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in a previous series of articles,' we described
elementary statistical concepts and procedures .
Those discussions focused on methods _for de-
scribing a specific data set and for making in-
ferences to larger populations . The part on infer-
ential statistics described some of the most
commonly used statistical tests ; on occasion,
somewhat unrealistic, simplified assumptions
were made in order to maintain clarity . One
important assumption was that studies were con-
ducted to test only one hypothesis. In practice,
of course, investigators often want to test several
different (although possibly related) hypotheses .
For example, when comparing the efficacy of an
experimental therapy with that of a placebo, an
investigator may want to include several treat-
ment options in the same experiment rather than
conduct multiple experiments, each with its own
group of controls (patients given a placebo) .
Another example is an experiment designed to
compare multiple endpoints (for example, mul-
tiple measures of efficacy and safety) between
two therapeutic modalities .
When studies such as these are reported in the

medical literature, authors often refer to multiple
comparison procedures (many are available), ad-
justed P values, Bonferroni adjustment, and per-
experiment error rates . In this new series of arti-
cles (intended to supplement but not replace the
earlier series), we explain the meaning of these
terms and describe the statistical methods that
are often used when multiple comparisons are
made within the context of a single experiment.

Individual reprints of this article are not available . The entire
8ix-part series will be available for purchase as a bound
booklet from the Proceedings Circulation Office in December.
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Some of the topics that we discuss are con-
troversial, even among statisticians . Fortunately,
however, the arguments involved are, without
exception, nontechnical . Because the stakes are
often high (whether the results of a study are to
be regarded as statistically significant is often
at issue), it should be well worth the reader's time
to become familiar with the issues and to decide
for oneself the correct approach to the answer.

Before pursuing the topic of performing mul-
tiple statistical tests, we review how an investi-
gator uses statistics to test hypotheses. The basic
approach is as follows : one formulates a null
hypothesis (for example, no difference in efficacy
exists between two drugs), computes an appro-
priate test statistic and corresponding P value,
and rejects the null hypothesis only if the P value
is sufficiently small (for example, P<0.05) . The
P value is actually shorthand for the following
statement : "If the null hypothesis is true, then
the probability of observing a value of the test
statistic as large as the value observed is equal
to P."

Specifically, an investigator who wants to com-
pare an experimental drug therapy with a stan-
dard (or placebo) therapy might administer each
therapy to each patient in a random sequence
and in a double-blind fashion so that neither the
patient nor the physician is aware of which prep-
aration is being administered . Using a paired t
test, one could then test the null hypothesis of
no difference between the two modalities. (In this
example, as well as elsewhere throughout this
series of articles, we will not address the impor-
tant considerations of study design, which would
have to be carefully considered in any actual
study . Our purpose will be simplicity in order to
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enable us to focus on elementary concepts in-
volved in the data analysis .)
Suppose, however, that the investigator also

wants to evaluate nine other experimental drugs
(agents B, C, D, E, F, G, H, I, and J). Is it still
permissible for drug A to be compared with a
standard? If so, is the t test, and the correspond-
ing P value, still appropriate? Many statisticians
argue that a direct comparison of drug A with
standard therapy that ignores the other nine
drugs is no longer permissible in this situation .
Others argue that if the usual t test is performed,
the resulting P value should be multiplied by 10
because 10 tests will ultimately be performed .
Still others maintain that the analysis should not
be altered because of inclusion of nine additional
drugs in the study . Obviously, the position one
takes in this controversy has a profound influ-
ence on the conclusions drawn about the efficacy
of drug A. Fortunately, the principles that will
ultimately determine the appropriate answer to
this controversy are not mathematical . They cen-
ter on an understanding of two types of error
rates: the per-comparison error rate and the per-
experiment error rate.

PER-COMPARISON AND
PER-EXPERIMENT ERROR RATES
In a comparison of drugA with standard therapy
in the preceding example, the experimenter may
decide that drug A is superior only if the P value
derived from the paired t test is less than 0.05
(P<0.05) . Because the probability of making this
decision when the null hypothesis is true (drug
A is not superior) is 0.05, the probability of er-
roneously concluding that drug A is superior is
0.05 . In statistics, this is called a type I error .
Thus, the probability of a type I error is 0.05 .
(Another type of error-a type II error-can occur
if one fails to identify superiority when drug A
actually is better .) By concluding that a drug is
superior only when the P value is less than 0.05,
the investigator is confident that drugs will er-
roneously be declared superior only 5% of the
time. Still smaller error rates can be achieved by
requiring a smaller P value as the criterion (for
example, P<0.01) .

Similarly, the investigator may compare each
drug separately (A through J) with a standard
therapy by using the paired t test, in each case
declaring superiority only if the corresponding P
value is less than 0.05 . The error rate for each
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such comparison, the per-comparison error rate,
is 0.05.

Obviously, for an evaluation of the results of
a study in which one or more drugs are compared
with a standard therapy, knowing the per.
comparison error rate is important. A second
error rate is also ofinterest, however . Specifically,
one may ask, If the efficacies of all the drugs in
the entire experiment are the same, what is the
probability that one or more of the drugs will
erroneously be declared superior to the standard
therapy? Statisticians refer to this error rate as
the per-experiment error rate . Suppose, for exam.
ple, that 100 different drugs, none of which is
efficacious, are compared with a placebo . With
a per-comparison error rate of 0.05, *one would
expect that five of the drugs will be erroneously
declared efficacious . Clearly, in some studies it
may also be important to know the per-experiment
error rate.

CONCLUSION
The question that inevitably arises when the
results of multiple tests from a single experiment
are available is, Which error rate should I re-
port, the per-comparison error rate or the per-
experiment error rate? This question has been the
source of much controversy, even among statis-
ticians . We believe that much of the controversy
is in large part due to the way in which the
question has been posed . As stated, it suggests
that one error rate is correct or relevant and the
other is incorrect or irrelevant. This fallacy is
further reinforced by a tendency to ask, What is
the P value?-a further implication that only one
error rate can and should be quoted.
On the contrary, we hope that the preceding

discussion clarifies that both the per-comparison
error rate and the per-experiment error rate pro-
vide qualitatively different types of information.
In any given study, both types of information
may be relevant and worth presenting. The rela-
tive importance of each error rate in a specific
study will depend on the particular circumstances,
especially the goals, of the study.
In the remaining articles of this series, we will

consider some of the most common types of studies
in which multiple tests are performed, using ex-
amples from studies done by researchers at the
Mayo Clinic . In each case, we will discuss the
appropriateness of the two types of error rates
and the corresponding statistical techniques .



MByo Clin Proc, August 1988, Vol 63

The discussion in part 2, "Comparisons Among
Several Therapies," considers the problem of per-
forming all possible pairwise comparisons. Two
types of multiple comparison procedures are de-
scribed : those that are based on a pooled estimate
of error and those that are . not. The statistical
concepts are illustrated with a study in which
several analgesics are compared with placebo
and aspirin .
For the type of study described in part 3, "Re-

peated Measures Over Time," measurements are
made on the same subjects at several fixed points
in time (for example, at 30-minute intervals) after
the administration of therapy . Statistical tech-
niques are described for addressing questions
such as, Is a treatment effect present? Are the
changes that occur after treatment constant over
time, or are they accelerating (or decelerating)
over time? At what time does the treatment effect
begin, reach a peak, and end? The example used
evaluates the effects of head-down neck flexion
on blood flow in the calf and forearm .
Part 4, "Performing Multiple Statistical Tests

on the Same Data," considers the situation in
which one statistical test indicates that a differ-
ence between groups is not statistically signif-
icant but another test indicates that the differ-
ence is significant . The example used is based
on a randomized trial in which plasmapheresis
was compared with sham-pheresis for the treat-
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ment of chronic inflammatory demyelinating
polyradiculoneuropathy.
In part 5, "Comparing Two Therapies With

Respect to Several Endpoints," a study that iden-
tifies individual endpoints for which one type of
therapy may be more efficacious than the other
is distinguished from a study in which a single
overall test for efficacy is desired on the basis
of the cumulative results of several measures of
efficacy . A randomized trial comparing two ap-
proaches for treating diabetes is used as an
example.
The problem in part 6, "Testing Accumulating

Data Repeatedly Over Time," is concerned with
comparing two groups serially over time during
the course of a clinical trial, with a view toward
terminating the trial early if one treatment is
observed to be much superior to the other. The
first example used is a randomized trial in which
prednisone therapy was compared with predni-
sone plus vincristine for the treatment of leuke-
mia. A second example compares two regimens
of chemotherapy for extensive small cell lung
cancer .
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In this article, we discuss the. statistical issues
that arise when one makes pairwise comparisons
among several groups within the context of a
single experiment. Several techniques for con-
trolling the per-experiment error rate are de-
scribed. These techniques are illustrated with
examples that demonstrate how the usefulness of
per-experiment and per-comparison error rates
depends on the circumstances surrounding a par-
ticular study .

