication (Goutte, 1997) established

that leave-one-out cross-validation is not subject to the �no-free-lunch� criticism. Despite this

optimistic conclusion, we show here that cross-validation has very poor performances for the

selection of linear models as compared to classic statistical tests. We conclude that the

statistical tests are preferable to cross-validation for linear as well as for non linear model

selection.

1. Introduction

Following the �no-free-lunch� theorems (Wolpert & Macready, 1995), an attempt was made in

(Zhu and Rower, 1996) to demonstrate the inefficiency of leave-one-out cross-validation (LOO) on

a simple problem, i.e. the problem of selecting the unbiased estimator of the expectation of a

gaussian population between an unbiased and a highly biased one. A response to this attempt was

given in (Goutte, 1997), where it was shown that the strict LOO procedure yields the expected

results on this simple problem.

In this paper, we first give a probabilistic analysis of LOO scores. On this basis, and to complete the

work done in (Goutte, 1997), we compare the selection performed by LOO between two estimators

which are unbiased, but have a different variance, to that performed by statistical tests. Perspectives

for non linear modeling are outlined.

2. Measure of model quality and leave-one-out cross-validation scores

We consider static modeling problems for the case of an input n-vector x and a random scalar

output y x . We assume that a sample of N input-output pairs DN = x k, yk = y x k
k=1 to N  is

available, and further that there exists an unknown regression function m such that:



y  x k  = E y  x k  + w k = m x k  + w k (1)

where the w k  are independent identically distributed (i.i.d.) random variables with zero

expectation and variance σ2 (homoscedasticity property)1. The problem is to find a parameterized

function f x ,  q, DN , q �� q, which is a good approximation of m x , and which will be denoted by

fqN x . A natural measure of the quality of fqN x  as an estimator of m x  is the local mean-squared

error (LMSE) at x:

LMSE fq
N x  = E y x  � fq

N x 2

= E y x  � m x 2  + E fq
N x  � m x 2  

= s 2 + E fq
N x  � m x 2 + E fq

N x  � E fq
N x 2

(2)

The expectations in (2) are taken over all possible samples, i.e. all possible values of the outputs for

the N input configurations x k . The second and third terms represent the squared bias and the

variance of estimator fqN x , for a given input x. An overall measure of the quality of fqN, its

integrated mean-squared error (IMSE), is obtained by integrating bias and variance over x:

IMSE fq
N  = s 2 + E fq

N x  � m x 2 p x  dx  + E fq
N x  � E fq

N x 2  p x  dx (3)

where p x  is the distribution of the inputs.

The LOO score of estimator fqN is an empirical IMSE (Efron & Tibshirani, 1993) (Goutte, 1997):

sLOO fq
N  = 1

N
 y x j  � f x j,  q,    x k ,  y k k=1 to  N

k≠j

2∑
j=1

N

(4)

sLOO fqN  is an estimator of IMSE fqN . We characterize the bias of this estimator in the following

sections.

3. Leave-one-out cross-validation for the selection among estimators of a constant

The problem of (Goutte, 1997) is to select between two estimators of the expectation of a gaussian

population (m = constant, s 2 = 1,  N = 16) using LOO. When the output expectation does not

depend on an external input, it is easily shown that the LOO score of any estimator f1
N is biased2:

E sLOO f1
N  = IMSE f1

N-1  ≠ IMSE f1
N (5)

The estimators considered in (Goutte, 1997) are the unbiased sample mean, and the highly biased

sample maximum; their IMSE are very different (cf. Table 1). Thus, even if the LOO scores of the

1  Scalars are denoted by lowercase letters, e.g. y and the y k ; vectors are denoted by boldface lowercase letters, e.g.

the n-vectors x and the x k ; matrices are denoted by uppercase letters, e.g. the input matrix X (see section 4).
2 This result can be generalized to m-fold cross-validation (m divides N): E sm-fold CV  f1

N  = IMSE f1
N-N

m .



mean and of the maximum are biased, their bias is small as compared to the difference between the

two IMSE, and the LOO procedure always selects the mean. Table 1 gives the IMSE of the

estimators, and the bias of their LOO scores. The bias of the LOO score of the mean equals

s 2

N N�1
; for the computation of the expectation and variance of the maximum estimator, see for

example [Pugatchev, 1982].

f1
16 IMSE f1

16 E sLOO f1
16  � IMSE f1

16

mean 1.0625 4.1667 10-3

maximum 4.4137 � 9.9298 10-2

Table 1. IMSE and bias of the LOO scores of the sample mean and maximum

(m = constant, s 2 = 1,  N = 16).

