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ABSTRACT
Motivation: In microarray data studies most researchers are keenly
aware of the potentially high rate of false positives and the need to
control it. One key statistical shift is the move away from the well-
known P -value to false discovery rate (FDR). Less discussion perhaps
has been spent on the sensitivity or the associated false negative rate
(FNR). The purpose of this paper is to explain in simple ways why the
shift from P -value to FDR for statistical assessment of microarray data
is necessary, to elucidate the determining factors of FDR and, for a
two-sample comparative study, to discuss its control via sample size
at the design stage.
Results: We use a mixture model, involving differentially expressed
(DE) and non-DE genes, that captures the most common problem
of finding DE genes. Factors determining FDR are (1) the proportion
of truly differentially expressed genes, (2) the distribution of the true
differences, (3) measurement variability and (4) sample size. Many
current small microarray studies are plagued with large FDR, but con-
trolling FDR alone can lead to unacceptably large FNR. In evaluating
a design of a microarray study, sensitivity or FNR curves should be
computed routinely together with FDR curves. Under certain assump-
tions, the FDR and FNR curves coincide, thus simplifying the choice
of sample size for controlling the FDR and FNR jointly.
Availability: R-package OCplus for computing FDR, sensitivity curves
and sample size is freely available at http://www.meb.ki.se/ ˜yudpaw
Contact: yudi.pawitan@meb.ki.se

1 INTRODUCTION
The standard P -value was invented for testing individual hypotheses.
There is an obvious problem when analyzing gene expression data
collected via microarrays, as this usually involves testing from sev-
eral thousands to tens of thousands of hypotheses simultaneously.
When applied in repeated testing, the standard P -value is conceptu-
ally associated with the specificity of a test, i.e. it is used to control
the false positive rate of a test. Declaring a test to be significant when
P -value <0.05 means we are setting specificity to be 0.95. It is well
known in diagnostic testing that when the disease prevalence is small,
we need a test with very high specificity, as otherwise there are too
many false positive results. However, although a number of adjust-
ment procedures are available (Dudoit et al., 2002; Shaffer, 1995;
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Westfall and Young, 1993; Holm, 1979; Hochberg and Tamhane,
1987), it is not immediately clear how small a P -value should be
to protect against this problem. Furthermore, many adjustments of
P -value, which are based on controlling the probability of making at
least one false positive, are too conservative for microarray studies
in that they can lead to low sensitivity (Dudoit et al., 2002).

The false discovery rate (FDR) of a test is defined as the expected
proportion of false positives among the declared significant res-
ults (Benjamini and Hochberg, 1995, 2000; Keselman et al., 2002).
Because of this directly useful interpretation, FDR is a more con-
venient scale to work on instead of the P -value scale. For example,
if we declare a collection of 100 genes with a maximum FDR of 0.10
to be differentially expressed (DE), then we expect a maximum of 10
genes to be false positives. No such interpretation is available from
the P -value. New methods have been proposed either to transform P -
value into an FDR or to compute FDR directly (Storey and Tibshirani,
2003; Storey, 2002; Aubert et al., 2004; Reiner et al., 2003).

The presentation of the FDR in the statistical literature tends to
be rather technical, typically with a strong emphasis on the general
framework uniting the P -value, classical multiplicity adjustment,
FDR and recent modifications of the FDR. In this paper, we try to
present the FDR as a simple and directly appealing criterion for hand-
ling the testing of simultaneous hypotheses. The usual perspective
treats the individual genes or hypotheses and their P -values separ-
ately, and then adjusts the P -values for multiplicity after the fact.
While this is technically what happens when computing FDRs for
a given dataset, it distracts from a more direct way of looking at
detecting differential expression and multiple testing.

When controlling the FDR, an experimenter also needs to be
aware of the sensitivity or false negative rate (FNR), as he/she does
not want to lose too many of the truly DE genes by setting the FDR
too low. Thus, the increasing use of FDR needs to be accompanied
by the sensitivity or FNR assessment.