STATISTICAL TECHNIQUES
FOR CONTROLLING THE
PER-EXPERIMENT ERROR RATE
Overall Preliminary Test.-With use of an over-
all preliminary test, a null hypothesis is estab-
lished specifying that no difference exists among
any of the groups . If 10 drugs are being studied,
for example, a test statistic (referred to as F,
analogous to t in the t test for comparing two
therapies) is derived by dividing a measure of the
variability among the 10 group means by a mea-
sure of the variability expected by chance. One
obtains the corresponding P value from suitable
tables (the larger the F statistic, the smaller the
P value) and rejects the null hypothesis of no
difference among treatments if P is sufficiently
small (for example, less than 0.05) .
With this approach to controlling the per-

experiment error rate, one adopts the convention
that pairwise comparisons of individual treat-
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ments will be pursued only if the P value from
the preliminary F test is less than 0.05 . If pair.
wise comparisons are warranted, they may be
done in two ways: (1) by performing separate t
tests in the usual way or (2) by using modified
t tests . The latter approach is called the least
significant difference (LSD) method. It is similar
to the t test, but it relies on the assumption that
the variability is the same for all therapeutic
modalities. (For further details, see the Appendix.)
Regardless of which method is used, the per-

experiment error rate will be less than 0.05 be-
cause pairwise comparisons will be done only 5%
of the time when no real differences exist among
any of the therapies (because the initial F test will
be significant only 5% of the time ifno differences
exist) . Conversely, the per-comparison error rate
will be somewhat less than the P value obtained
from the t tests .
Bonferroni Adjustment.-Another method

for controlling the per-experiment error rate is to
perform t tests in the usual way but multiply each
P value by the number of comparisons under-
taken to obtain adjusted P values, called the
Bonferroni adjustment . Treatments are judged to
be significant only if the adjusted P value is less
than 0.05 ; thus, the corresponding per-experiment
error rate will be less than 0.05 . Notice that the
adjusted P values provide per-experiment, not
per-comparison, error rates . The per-comparison
error rates are indicated by the original (un-
adjusted) P values.
Informal Adjustment in Interpretation of

P Values.-One source of dissatisfaction with
the Bonferroni method is that it provides only an
approximation of the per-experiment error rate,
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and sometimes the accuracy of the approxima-
tion is unsatisfactory . The true per-experiment
error rate may be considerably less than the
Bonferroni approximation . A second concern is
that in . some applications one may want to focus
more on the per-comparison error rate-while con-
currently acknowledging the per-experiment error
rate. This reasoning suggests quoting the usual
p values (obtained from separate paired t tests)
but being appropriately cautious about drawing
conclusions . For example, one may consider only
P values less than 0.01 as providing convincing
evidence of a difference .
Other Multiple Comparison Procedures.-

Other available procedures focus solely on the
per'-experiment error rate . The commonly used
procedures are the Student-Newman-Keels (SNK)
procedure, Tukey's honestly significant difference
(HSD) method, and Duncan's multiple-range (D)
test . All these procedures are based on the same
test statistic as the LSD procedure ; however, in-
stead of comparing the test statistic to tables of
the t distribution, special tables are used that
provide accurate control over the per-experiment
error rate .
These procedures enable the investigator to

make all possible pairwise comparisons in such
away that the probability of any treatment being
declared significant when all therapies are equiv-
alent (the per-experiment error rate) is less than
or equal to a specified level . Conversely, none of
these methods provides information on the per-
comparison error rate . These types of procedures
are discussed by Bancroft .'
Dunnett's Procedure .-Dunnett's procedure"

is designed specifically for comparing several
experimental therapies to a single standard
therapy. It is similar to the SNK, HSD, and D
procedures, except that comparisons are made
only between the experimental therapies and the
standard treatment.

EXAMPLE
We will consider a double-blind crossover study
in which nine marketed analgesics and a placebo
were evaluated in 57 patients with definite pain
problems as a result of unresectable cancer.' Al-
though all possible pairwise comparisons were of
interest, only comparisons with aspirin and
Placebo were reported. Thus, the total number of
comparisons was 17 . If no difference in efficacy
was detected among any of the preparations,

separate paired t tests performed at the 0.05 level
would probably show significant differences due
to chance alone . Because the investigators
wanted to be cautious and were reluctant to claim
erroneously that a preparation was superior to
placebo or inferior to aspirin, efforts to con-
trol the per-experiment error rate were deemed
necessary.
Of the various analyses performed, the results

of analysis of the mean percentage of relief of
pain achieved among the 57 patients are listed
in Table 2-1 . Note that the P value reported in
Table 2-1 is the per-experiment error rate obtained
by using the SNK procedure. Thus, the prob-
ability of reporting any significant differences in
this analysis would be less than 0.05 if no dif-
ferences existed among all the preparations .
In addition to evaluating percentage of relief

o£ pain, patients also were asked to rank the
analgesics on the basis of relative efficacy. The
analysis of these data (Table 2-2) was based on
separate paired t tests; thus, the P values reported
in Table 2-2 are per-comparison error rates. Be-
cause of the many comparisons undertaken, how-
ever, evidence of a difference was judged to be
convincing only if the P value was impressively
small-that is, less than 0.01 . Although different
data and different statistical tests were used for
the analyses in Tables 2-1 and 2-2, the results
were remarkably similar .

Table 2-l.-Relative Therapeutic Effects of Orally
Administered Analgesics Based on Mean Percentage of

Reliefof Pain Achieved in 57 Patients
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*Results are reported for 30 patients (statistical significance
was calculated on the basis ofpatients receiving pentazocine
with use of Dunnett's procedure for multiple comparisons
with control) .
tStudent-Newman-Keels method .
From Moertel and associates .` By permission of the Massa-
chusetts Medical Society.

Analgesic Dose (mg) Relief of pain (°Yo)
Aspirin 650 62
Pentazocine* 50 54
Acetaminophen 650 50 Significantly superior to
Phenacetin 650 48 placebo (P<0.05)t
Mefenamic acid 250 47
Codeine 65 46
Propoxyphene 65 43
Ethoheptazine 75 38 Significantly inferior to
Promazine 25 37 aspirin (P<0.05)t
Placebo . . . 32
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Table 2-2.-Relative Therapeutic Effects of Orally
Administered Analgesics Based on Sum of

Ranks Accorded by Each Patient

*In 30 patients, pentazocine (50 mg) was in fifth position and
significantly superior to placebo (P<0.01) .
tAnalysis by t test.
From Moertel and associates.' By permission of the Massa-
chusetts Medical Society .

ALTERNATIVE EXAMPLE
Notice that the purpose of the study in the ex-
ample determined the precise formulation of the
study questions and the corresponding data analy-
sis used to answer them. Suppose, however, that
the same study had been performed for a different
purpose and had addressed somewhat . different
questions . Specifically, suppose that the manu-
facturer of propoxyphene (Darvon) had per-
formed this study and that the specific aims of
the study had been to evaluate propoxyphene
(1) relative to aspirin, (2) relative to placebo, and
(3) relative to the seven other analgesics studied .
We assume that these are three distinct objectives
listed in order ofimportance. Under these circum-
stances, the company would have justifiably
pursued the comparison of propoxyphene with
aspirin by using the usual paired t test and
quoting the per-comparison error rate. The per-

. experiment error rate would be irrelevant in ad-
dressing this specific aim .