To conclude, (Goutte, 1997) only showed that LOO does not make a wrong choice for a trivial

problem where any reasonable method would not make the wrong choice either. In more realistic

settings of linear or nonlinear process modeling however, it is often necessary to select an estimator

among several estimators of decreasing complexity (estimators linear in the parameters with a

decreasing number of parameters, such as polynomials or radial basis functions, or neural networks

with a decreasing number of hidden neurons). If the selection concerns unbiased estimators with

different variances, it is important to be able to select the estimator with the smallest variance: this

is exactly the problem solved by statistical tests. We therefore tackle the model selection problem in

the next section, and, in section 5, we give an illustration which leads to more pessimistic

conclusions about LOO than the preceding example.

4. Leave-one-out cross-validation versus statistical tests for the selection of linear models

We deal with the particular case of linear static modeling problems, i.e. there exists an unknown

parameter n-vector q0 such that the regression function can be written as:

m x  = x T  q0    (6)

We consider fn
N x ,  qLS,  DN , the least squares (LS) estimator of the regression, denoted by fnN x :

fn
N x  = x T qLS = x T X T X -1 X T y (7)



where y = y 1 y2 � yN T , x k = x1
k x2

k � xn
k T , and X = x 1 x 2 � x N T  is the (N, n) input matrix

whose columns are assumed to be linearly independent. The estimator fn
N x  is unbiased, and its

LMSE is3:

LMSE fn
N x  = s 2 + s 2 x T X T X -1 x (8)

The IMSE of fnN thus equals:

IMSE fn
N  = s 2 1 + E trace  x x T X T X -1 (9)

Let us make the weak assumption that the components of the input vector are uncorrelated, with

covariance K x  = sx
2 In ; then:

IMSE fn
N  = s 2 1 + sx

2 trace  X T X -1 (10)

The inputs of the data set being drawn from the same distribution, and in order to have a simple

expression for (10), we will consider the case where:

X T X = N sx
2 In (11)

i.e. the case where the n columns of X (regressor vectors) are orthogonal and �k,  xi
k 2∑

i=1

N

 = N sx
2.

We have then:

IMSE fn
N  = σ2 1 + n

N
(12)

The IMSE depends only on the variance of the noise, on the size of the training set, and on the

number of parameters.

Let us now consider the expectation of the LOO score4 of fnN. We obtain:

E sLOO fn
N  = s 2 1 + 1

N
 Pkk

1 � Pkk
∑
k=1

N

 > s 2 1 + n
N

(13)

where the Pkk  are the diagonal elements of P = X X T X -1 XT , the orthogonal projection matrix5

on the range of X. The LOO score is thus a biased estimator of (12).

Suppose that we want to choose between (6) and a submodel of (6) with n ' < n  inputs, i.e. we want

to decide whether:

q0 = q0'
0000

(14)

3 Note that expression (8) cannot be used to compute the expectation of the square of the residuals; their expectation is:

E rk 2  = s2 � s2 x k T X T X
-1

 x k    k =1 to N.
4 The LOO error is extensively analyzed in (Antoniadis & al., 1992), and briefly in (Efron & Tibshirani, 1993).

5 Properties of the (N, N) projection matrix P, with rank(P) = n: a) Pkk∑
k=1

N

 = n; b) 0 ≤  Pkk ≤ 1  k=1 to N .



where q0'  is a n�-vector. If the null hypothesis (14) is true, then the variance of fn'
N is smaller than

that of fn
N, and thus IMSE fn'

N  < IMSE fnN . But, since the LOO score is a biased estimator of the

IMSE, it is likely that LOO will not lead to a correct choice.

By comparison, a statistical test is based on unbiased estimations of the noise variance s2 through

the residuals of both models when (14) holds. If the null hypothesis is true, and if the gaussian

assumption can be made, a Fisher variable can be constructed. The decision to reject the null

hypothesis with a risk a% of rejecting it while it is true will be taken when:

RSS 2 � RSS' 2

RSS 2
 
N � n
n � n'

 > FN�n
n�n ' a% (15)

where RSS2 and RSS '2 denote the values of the residual sums of squares of the estimators, and

FN�n
n�n ' a%  is the value for which the Fisher cumulative distribution with n � n'  and N�n degrees of

freedom equals 1�a .