At least four factors determine the FDR characteristics of a
microarray study: (1) the proportion of truly differentially expressed
genes, (2) the distribution of the true differences, (3) measurement
variability and (4) sample size. Only the latter is under the experi-
menter’s control. Among other things, the analysis of FDR allows
an assessment of sample size needed in microarray experiments.
Knowing how many samples are needed has been a problem for
many researchers, but no clear recommendation based on the FDR

© The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org 3017

http://www.meb.ki.se/


Y.Pawitan et al.

seems to be on offer. Since the P -value concept is not suitable
for microarray studies, the standard sample size calculation from the
traditional hypothesis testing framework, based on controlling the
false positive rate (e.g. Dobbin et al., 2003; Wang and Chen, 2004;
Yang et al., 2003; Gadbury et al., 2004; Pan et al., 2002; Zien et al.,
2003), is not appropriate. Yang and Speed (2003) even suggested
that sample size determination based on classical power considera-
tion was not possible. Hence in this paper we will (1) describe the
relationship between the traditional P -value and FDR, (2) explain
the factors that determine the FDR and sensitivity characteristics of
a study and (3) describe a method to compute a sample size for a
two-sample comparative study based on controlling the FDR and
sensitivity.

2 METHODOLOGY
The most common objective in microarray data analysis is to search for DE
genes between two or more conditions. Another common objective is to
search for a molecular signature, a set of genes that optimally separates two
or more groups. With the former, there is no restriction on the number of DE
genes; with the latter, an optimal set of classifier genes usually consists of a
small subset selected from the top of the DE gene list. In this paper we are
concerned with the first objective.

The statistics of the gene discovery is best seen in a simple two-by-two
table (Table 1), where 10 000 genes are classified according to their true status
and the test result. In this example, the false positive rate is B/(A + B) =
475/9500 = 5%, and the sensitivity of the test is D/(C + D) = 400/500 =
80%. In conventional terms, we have a test with 95% specificity and 80%
sensitivity, but the FDR is B/(B+D) = 475/875 = 54%, i.e. more than half
of the ‘discovered’ genes are bogus. So the standard control of significance
level leads to a high rate of false discoveries even when the power of the test
would be considered adequate for a single-gene study.

It is immediately obvious that the problem arises from the high proportion
of non-DE genes in this example (95%), as the false positive rate controls
the percentage of wrong discoveries only relative to the truly non-DE genes.
Although it is possible to reduce the FDR by reducing the critical level for the
P -values, the amount of reduction is determined by the proportion of truly
DE genes. Thus a P -value control is only an indirect way of controlling the
FDR, since, to be more meaningful, it needs to be translated into FDR; hence
a more direct approach is preferable.

Another simple message from the table is that the analogous idea of a false
non-discovery rate (FNDR) does not have the same appeal as the FDR: in
our example, FNDR is very low at C/(A + C) = 100/9125 = 1%. For a
small percentage of truly DE genes, as we expect in practice, C will be small
compared with A, so FNDR will be misleadingly small, which is the same
problem as the false positive rate to begin with. In contrast, the standard
concept of sensitivity or equivalently the FNR is still useful. The FNR in
this example is C/(C + D) = 100/500 = 20%, which is more directly
informative of the proportion of truly DE genes missed by the experiment.
Thus in microarray studies we believe that it is most meaningful to report or
control both the FDR and FNR.

2.1 Two-sample comparative studies
To simplify our presentation, we will focus on the common problem of com-
parison between two independent groups with equal variance, and explain
the FDR using a theoretical analysis of this problem. With standard modific-
ations of the statistics involved, the methodology applies to other problems.
Thus, we assume a two-group comparison problem with n arrays per group,
using the standard t-test with pooled variance estimate. The expression values
in log2-scale are assumed normally distributed. To simplify the presentation
further we will assume for each gene a standard deviation σ = 1 through-
out. This is equivalent to standardizing the expression measurements by
their standard deviation, so the fold changes below have a universal scale

Table 1. A simple two-by-two table where 10 000 genes are classified
according to their true status and the test result

Test result
non-DE DE Total

True
non-DE A = 9025 B = 475 9500
DE C = 100 D = 400 500
Total 9125 875 10 000

DE stands for differentially expressed, the rows describe the true state of nature and the
columns the test decision based on the experimental data. A is the number of non-DE
genes that were correctly classified, and similarly for B, C and D.

in standard deviation units. In reality the expression variance varies between
genes, but by standardizing the variance we assume that all genes have equal
variance.

We do not specify the number of genes, as the method is applicable for
any number. If one wants to be more specific we can assume it is of the order
of 10 000 genes, so, for example, a list of top 1% genes will have 100 genes.
In the analysis we assume the genes are independent, although the results
can be expected to hold for weakly dependent genes; see also the Discussion
section.

In principle, any formal statistical testing procedure that is applied on a
gene-by-gene basis can be characterized as follows: (1) compute the relevant
test statistic for each gene, (2) sort the statistics by order and (3) determine a
cutoff point beyond which all genes are assumed to be DE. This holds regard-
less whether the test statistic is the fold change, a conventional t-statistic, a
modified t-statistic, a correlation statistic, a raw or adjusted P -value, etc.
For the t-statistic that is described in this paper, we can compute the FDR
for a given scenario explicitly. When explicit formulas are not available, we
can always use a simulation study for the scenario of interest and present
the results as in Section 3. Later we give an example of FDR and sensitivity
computation using permutation-based test.