If the company had obtained the same data as
did Moertel and associates," how would the con-
clusions by Moertel's group be altered? Recall
that Moertel and colleagues required that the P
value be less than 0.01 for statistical significance
(Table 2-2), rather than the more conventional
0.05 level, because of concerns about the per-
experiment error rate. With the per-experiment
error rate no longer of interest, the observation
of the P value being less than 0.01 would retain
its more usual interpretation of being highly
significant . Thus, the conclusion of the inferiority
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of propoxyphene relative to aspirin in this alter-
native example would be even more convincing.
In this circumstance, it would be absurd to insist
that the pharmaceutical firm could not compare
its drug with aspirin unless the overall F test
(comparing all 10 .preparations) was significant.
In fact, one could imagine the situation in which
the company's drug was the only one that dif.
fered from aspirin, in which case an overall F
test comparing all preparations simultaneously
would probably not be statistically significant.

COMMENTS
At this point, readers may ask which of the many
methods of analysis that have been described is
the best . Perhaps the most important point to be
made is that no one method is always the "best"
method.
The questions that a study is intended to

answer must be clearly stated,beforehand. Fail-
ure to consider this basic principle often may lead
to an overreliance on per-experiment error rates .
As an illustration, suppose one investigator con-
ducts an experiment to answer the following
question : "Are the effects of treatments A and B
different?" Now suppose that a second investiga-.
for conducts the same experiment and obtains the
same data but also collects additional data on a
separate group of patients receiving a third treat-
ment (C) because the investigator also wants to
compare treatments A and C. It seems apparent
that these investigators should arrive at the same
conclusions when treatments A and B are com-
pared, and this result will prevail when per-
comparison error rates are used . In these circum-
stances, it would be unreasonable to insist that
the second investigator quote a higher (per-
experiment) error rate in answering the original
question of whether the effects of treatments A
and B are different.
In the examples, each patient in the study was

exposed to each treatment . If such an experiment
includes only two treatments, the paired t test is
the appropriate statistical test to use. The addi-
tional statistical procedures described herein
may be considered extensions of the paired t test
to incorporate more than two treatments. In
many studies, however, the patients who receive
the various treatments differ, and completely sepa-
rate and distinct treatment groups are formed
When two such groups exist, the appropriate

Analgesic* Dose (mg) Rank Sum
Aspirin 650 223.0
Mefenamic acid 250 271.5 Significantly superiorPhenacetin
Acetaminophen

650
650

275.0
280.5 to placebo (P<0.01)t

Codeine 65 284.5

Propoxyphene 65 315.0
Ethoheptazine 75 335.0 Significantly inferior
Promazine 25 352.5 to aspirin (P<0.01)t
Placebo . . . 374.0
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statistical test is the two-sample t test.5 Exten-
sions of the two-sample t test for performing
multiple pairwise comparisons among the groups
are available and are entirely analogous to the
procedures described herein . Of course, the com-
putations will differ, depending on whetheror not
distinct groups are used . No new concepts are
involved, however.
In both examples considered in this article, the

statistical tests pertained to hypotheses that had
been formulated before the study was initiated.
Often, however, inspection of the data may sug-
gest additional hypotheses. One might suppose,
for example, that no difference was observed
among the therapeutic modalities but that pro-
gression of disease differed between male and
female patients or between old and young pa-
tients . When the hypotheses to be tested are
suggested by the data in this manner, the ob-
served differences mustbe reported accordingly-
that is, the investigators should clearly state that
the data have identified hypotheses for further
study rather than confirmed previously formu-
lated hypotheses. Although reporting any P
values in this context may be inadvisable, this
situation is particularly well suited to the conser-
vative approach of reporting per-experiment error
rates .
The methods described in this article also pro-

vide an opportunity to remind readers of a basic
principle that should always be kept in mind
when statistical methods are used: always know
what assumptions are being made and be sure
that 'they "conform to your own beliefs. Specif-
ically, many of the methods described herein
(LSD procedure, Dunnett's method, SNK proce-
dure, HSD method, and the D test) assume that
the variability associated with all therapies is the
same, even though the efficacy may differ. One
should be aware of this assumption when choos-
ing an appropriate method of analysis .
Finally, it is unfortunate that many persons

who review manuscripts for medical journals are
under the mistaken impression that one type of
analysis should always be used or that one type
of error rate should always be quoted and the
others excluded, and this attitude is reflected in
much of the medical literature . Because the issues
involved are essentially nontechnical in nature,
we hope that readers will be encouraged to re-
epond with their own informed judgment as these
situations are encountered.
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For additional, nontechnical discussions of the
use and misuse of multiple comparison proce-
dures, readers should refer to the articles by
O'Brien' and Little .'
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APPENDIX
As mentioned in the text, the LSD procedure may
be considered a modified version of the t test, and
the necessary assumption is that the variability
is the same for all therapies. For two therapeutic
modalities, the paired t test statistic is deter-
mined as follows:

t = 0/SEe

in which A is the mean of the differences between
the two treatments in the series of patients,
SEe is the standard error of Z (sn/%fn_), sn is the
standard deviation of the differences, and n is
the sample size (the number of pairs of values).
In the overall F test, we formulate the null

hypothesis that all therapies have the same ef-
fect, so that in this case the variability of paired
differences will be the same regardless of which
two treatments are being compared . If we use sp
to denote the pooled estimate of variability ob-
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tained in the overall F test, the test statistic for
the modified procedure is determined by the
following :

Another modification with use of the LSD
method is that the tables used to obtain P values
will be entered in a way that reflects the use of

Mayo Clin Proc, August 1988, VolQ

all the data to estimate variability. Thus, even
if sp were exactly equal to sA , the P value assa
ciated with the modified (LSD) t test would be
smaller than the P value obtained by using the
usual paired t test.
The other procedures that necessitate the as.

sumption that the variability is the same for all
treatments are the Dunnett, SNK, HSD, and ri
procedures .
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In part 2, we considered the situation in which
patients are successively exposed to different
treatment regimens, with the intention of com-
paring the various treatments. A similar situa-
tion arises when patients are observed at base-
line, exposed to an experimental therapy, and
then observed at multiple predetermined times
after therapy . With use of the analogy that
equates observation times with experimental
therapies, one might suppose that the same types
of analyses discussed in our :previous article could
be applied to this type of "repeated measures
study"; indeed, this mistake often occurs in prac-
tice . In this situation, however, the methods dis-
cussed previously are inappropriate because the
questions that these two types of studies are
intended to answer are different . The following
questions are usually of interest in the type of
study that we discuss in this article : Is a treat-
ment effect present? Are the changes that occur
after treatment constant over time, or are they
either accelerating or decelerating over time? When
does the treatment effect begin, reach a peak, and
end? In this article, we describe some statistical
techniques used to answer these questions.

IS A TREATMENT EFFECT PRESENT?
It will help to answer this question if the inves-
tigator can specify in advance the nature of the
anticipated treatment effect . If the investigator
is confident that any effect should become ap-

Individual reprints of this article are not available . The entire
six-part series will be available for purchase as a bound
booklet from the Proceedings Circulation Office in December .