5. Illustrative example

We consider the modeling of simulated processes:

y k =  1 x k  a0
b0

 + w k = a0 + b0 x k + w k    k=1 to N (16)

with 1) a0 = 1, b0 = 0, or 2) a0 = 1, b0 = 1, and for different values of N. We want to choose

between the two following estimators, or models:

f1
N x  = a1

N (n' = 1 ) (17)

f2
N x  = a2

N + b2
N x  (n = 2) (18)

where a1
N, a2

N and b2
N denote the LS estimators of the parameters (a1

N is the sample mean). For each

sample size N, we choose equally spaced inputs x k  such that X T X = N I2 (according to relation

(11) with sx
2 = 1, and inputs thus in roughly [- 3; 3]); a million samples, i.e. outputs y k , are

simulated. The selection between f1
N and f2

N is performed on each sample with LOO and with

statistical tests.

1) We first consider the process with a0 = 1, b0 = 0: both estimators f1
N and f2

N are unbiased, but f1
N

has a smaller variance. Almost by definition, the frequency over a million samples of the rejection

of the null hypothesis reaches the risk taken, as shown in Table 2. The frequency of selection by

LOO of the large model f2
N decreases with N, due to the decrease of the bias of the LOO scores (see

Table 3, where the biases are computed with expressions (12) and (13) involving the values Pkk ).



But with 16% of selection of f2
N for very large N, LOO still performs poorly as compared to a

statistical test. These results do not vary with the value of s2.

Frequency of wrong selection of f2
N x  = a2

N + b2
N x  against

f1
N x  = a1

N obtained over 106 samples.

N LOO Test with risk 1% / 5%

10 19.7 % 1.0 % / 5.0 %

20 17.8 % 1.0 % / 5 .0 %

30 17.0 % 1.0 % / 5.0 %

100 16.1 % 1.0 % / 5.0 %

1000 15.8 % 1.0 % / 5.0 %

Table 2. Selection using LOO versus statistical tests (process y k = 1 + w k   k=1 to N ).

N IMSE f2
N

σ2

E sLOO f2
N  � IMSE f2

N

σ2

IMSE f1
N

σ2

E sLOO f1
N  � IMSE f1

N

σ2

10 1.200 6.65 10-2 1.100 1.11 10-2

100 1.020 4.94 10-4 1.010 1.01 10-4

1000 1.002 4.81 10-6 1.001 1.00 10-6

Table 3. IMSE and bias of the LOO scores (process y k = 1 + w k   k=1 to N ).

2) We next consider the process with a0 = 1, b0 = 1: estimator f1
N is biased. As in (Goutte, 1997),

since one of the estimators has a large bias, LOO and the tests always select the unbiased estimator,

provided s 2 ≤ 0.3 (for larger values of s2 and small N, the signal-to-noise ratio becomes very large,

and model (16) becomes meaningless with the numerical values we have chosen).

Numerical results in the general case

We have considered the particular case where the input matrix is chosen according to (11) since the

LOO bias can be calculated in this case. Nevertheless, the results of Table 2 are almost the same

when the inputs x k  are different for each simulated data set, uniformly chosen in [- 3; 3]. We

then obtain the following percentages of the wrong selection of the large model: 19.9% (N = 10),

16.1% (N = 100), 15.8% (N = 1000).

Risk is relevant in statistical tests, but it is important to stress that there is no notion of risk in the

choice of the model with the smallest LOO score. Thus, even in cases where the LOO score might

be unbiased, this procedure leads frequently to inappropriate decisions.



6. Conclusion

In the linear case, even for large N, LOO does not perform well as compared to statistical tests.

Furthermore, when N is large, the gaussian hypothesis is no longer necessary for a statistical test to

be valid; there is then no advantage in performing LOO.

Since even for linear estimators, LOO performs poorly for small N, it is extremely unlikely that it

would perform better in the case of nonlinear estimators, like neural networks. Furthermore, LOO

becomes very time-consuming or even untractable for large N  since it requires (at least) N

nonlinear optimizations. Also, when N is large, the curvature of the expectation surface of a non

linear model becomes small (Seber, 1989) (Antoniadis & al., 1992), thus statistical tests similar to

those for linear models can be performed successfully, by assuming only homoscedasticity.

We draw the conclusion that, even though LOO is not subject to the �no-free-lunch� criticism as

pointed out in (Goutte, 1997), statistical tests are strongly preferred to LOO, provided that the

(linear or nonlinear) model has the properties required for the statistical tests to be valid.
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