2.2 Assumptions and theory
For clarity, the following list collects and defines all the elements of the
current problem, and for some elements the values used in the analysis are
stated. These elements are grouped logically rather than alphabetically.

• FDR is the proportion of false positives among the declared DE genes.

• t-Statistics is the standard two-sample t-statistics with pooled variance.

• Significant result or DE call is declared for |t-statistics| > c. The critical
value c is allowed to vary.

• Significance level α of a test is the same as the false positive rate, which
is the proportion of false positives among truly non-DE genes.

• Sensitivity is the proportion of truly DE genes which are declared
significant and corresponds to the power of the design or 1 minus the
FNR.

• n is the sample size per group. For illustration in this paper we will use
varying sample sizes from 5 up to 50.

• p0 is the proportion of truly non-DE genes. We will use a range of values
p0 = (0.9, 0.95, 0.99). The latter size is commonly observed in many
experiments. For example, if we have 10 000 genes, we expect on the
order of 100 truly DE genes.

• p1 = 1 − p0 is the proportion of truly DE genes. This is assumed to
be equally split between down-regulated and up-regulated genes, and
the differential expression is assumed to be concentrated at some fold
changes.
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• Log-fold change is the mean difference in log2-scale and in standard
deviation units, so ‘log-fold change = 1’ means a ratio of 2σ for the
mean of Group 1 versus the mean of Group 2.

• Distribution of the true differences shows the log-fold changes of the
truly DE genes. The following scenarios are used:
(1) Log-fold changes at −1 and +1 (with equal proportions of 0.5 ∗p1

each).

(2) Log-fold changes at −2 and +2 (with equal proportions of 0.5 ∗p1

each).

Unless stated otherwise, the Scenario 1 is used in all examples. In tradi-
tional single-gene studies a true difference of 1σ is considered a large effect;
at 5% significance level it only requires a sample size n = 16 samples per
group to detect it with 80% power. So, we believe that scenario A is already
rather optimistic, but we will see that for microarray studies this scenario
leads to large FDR and low sensitivity. A true difference of 2σ in Scenario 2
is a very large effect, where at 5% level and 80% power, only 4 samples per
group are sufficient in single-gene studies.

Under the null hypothesis of no differential expression, the t-statistic is
distributed according to central t-distribution with 2n−2 degrees of freedom.
Under the alternatives, the t-statistic has the same distribution, except for a
non-centrality parameter. So, the distribution of the observed t-statistics is a
mixture of the form

F(t) = p0F0(t) + p1F1(t),

F1(t) = 0.5{G1(t) + G2(t)},
where F0(t) is the central t-distribution with degrees of freedom df = 2n−2,
and G1(t) and G2(t) are non-central t-distributions with df = 2n − 2 and
non-centrality parameters

√
n/2D/σ and −√

n/2D/σ , respectively. The
parameter D/σ is the assumed non-zero log-fold change. In the computation,
D/σ is, for example, −1 or 1. Given a critical value c > 0, we can compute
the proportion of declared DE genes as 2{1 − F(c)}. The classical signific-
ance level is equal to the proportion of false positives, and it is computed as
2{1 − F0(c)}. The FDR is then given by

FDR = p0{1 − F0(c)}
1 − F(c)

.

The sensitivity of the test is computed as 2{1 − F1(c)}.
Now we show that if we declare the top (1 − p0) × 100% as DE genes,

the FNR is the same as the FDR. For the moment, we use the fact that the
distributions F(t), F0(t) and F1(t) are symmetric around 0. For fixed critical
value c > 0, the sensitivity is given by

2F1(−c) = (1 − FDR) × 2F(−c)/(1 − p0),

where 2F(−c) is the proportion of declared DE genes. So if we set
2F(−c) = 1 − p0, the sensitivity is 1 − FDR and the FNR equals the FDR.
In the general asymmetric case, it makes sense to consider the up- and down-
regulated genes separately. The same result then holds if we consider the
positive and negative values of the test statistics separately.