Mayo Clin Proc 63:918-920,1988 918

parent immediately but may be of short dura.
tion, a paired t test would be an appropriate
statistical method to compare the baseline mea-
surement with the first posttreatment measure-
ment. Alternatively, if the investigator can spec-
ify that treatment should result in fairly constant
posttreatment measurements over time, using a
paired t test to compare the mean of the post-
treatment values with the baseline value would
be appropriate .
Another possibility is that measurements may

be expected to increase or decrease steadily over
time. This possibility can be evaluated by com-
puting the change from baseline at each time
point for each patient. For each patient, the ob-
served changes can then be related to time by
regression analysis .' Specifically, for each pa-
tient, an equation is obtained relating the changes
from baseline (Y) to time (T) : A = a + bT (in which
a and b are fitted values for the intercept and
slope, respectively-values that will vary from
patient to patient). Using a t test in which t is
the mean of the slopes (b) divided by the standard
error of the mean ,2 one can then test the hypo-
thesis that the treatment effect is steadily in-
creasing . The hypothesis of no association with
time will be rejected if the corresponding P value
is small (for example, P<0.05) .
Unfortunately, because the properties of the

experimental therapy often are not sufficiently
well understood, predicting whether or when a
response will occur is often not possible. In this
case, performing various analyses to investigate
the possibilities we have described may be ap*
propriate . When this strategy is adopted, how-
ever, one should be aware that the possibility of
erroneously observing a statistically significant
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treatment effect increases when multiple statis-
tical procedures are used to test the same null
hypothesis (no treatment effect) . This type of
problem will be the subject of a future article . For
now, we point out that ifthe conclusions suggested
by different analyses are divergent, the results
should be interpreted with caution.

IS THE RATE OF CHANGE
CONSTANT OVER TIME?
We will suppose that one has performed the afore-
mentioned regression analysis and concluded
that the effect of treatment is dependent on time.
A logical question to ask under these circum-
stances is, "Is the rate of change constant over
time, or is the rate of change either accelerating
or decelerating?" This question can be formally
tested by fitting a more complicated regression
model : Y = a + bT + ct2. This model is fitted for
each patient (the computations are easily per-
formed by using standard computer software) .
One then computes t = USE., in which c is the
mean of the fitted c values and SE, is the stan-
dard error of the mean. If c differs significantly
from 0, one would conclude that the rate of
change is not constant over time . For a more
thorough evaluation of the precise nature of the
association with time, the descriptive methods to
be discussed next are useful .

WHEN DOES THE TREATMENT EFFECT
BEGIN, REACH A PEAR, AND END?
When these types of questions are addressed,
analysis necessarily focuses on description rather
than on formal testing of hypotheses . This de-
scriptive method is simple to perform and is
extremely valuable.- The simplicity of this type
of analysis should not be construed to imply that
it is less informative than the more sophisticated
types of analyses described previously . On the
contrary, it sometimes may be :more informative .
One of the most useful methods of evaluating

changes over time is to graph the mean and the
standard error of the mean at each time point
in a study, the measurement of interest being
graphed on the vertical axis and time being
graphed on the horizontal axis (Fig . 3-1) . The
reason for graphing the standard error of the
mean rather than the standard deviation is that
the former indicates the precision with which the
mean is estimated (usually of greater interest in
this context), whereas the latter indicates the
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amount of variability among individual data
points. In such an evaluation, however, either
could be used . (Alternatively, an indication of the
overlap at various time points also could be pro-
vided by graphing the minimal and maximal
values rather than the standard error.)
Performing multiple paired t tests in which

each time point is compared with the baseline (or
compared with the immediately preceding time
point) is often helpful for interpreting such a
graph. The resulting P values, however, must be
interpreted with caution . For example, if statis-
tical significance is observed at only one time
point, one must consider the possibility of a
chance occurrence. One should insist that such
a P value be convincing (P<0.01, for example)
before concluding that an actual treatment effect
has been observed. Conversely, if a systematic
trend is noted (for example, P values become con-
sistently smaller over time and then increase),
conclusions can be drawn with greater confidence .

EXAMPLE
A study by Essandoh and associates' evaluating .
the effects of head-down neck flexion on limb
blood flow can be used as an example . Blood flow
in the calf and forearm was measured in eight
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Fig . 3-1 . Effects of head-down neck flexion on blood flow in
the calf and forearm of eifht healthy male subjects . (From
Essandoh and associates . By permission of the American
Physiological Society .)
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healthy male subjects while the subjects were in
the prone position for 7 minutes . After the first
2 minutes, the head of the subject was maximally
flexed and lowered . Three minutes later, the head
was returned to the initial position . Paired t tests
that compared each time point with the mean of
the four baseline values showed statistically sig-
nificant reductions in blood flow throughout the
time that the neck was lowered (Fig . 3-1) . With
resumption of the initial position, significant dif-
ferences from baseline were not observed during
the final 2 minutes . In that study, the primary
interest was in the occurrence of a change im-
mediately after lowering of the neck; thus, the t
test comparing the value at 21/2 minutes with the
baseline value was appropriate without consid-
eration of a per-experiment error rate. The use of
t tests at subsequent time points was helpful for
interpreting the consistent, pattern observed in
Figure 3-1 . We believe that, in this instance, the

use of a graphic display aided by t tests appro-
priately conveyed the pertinent information ob.
tained by the investigators and that the use of
more sophisticated statistical analysis would not
have been helpful .
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In this article, we compare two groups of patients
with respect to a single measurement. For ex-
ample, in a clinical trial to evaluate the ability
of a drug to decrease blood pressure, one might
compare the reductions noted in a group of pa-
tients receiving the drug with the reductions re-
corded in a comparable group of patients receiv-
ing a placebo. A standard statistical test for this
type of comparison is the two-sample t test.'
The t test, however, is only one of many

statistical tests that could be used to test the
hypothesis of no difference between therapies.
How should one decide which test to use? In this
article, we will provide guidelines for choosing an
appropriate test and for interpreting the results
when more than one test has been used . In
general, one must consider two goals: (1) ensuring
that the final probability (P value) statement is
valid and (2) maximizing the possibility of detect-
ing atreatment effect when experimental therapy
actually is efficacious.

VALIDITY OF THE
PROBABILITY STATEMENT
The t test assumes that the data are not highly
skewed and that no outliers are present. If these
assumptions are satisfied, the t test will be valid-
that is, the Pvalue statement associated with the
t test will be accurate . If departures from these
assumptions are large, however, the Pvalue state-
ment may be inaccurate . (Usually, the skewness
or outliers that one needs to be concerned about

Individual reprints of this article are not available . The entire
six-part series will be available for purchase as a bound
booklet from the Proceedings Circulation Office in December.
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are obvious on inspection of a graphic display
of the data . A good rule of thumb is that the t
test should not be used if the mean value differs
appreciably from the median.)
When the t test cannot be used, a common

alternative is the Wilcoxon rank sum test .2 It
consists of pooling the data from both samples
and ranking the values from smallest to largest.
One computes the sum of the ranks in each
sample and obtains the corresponding P value
from special tables.
Which test should one use? If the assumptions

required by the t test are satisfied (at least ap-
proximately), the t test should be used because
it is generally more likely to detect a true differ-
ence in therapeutic modalities under these cir-
cumstances . When large departures from these
assumptions occur, the test will not yield a valid
probability statement; then the rank sum test
should be used instead. An important aspect of
this decision is that it should be made before
performing either test. For example, if one were
to perform both tests and choose the one that
yielded the smaller P value, the selected P value
would not provide a valid probability statement.

DETECTING A TRUE
DIFFERENCE IN THERAPIES
If multiple statistical tests (t or rank sum, for
example) are available and each provides valid
probability statements, which one should be
used? The general guide is to use the test that
is most likely to detect an actual treatment effect .
Thus, in comparing the t and rank sum tests, we
advocate use of the t test when the necessary
assumptions are satisfied because under these
conditions it is generally a more sensitive test.
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Typically, however, the ability of any test to
ietect a treatment effect will depend on the na-
;ure of the effect. For example, both the t test and
.he rank sum test assume that the effect of the
.xperimental therapy is the same in each patient.
.n our example, this assumption would mean that
,he biologic effect of the drug is to reduce blood
:ressure by the same amount in each patient
homogeneous effect) . Both the t and rank sum
tests will perform well in detecting this type of
i treatment effect if the assumption is at least
approximately true. Conversely, these procedures
nay perform poorly if the effect of therapy varies
.onsiderably among patients (heterogeneous ef-
ect) . Because it is typically difficult, if not im-
)ossible, to specify the precise nature of a treat-
nent effect in advance, the need may arise to
)erform multiple statistical tests to investigate
carious possible types of treatment effects . A
;eneralization of the standard t test to explore
she possibility of a heterogeneous treatment ef-
iect is described next.
Step 1.-Let W, < W2 < . . . < WnE + np represent

she values in the two samples arranged from
Smallest to largest, in which nE and nP represent
:he number of patients in the experimental and
?lacebo groups, respectively . For each value ofW
i = 1, . . ., nE + ne), the variable Z ; is defined as
'ollows :

Z, = 1, if the patient corresponding to W; is
in the experimentally treated group and

Z, = 0, if the patient is in the placebo group

Step 2.-Using standard statistical computing
oftware, fit the following model:

Z;=a+bW+CW2

n which a, b, and c are coefficients to be estimated .
Step 3.-If c differs significantly from 0, the

;uggestion is that the effect of treatment is
ieterogeneous among patients. In this case, an
Overall analysis for group differences is to test
he hypothesis that the true values for both b and
are 0 . If a significant treatment effect is ob-

erved, which seems to be heterogeneous, one
hould be careful in measuring the magnitude of
he effect . For example, overall group summary
tatistics such as group means may be mis-
eading. A graphic display of all the data will be
nore informative . If possible, subgroup analyses
dentifying patients who are most responsive to
herapy are indicated.

Mayo Clin Proc, October 1988, Vol 63

Z,=a'+b'W

T

Step 4.-If c does not differ significantly from
0, the implication is that the treatment effect (if
any) is approximately homogeneous among pa.
tients. Under these circumstances, the t test will
perform well. In terms of the methods described
in the foregoing steps 1 through 3, one could fit
the model

and test that b' differs significantly from 0 . In
fact, this test is algebraically identical to the
standard t test .
Corresponding methods generalizing the rank

sum test are available. Specifically, one uses the
rank of W; in place of W; in the preceding com-
putations . With either method, one needs to be
aware that multiple statistical tests are being
used to evaluate the possibility of a treatment
effect, and this approach increases the possibility
of erroneously concluding that an effect exists
when in truth it does not. Consequently, these
types of explorations that go beyond conven-
tional t and rank sum tests should be reported
with caution. The results of such tests will be ,
more convincing if they are supported by biologic
considerations .

EXAMPLE
We illustrate the considerations discussed thus
far with an example from a study performed at
the Mayo Clinic by Dyck and colleagues.` This
randomized, double-blind study of patients with
chronic inflammatory demyelinating polyradiculo-
neuropathy compared a group of 15 patients re-
ceiving plasmapheresis with a group of 14 pa-
tients having sham-pheresis . A primary endpoint
was the change from baseline in the neurologic
disability score observed at 3 weeks (Table 4-1) .
Because one value (-69.0) was an obvious out-

lier and because the data were also highly skewed
(notice that, ignoring the outlier, the larger
values were generally more spread out than the
smaller values), a t test was inappropriate . There-
fore, a rank sum test was used. The sums of the
ranks for the plasmapheresis and sham-pheresis
groups were 241 and 194, respectively (data from
Table 4-1) . A negative result was obtained by
using a one-sided rank sum test (P = 0.249) . One
would expect, however, that plasmapheresis may
benefit some patients more than others . A test
of this hypothesis (see the aforementioned steps
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fable 4-1 .-Changes in Neurologic Disability Score
(NDS) in Patients With Chronic Inflammatory
Demyelinating Polyradiculoneuropathy Who

:eceived Either Plasmapheresis or Sham-Pheresis

*Positive (+) values indicate improvement.
tl = patient received plasmapheresis;
0 = patient received sham-pheresis.

hrough 3) indicated that the coefficient of the
adratic term for the generalized rank sum
:del differed significantly from 0 (P = 0.020) .
:e overall test for a difference between groups
:s also significant (P = 0.02"1) . These results con-
-m to prior expectations that plasmapheresis
ty benefit only a subgroup of patients, and this
tcome is reflected in the data, wherein the five
tients who improved the most all received plas-
ipheresis, although some patients receiving
ismapheresis failed to show any improvement.
3ecause of the small P values associated with
generalized rank sum test and the strong a
on justification for expecting a heterogeneous
atment effect, the-authors appropriately con-
ided that plasmapheresis may be beneficial in
e treatment of chronic inflammatory demyelin-
.ng polyradiculoneuropathy, at least for some
tients . Unfortunately, the sample size was too
call to pursue meaningful subgroup analyses.
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CONCLUSION
Even in the relatively simple situation of com-
paring two therapies with respect to a single
endpoint, one often is led to consider multiple
statistical tests . When the goal is to achieve a
valid probability statement, if the necessary as-
sumptions are satisfied, the interpretation of re-
sulting P values is unaffected . For example, one
may intend initially to base the comparison on
a t test but, on completion of the study, find that
the occurrence of an outlier makes this imprac-
tical . Under these circumstances, use of a rank
sum test will not alter the interpretation of the
resulting P value .
The problem is considerably more complex

when an investigator performs multiple tests to
study different types of treatment effects that
may occur. In general, we recommend the use of
a single primary test, supplemented by additional
secondary tests as may be needed. This approach
was illustrated in the example of chronic inflam-
matory demyelinating polyradiculoneuropathy,
in which the primary test was the rank sum test,
and the corresponding P value was duly reported.
In this case, the conclusions were appropriately
altered by the results of secondary tests sup-
ported by biologic considerations . Under these
circumstances, reporting of the results of second-
ary tests should also be accompanied by suitable
cautions regarding the increased possibility for
error when multiple statistical tests are used to
evaluate efficacy .
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Change
in NDS*

Ranked
value Groupt

-69.0 1 0
-7.0 2 1
-6.8 3 1
-6 .1 4 1
-6.0 5 0
-5.2 6 0
-4.0 7 1
-3.0 8 1
-2.5 9 0
-2.0 10 1
-0.5 11 1
+1.5 12 0
+4.0 13 0
+5 .0 14 0
+5 .5 15 0
+8.0 16 0

+13.0 17 .5 0
+13.0 17.5 1
+15.0 19 0
+16.0 20.5 0
+16.0 20.5 1
+21.5 22 0
+23.5 23 1
+26.0 24 0
+32.4 25 1
+33.5 26 1
+47.3 27 1
+53.0 28 1
+96.0 29 1
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In this article, we suppose that an investigator
has conducted a comparative study between two
groups of patients who have a certain disease,
for the purpose of determining whether one ther-
apy is more efficacious than another . Although
our discussion of this topic applies to general
settings, we will suppose that the study was a
randomized clinical trial in which an experi-
mental therapy was compared with a conven-
tional therapy and that efficacy was determined
by one or more quantitative measurements (for.
example, change in blood pressure observed dur-
ing the course of the study) .
In practice, the data analysis for such a study

would address several different, but related, ques-
tions. A primary question, of course, would be,
Is a treatment effect present? Subsequent ques-
tions would be, --What specific patient character-
istics are affected? and, Is the effect of sufficient
magnitude that the benefits offset the risks?
Other questions would be related to characteriz-
ing the effect : When does it begin? How long does
it last? In this article, we address only the first
question, Is a treatment effect present? As in the
other articles in this series, many statistical
issues that would need to be considered in any
actual study will be omitted from the discussion.
Instead, we focus on the use of statistical tests
of hypotheses and the problems that arise when
multiple tests are used.

Individual reprints of this article are not available . The entire
six-part series will be available for purchase as a bound
booklet from the Proceedings Circulation Office in December .
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If efficacy is measured by only one patient
characteristic, testing for a difference between
the two therapies is easily done by using stan .
dard statistical procedures, such as the two-
sample t test.' On the basis of the calculated
value of t, a P value is obtained from suitable
tables or computing equipment . The P value is
the probability of observing a value for t as large
as in our study if no actual difference existed
between therapeutic modalities. If the P value is
sufficiently small (for example, P<0.05), one can
conclude that the observed difference in efficacy
is statistically significant and that an actual
difference between therapies probably exists .
Suppose, however, that the investigator has

measured many different patient characteristics
and that each characteristic provides an indica-
tion about whether the therapy has been effica-
cious. For example, the efficacy of therapy for
heart disease may be determined by data ob-
tained from echocardiograms, electrocardiograms,
angiograms, and various clinical measurements.
How can an investigator perform a statistical test
in these circumstances to compare the two ther-
apies? We describe some approaches in the next
section .

STATISTICAL PROCEDURES FOR
COMPARING TWO THERAPIES WITH
RESPECT TO MULTIPLE ENDPOINTS
Identify a Single Endpoint for Analysis.-
A commonly used approach to the problem, and
perhaps the simplest, is to identify one pri-
mary endpoint (measure of efficacy), with the
understanding that. the decision to accept or re-
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ect the new therapy will depend on the results
)f a statistical test applied to this single end-
)oint. This approach has the advantage of pro-
riding a single, unambiguous, valid . probability
statement for comparing the therapies. Further-
;nore, if only one of the endpoints is expected to
*effect the benefit associated with the experi-
nental therapy reliably, this method may be a
sensitive technique for identifying a difference .
Phe obvious disadvantage, of course, is that this
nethod fails to use the information from the
)they measurements.
Perform Multiple t Tests.-A second ap-

-)roach is to compare the therapies with respect
;o each endpoint by using a t test (or any other
;wo-sample test procedure) ; as described pre-
&usly. The P value associated with each test
that is, the per-comparison error rate, as de-
3cribed in the introduction to this, series) provides
an indication about whether therapy is effica-
Hous, and when these P values are considered
-ollectively, an overall judgment about efficacy
-an be made. This approach has the advantage
3f using all the available information; however,
it fails to provide a single overall P value as an
)bjective criterion for accepting or rejecting the
;xperimental therapy.
Use the Bonferroni Adjustment.-Suppose

that on inspecting the results of separate t tests,
as previously described, the investigator noted
that the smallest observed P value was some
number, which we will denote by P*. Forexample,
suppose P* = 0.017. In these circumstances, a
logical question would be, "If no difference existed
between therapies, what is the probability that
the smallest observed P value would be less than
or equal to P*?" A common approximation is
obtained -by using a Bonferroni adjustment, as
described in part 2 of this series, whereby P* is
multiplied by the number of statistical tests that
were performed. In our example, ifP* = 0.017, and
this was the smallest P value observed-'among
10 tests, the Bonferroni-adjusted P value (PA)
would be 0.17 (that is, 0.017 x 10 = 0.17) . This
approach provides another possible criterion for
judging whether to accept the experimental ther-
apy. That is, one may decide to accept the new
therapy as superior only if the Bonferroni-
a.djusted P value is less than 0.05. This strategy
has the desirable property that, if no actual dif-
ference exists between therapies, the probability
that the experimental therapy would be errone-
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ously accepted is less than 0.05. (Notice that this
Bonferroni-adjusted error rate is analogous to the
concept of a per-experiment error rate introduced
in part 1.)
A disadvantage of this procedure is that once

the endpoint associated with the smallest P value
is identified, the information available from the
other endpoints is discarded . For example, if 10
measures of efficacy had -been evaluated and all
10 separate t tests had produced P = 0.02, the
Bonferroni-adjusted P value would be PA = 0.20
(that is, 10 x 0.02 = 0 .20), an indication of no
difference among therapies. This conclusion is
counter to intuition, because statistical signif-
icance was achieved for each measure of efficacy
when each was considered individually .
A second disadvantage of the Bonferroni ap-

proach is that it provides only an approximate
overall error rate, and this approximation may
be poor, especially if the endpoints are highly
correlated . Consider an extreme example. Sup-
pose that in the previous example all 10 end-
points were perfectly correlated-that is, any 1
measurement on a patient could predict the 9
other measurements exactly, without error. In
this case, the results of all 10 tests would be
identical, and any 1 test could be selected as a
criterion for accepting or rejecting the experi-
mental therapy. For example, if a P value of 0.04
was observed, this would appropriately be judged
statistically significant. The Bonferroni-adjusted
P value (PA), however, would be 0.40 (that is,
0.04 x 10 = 0.40), an indication of no difference .
The method we describe next overcomes both of
these difficulties .
Perform a Global Test.-Although all the

aforementioned methods are commonly used in
practice, each has one or more deficiencies. In-
tuitively, one wants an overall test procedure that
will accumulate the separate pieces of informa-
tion available from the several endpoints. In the
following paragraphs, we describe a method for
performing such a test.2
The first step is to consider each endpoint

separately . Rank all the measured values (pool-
ing the data from both groups) from worst to best
in terms of efficacy . Next, replace the measured
value with the assigned rank. For example, the
lowest ejection fraction in a cardiology study
would be replaced by a value of 1, and the highest
ejection fraction would be replaced by a value of
nE + nc (nE is the number of patients in the
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experimental therapy group and nc is the number
of patients in the conventional therapy group) .
The second step is to consider each patient

separately and add the rank values received . For
example, in our hypothetical cardiology-study, a
patient's rank value for ejection fraction would
be added to the rank values for all other mea-
surements. The summated values provide a single
number for each patient in the study that indi-
cates his or her response to therapy relative to
the other patients. Thus, the final step is to
compare the summated values between the two
groups by using any standard statistical proce-
dure for comparing two samples (for example, a
two-sample t test).

EXAMPLE
We illustrate the foregoing procedures with an
example from a study conducted at the Mayo
Clinic by Service and colleagues,' in which two
therapies for diabetes mellitus were compared .
Twelve patients with insulin-dependent diabetes
mellitus who were deficient in C peptide were
randomly assigned to either conventional insulin
therapy or continuous subcutaneous insulin in-
fusion . Eleven patients (six receiving conven-
tional therapy and five receiving infusion ther-
apy) completed the study, which focused on the
effects of therapy on peripheral nerve function .
Nerve conduction was studied by measuring 34
electromyographic variables .
Because all 34 variables were of interest, identi-

fying a single primary endpoint was not feasible .
Separate comparisons between the two groups
were made for each of the 34 measurements, and
the results are summarized in Table 5-1 . Because
outliers and skewness were observed for some of
the variables, t tests were not used for these
comparisons ; rank sum tests were used. With this
procedure, the smallest possible P value was
0.002, which was observed for one of. the tests .
The second smallest P value was 0.015 . A pattern
of small P values was observed, suggesting that
the experimental therapy may be more effica-
cious than conventional therapy for improving
nerve conduction . Consideration of the 34 P values
separately, however, failed to provide a single
objective criterion for judging efficacy .
In this situation, using a Bonferroni-adjusted

P value was not feasible . Because the smallest
possible P value with the rank sum test (with six

Mayo Clin Proc, November 1988, vol 8F

Table 5-1.-Distribution of 34 P Values Comparing Tw,Groups of Patients With Diabetes, Six Treated With
Conventional Insulin Therapy and Five Treated
With Continuous Subcutaneous Insulin Infusion

*Percentages do not total 100% because theywere rounded off,

patients in each group) was 0.002, the smallest
possible adjusted P value with 34 variables would
be 0.002 x 34 = 0.068. With use of the global test
based on summated ranks, the P value was 0.033,
a finding that supports the original impression
of a treatment benefit . For further understand.
ing of the nature of the effect, subgroupings of
the data were considered. The results indicated
that the effects were most apparent proximally
(Table 5-2) .

	

'

COMMENT
In this article, we focused attention on evaluating
the efficacy of an experimental therapy, when
efficacy was determined by multiple patient char-
acteristics . Both per-comparison error rates (from
considering each characteristic individually) and
the per-experiment error rate (the single over-

Table 5-2.-Overall P Values Comparing Two Groups of
PatientsWith Diabetes, Six Treated With Conventional

Insulin Therapy and Five Treated With Continuous
Subcutaneous Insulin Infusion, According to Various

Groupings of Electromyographic Measurements

Modified from Service and associates .' By permission of
Springer-Verlag .

P value
interval

Percentage of
34 variables*

0-0 .1 38
0.1-0 .2 12
0.2-0 .3 9
0.3-0 .4 15
0.4-0 .5 6
0.5-0 .6 2
0.6-0 .7 9
0.7-0.8 3
0.8-0 .9 0
0.9-1 .0 3

Variables included
No. of

variables P value-
All

34 0.033
Speed of conduction 21 0.044
Sensory conduction 13 0.045
Lower extremity function 13 0.156
Distal function 8 0.164
Proximal function 6 0.001
Elevated from normal initially 14 0.156
Most reliably measured 8 0 .029-------------
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all P value) were informative for answering the
question of whether experimental therapy was
superior to conventional therapy.

	

-
We have not considered a related important but

qualitatively different question: Which individual
electromyographic characteristics demonstrate a
benefit from the experimental therapy? This ques-
tion must necessarily be addressed by consider-
ation of each characteristic individually . In the
example, a per-comparison error rate of P = 0.002
was observed for median nerve somatosensory-
evoked potential latency at the neck. When so
many statistical tests are considered, however,
Bonferroni adjustment suggests that such a
small P value may occur by chance. Because of
the very small per-comparison error rate, this
endpoint may be justifiably identified as a poten-
tial candidate for further study. One might want
to temper any definitive conclusions, however,
because the per-experiment error rate based on

the Bonferroni adjustment is more than 0.05. In
general, conclusions may depend on the presence
or absence of similar trends in related measure-
ments and on other circumstances surrounding
the study.
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Suppose that an investigator wants to perform
a clinical trial to compare agroup ofpatients who
receive an experimental drug with a control
group that receives only a placebo. For simplicity,
assume that the result of therapy is dichotomous
(for example, success or failure) and that the
result is known soon after therapy has been
administered . How can the investigator perform
a statistical test to determine whether the exper-
imental therapy is superior to the placebo? The
simplest approach is to wait until all the patients
have been entered into the trial and then perform
aXZ test on theresults.'
In practice, however, this approach of waiting

to analyze the data until all patients have com-
pleted the trial is often impractical. For example,
ethical considerations may necessitate periodic
monitoring of the accumulating data, with the
understanding that if one therapy is found to be
much superior to the other, the trial will be dis-
continued. Under these circumstances, how can
one perform statistical tests at each of the moni-
toring time points and still obtain a single, over-
all probability statement(P value) for judging the
efficacy? Statistical methods for answering this
question will be addressed in . this article.
We note at the outset that it would be in-

appropriate to perform the usual X2 tests and
obtain the corresponding P values at each analy-
sis. The problem with this approach is that the
probability of incorrectly stopping the trial would

Individual reprints of this article are not available. The entire
six-part series will be available for purchase as a bound
booklet from the Proceedings Circulation Office in December .
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be too large. For example, suppose an investi-
gator had decided to perform one interim test
with the understanding that the experimental
therapy would be judged superior if (1) the in-
terim test yielded P<0.05 (in which case, the trial
would be terminated) or (2) the interim test
yielded P>0.05 but the final test at the conclusion
of the study yielded P<0.05. With this strategy,
the probability of incorrectly deciding that the
experimental therapy is efficacious equals (1) the
probability of obtaining P<0.05 in the interim
analysis (this probability is 0.050) plus (2) the
probability of obtaining P>0.05 in the interim
analysis and P<0.05 in the final analysis (this
probability has been evaluated2 and equals 0.030).
Thus, with this strategy, the overall probability
of incorrectly concluding that the experimental
therapy is efficacious is 0.050 + 0.030 = 0.080.
Similarly, if one were evaluating a treatment that
was actually ineffective and performed five tests
at the 0.05 level, one would incorrectly conclude
that the treatment was efficacious with a prob-
ability of 0.14.

METHODS FOR REPEATED
SIGNIFICANCE TESTING
WITH ACCUMULATING DATA
If multiple testing is to be taken into account,
each test must be performed at a more stringent
level of significance (at a lower value of P) . We
will describe three of the most commonly used
methods for doing this. With each method, one
computes the usual. test statistic by using all
available data in each analysis . Thecritical value
for judging significance, however, is altered to
account for multiple testing.
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Pocock Boundary.-Instead of using P = 0.05
as the criterion of significance for each test, the
Pocock method' uses a smaller value-P . The
actual value for P will depend on the number of
analyses to be conducted . For example, with one
interim test, both the interim test and the final
test would be conducted at the P = 0.029 level
to provide an overall significance level of 0.05 .
With five tests, each would need to be conducted
at the P = 0.016 level to achieve an overall signif-
icance level of 0.05 .
A disadvantage of this method arises in trials

in which early termination does not occur. For
example, if four interim tests are planned and
early termination does not occur, the final test
at the end of the study must achieve a value of
P' = 0.016 in order to conclude significance at
P = 0.05 . If the observed value was 0.02, for
example, the investigator would be unable to
claim statistical significance. This situation
would be awkward : if the investigator had not
contemplated early termination and had per-
formed only one test (at the end of the study),
no adjustment for multiple testing would have
been necessary, and the results of the study
would have been significant at P = 0.02 . The next
two procedures address this problem . Because
these procedures require more stringent criteria
for the initial interim tests, the adjustment
needed in the final test (assuming the study is
not terminated early) becomes negligible .
O'Brien-Fleming Boundary.-With use of

the O'Brien-Fleming boundary,` the adjustment
for interim testing is large early in the study but
constantly decreases and is negligible by the end
of the study. For example, with two interim tests
and an overall adjusted P value of 0.05, the
necessary levels of significance are 0.0006, 0.015,
and 0.047 at the first, second, and third analyses,
respectively . If more than two interim tests are
planned, the possibility of stopping at the first
analysis becomes extremely remote . To some ex-
tent, this situation may be desirable. (As we will
discuss, there are important reasons for not
terminating a study early.) If a less stringent
criterion is desired for the initial test, however,
P= 0.001 could *be substituted, with negligible
effect on the overall adjusted P value.
Haybittle/Peto Boundary.-The Haybittle/

Peto methods.6 uses a constant boundary (P) for
the interim tests but makes no adjustment in the
analysis at the end of the study if early termi-
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nation does not occur. Although the actual error
rate will exceed 0.05, the difference will be neg-
ligible if the interim level for testing is suffi-
ciently stringent (P' = 0.001, for example).
Comment.-The stopping boundaries of the

aforementioned three methods are shown in
Table 6-1 and Figure 6-1 . In an actual study, the
choice among these methods will depend on the
circumstances surrounding the study and the
desirability of stopping the study early versus the
desirability of making a smaller adjustment in
the final analysis if early termination does not
occur . (Of course, the choice of a stopping rule
must be made before the data are collected.)

SPECIFIC EXAMPLES
Example 1 .-We consider a clinical trial con.
ducted by G. S. Gilchrist, M.D., at the Mayo
Clinic (personal communication) in which pred-
nisone was compared with prednisone plus vin-
cristine for the treatment of leukemia . Success
was defined as remission, which occurs relatively
soon after treatment or not at all . As indicated
in Table 6-2, remissions (responses) occurred in
38 of 42 patients who received prednisone plus
vincristine and in 14 of 21 patients who received
prednisone only. This study was not designed
to include interim testing, and a conventional
X2 test at the conclusion of the study yielded
P = 0.0095.

Table 6-1 .-Group Sequential Stopping Boundaries*

*Per-experiment error rate = 0.05 .

Test no .
(k) Pocock

P value, by boundary
O'Brien-Fleming Haybittle/Peto

One interim test
1 0.029 0.005 0.010
2 0.029 0.049 0.050

Two interim tests
1 0.022 0.0006 0.010
2 0.022 0.0151 0.010
3 0.022 0.0471 0.010

Three interim tests
1 0.018 5 x 10-5 0.001
2 0.018 0.004 0.001
3 0.018 0.018 0.001
4 0.018 0.042 0.050

Four interim tests
1 0.016 5 x 10-6 0 .001
2 0.016 0.001 0.001
3 0.016 0.009 0.001
4 0.016 0.023 0.001
5 0.016 0.042 0.050
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Fig . 6-1 . Group sequential boundaries, indicating value of test
statistic (Z) required at each test (k) to achieve overall statis-
tical significance atP=0.05 level. Boundaries are shown when
maximum of two (A), three (B), four (C), or five (D) tests is
planned. 0-F= O'Brien-Fleming boundary; HIP = Haybittle/
Peto boundary ; P = Pocock boundary .

We now consider what would have occurred had
the possibility for interim testing been incor-
porated into the study design . We will assume
that the investigator had planned for two interim
analyses after one-third and two-thirds of the
patients had entered the trial and that the Pocock
boundary was used with an overall significance

Table 6-2.-Group Sequential Analysis of Data in Example 1 (See Text)

level of 0.05. An unadjusted P value of 0.022 or
less would have been needed at any of the
analyses to achieve statistical significance . At
the initial analysis, the unadjusted P value was
0.2159. Because this value exceeds 0.022, the in-
vestigator would have continued to enter patients
into the trial . At the next interim analysis, the
unadjusted P value was 0.0259 . Because this
value is again greater than 0.022, the investigator
would have completed the trial and obtained an
unadjusted P value of 0.0095 at the final analysis .
Because this value is less than 0.022, the results
would have been judged significant at PG0.05,
adjusted for multiple testing . If the O'Brien-
Fleming boundary or the Haybittle/Peto boundary
had been used, essentially the same results would
have been obtained; however, the adjusted P value
would have been smaller (approximately 0.01) .
Example 2.-Thus far, we have assumed that

the response to therapy was known immediately
after treatment . In practice, one usually conducts
follow-up of patients over time, and the endpoint
is survival time after treatment . We will illustrate
how the methods described thus far may be used
in these situations . We consider a clinical trial
done at the Mayo Clinic by Lininger and asso-
ciates.' The goal of the study was to compare two
regimens of chemotherapy for extensive small
cell lung cancer. Regimen A consisted of cyclo-
phosphamide, vincristine, VP-16, and cisplatin
alternated with doxorubicin hydrochloride (Adria-
mycin) and dacarbazine . Regimen B consisted
of doxorubicin hydrochloride, vincristine, VP-16,
and cisplatin alternated with cyclophosphamide
and dacarbazine . Sixty-six patients were random-
ized equally between the two regimens; one pa-
tient on regimen A was declared ineligible for the
study shortly after randomization because of in-
correct cell typing . The data were reported by
Fleming and associates,' and survival distribu-
tions are shown in Figure 6-2 .
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Unadjusted
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1 5 2 12 2 0.2159
2 4 3 13 1 0.0259
3 5 2 13 1 0.0095
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Fig . 6-2 . Group sequential analyses . Estimated survival dis-
tributions for patients with extensive small cell lung cancer
treated with two different regimens . Regimen A was cyclo-
phosphamide, vincristine, VP-16, and cisplatin alternated with
doxorubicin hydrochloride (Adriamycin) and dacarbazine .
Regimen B was doxorubicin hydrochloride, vincristine, VP-16,
and cisplatin alternated with cyclophosphamide and dacar-
bazine . Left Panel, Survival distributions on 9/12/77. Right
Panel, Survival distributions on 7/15/79 . (From Fleming and
associates .' By permission of Elsevier Science Publishing
Company.)

We next suppose that the investigators had in-
corporated provisions for three interim analyses
into the study design . The results at the time
of each of the analyses are shown in Table 6-3 .
With use of the - Pocock boundary, statistical
significance would have been achieved at the
first analysis ; hence, the trial would have been
terminated and regimen A would have been de-
clared superior. Conversely, with use of the modi-
fied O'Brien-Fleming boundary (using 0.001 for

Table 6-3.-Group Sequential Analysis ofData in Example 2 (See Text)
P value required for
early termination

From Fleming and associates .' By permission
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the initial analysis in place of 0.00005) or the
Haybittle/Peto boundary, the investigators would
have appropriately continued with the study and
eventually would have found no evidence of a
difference.

DISCUSSION
We have described three techniques for perform-
ing multiple statistical tests on accumulating
data. The goal has been to assist investigators
in deciding when to terminate a study early and
how to make appropriate probability statements
that will help determine whether one therapy is
more efficacious than another. When any strategy
is formulated for early termination of a study,
there is one central question: is it desirable to
terminate a study early? On the surface, the
obvious answer to this question may seem to be
an unqualified "yes." Strong motivations exist
for monitoring accumulating data. There is no
question about the ethical need to terminate a
study when the welfare of the patient is at stake
and the superiority of one therapy over another
has been clearly demonstrated. The opportunity
to terminate a study early also may result in cost
savings that, in some instances, may be substan-
tial . Furthermore, an early answer to the scien-
tific question at issue may facilitate the initiation
of additional studies, as a result of the completed
study either indicating new areas of investigation
or releasing patients for participation .
From a scientific standpoint, however, often

powerful incentives exist for continuing a trial .
Because the ultimate goal of medical research is
patient care, these incentives also translate into
ethical arguments .

1 . One of the disadvantages of early termina-
tion is that it may preclude obtaining satisfactory

of Elsevier Science Publishing Company .

Date

No . of
randomized

Regimen A

patients

Regimen B
No. of
deaths

Two-sided
P value Pocock

Modified
O'Brien-
Fleming

Haybittle/
Peto

9/12/77 19 17 15 0.013 0.018 0.001 0.001
5/5/78 30 32 30 0.214 0.018 0.004 0.001
11/12/78 32 33 45 0.701 0.018 0.018 0.001
7/15/79 32 33 60 0.785 0.018 0.042 0.050
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answers to secondary (but nonetheless impor-
tant) questions pertaining to drug safety and
efficacy . Typically, many such questions could be
posed, and the answers to these questions deter-
mine how the new therapy is implemented in
clinical practice .
2 . A related and equally important concern is

the need to obtain a sample size sufficient for
subgroup analyses because the efficacy and tox-
icity of a drug often will vary among different
types of patients .
3 . The use of early stopping strategies neces-

sitates a corresponding strategy for obtaining
unbiased estimates of drug efficacy . Because the
study will be stopped early only at a time when
one therapy seems to be considerably superior to
the other, the usual estimates (for example, the
proportion of patients who improved) will be bi-
ased. Because the special, methods required to
estimate efficacy are often extremely compli-
cated, the need for such methods increases the
difficulties of communicating study results to
nonstatisticians .
4 . The criterion that may be appropriate for

addressing the immediate ethical question (which
therapy should the physician select for the next
patient?) may be less satisfactory for obtaining
a definitive answer to the scientific questions .
Although P<0.05 or P<0.10 may suffice for the
ethical question, P<0.01 may be desirable for the
scientific questions.
5 . As illustrated in the second example, when

the primary endpoint is survival, the long-term
effect of therapy may not become apparent until
later in the trial and may differ substantially
from the early effects . For example, some types
of therapy (operation or chemotherapy) may be
sufficiently hazardous that early mortality (for
example, at 1 year) might actually be increased,
and a benefit may become apparent only much
later (for example, at 5 to 10 years) . The converse,
an early transient benefit with no subsequent
difference in survival, is also a possibility .
6 . The interpretation of "sequentially adjusted"

P values is often difficult to communicate to medi-
cal investigators . In fact, statisticians often dis-
agree on this point.' - ' S For example, interpreta-
tion of the results of a group sequential trial may
be controversial if the trial did not terminate
early and did not achieve statistical significance
with use of a group sequential boundary but the
unadjusted P value was less than 0.05 .
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7. Finally, one must consider the substantial
effort and cost involved in launching a well-
designed clinical trial and the practical need of
providing stable financing for both the investi-
gators and their supporting staff. Uncertainty
about continuity of funding for individual studies
raised by the possibility ofearly termination may
jeopardize the prospects for long-term research
programs .

CONCLUSION
Is early termination of a study desirable? Rather
than attempt a simple, universally acceptable
answer to this question, we recommend that
group sequential testing be incorporated into the
study design but, that a stopping boundary be
chosen-that appropriately reflects the perceived
desirability of early termination . In practice,
stopping rules are only guidelines to be used by
those making the decision to stop a trial . Rarely,
if ever, is a trial terminated solely on the basis
of a statistical stopping rule .
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