3 RESULTS

3.1 Discovery by t-statistic
For a particular scenario, each critical value of the t-statistic gener-
ates a two-by-two table like Table 1, from which we can compute
the various rates. Rate curves can then be constructed from a range
of critical values. The solid curves in Figure 1 are the FDR as a func-
tion of critical value in t-statistic scale. Each curve is labeled by the
proportion of truly non-DE genes p0. For n = 5 arrays per group,
the 5%-level two-sided critical value for the t-statistic is c = 2.31. If
the proportion of non-DE genes is p0 = 0.9, and if we declare sig-
nificance at this 5% level, then we should expect >60% FDR. Using
the same sample size n = 5, such a criterion will produce ∼95%
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Fig. 1. FDR (solid curves), false positive rate α (dashed curves) and sens-
itivity (dotted curves) as a function of critical value of the t-statistic. Each
FDR curve is labeled by the proportion of non-DE genes p0. A single sens-
itivity curve applies for all p0. The dotted vertical line is drawn at 80%
sensitivity.

FDR if p0 = 0.99. Hence, in small experiments where we expect a
large proportion of non-DE genes, the FDR can be persistently high,
even when we use high critical values.

The dashed curve in each plot is the classical significance level
or false positive rate as a function of critical value. For n = 5, the
critical values associated with significance level 0.05, 0.01 and 0.001
are 2.31, 3.36 and 5.04, respectively. Since the significance level is
associated with the standard P -value cutoffs, this plot shows that
standard statistical assessment using P -value leads to unacceptably
high-FDR. The dotted curve is the sensitivity or power as a function
of critical value of the t-statistic. For example, when n = 5 and
significance level is 5%, the sensitivity is ∼35%. At 80% sensitivity,
the FDR level is persistently above 80%. One must say that this
study is seriously underpowered.

However, even when the sensitivity at the traditional 5% signific-
ance is high enough (e.g. at n = 20 arrays per group, sensitivity
is ∼90%, plot not shown), compared with FDR, the level of sig-
nificance and the associated P -value is too small and not sensible as
a control of false positives. At 20 arrays per group, controlling for
FDR is feasible, but the resulting FNR might be high.

The situation improves when the sample size is increased to n = 30
per group. For example, a critical value of c = 3, associated with a
P -value cut-off of 0.004, leads to <10% FDR if p0 <0.9. If p0 is
near 0.99, the FDR is ∼32%. At this sample size, a 0.4%-level test
is associated with ∼80% sensitivity. The high-FDR when p0 is high,
indicates that we cannot naively use the usual formula in sample size
computation, i.e. requiring 80% sensitivity at 5% significance level.
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Fig. 2. FDR (solid curves) and sensitivity (dotted curves) as a function of
percentage significant genes. Each FDR curve is labeled by the proportion of
truly non-DE genes p0. The sensitivity curves are in the same order as the
FDR curves, for example, the top curve corresponds to p0 = 0.99.

3.2 Discovery by percentage of significant results
Sometimes a list of DE genes is determined by taking a number or
a proportion of top-ranking genes with largest absolute t-statistics.
Figure 2 shows the FDR as a function of percentage significant
results. For example, if we specify the top 1% of all genes as differ-
entially expressed, using n = 5 arrays per group and the proportion
of non-DE genes p0 is 0.99, then the FDR >80%. At this low sample
size, such a procedure is safe from false discovery only if p0 is smal-
ler than 0.8, that is, there is a very large proportion of truly DE genes,
which in practice is an extremely rare occurrence. As we increase
the sample size to n = 30 arrays per group, the FDR is improved
substantially, especially if p0 is not too large. Even with n = 30, if
p0 is near 0.99, the FDR will still be >20% if we declare the top 1%
to be DE.

The sensitivity (dotted) curves in Figure 2 show that the discovery
by declaring a small proportion of the top genes to DE can lead to low
sensitivity or large FNR. This may or may not be a problem depending
on the purpose of the analysis. If the purpose is prediction, sometimes
a few top genes are adequate and the lack of information of which
genes are DE is not an issue. However, if the purpose is to find as many
DE genes as possible, the loss of sensitivity might be less tolerable.
Most researchers are probably aware of this problem intuitively, if
not quantitatively. It might seem less intuitive that higher sensitivity
is obtained with higher p0, but observe that it is achieved at the price
of higher FDR.

Regarding sensitivity in this approach, an interesting coincidence
occurs, namely, if we declare the top (1 − p0) × 100% as DE genes,
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Fig. 3. FDR as a function of sample size and percentage significant results.
Each curve is for a fixed percentage of significant genes. For example, the
label ‘10’ at the end of one curve refers to a fixed 10% of the top genes being
declared significant. In this plot, the FNR for (1 − p0) × 100% significant
genes coincides with the FDR curve; for example, for p0 = 0.95, the FDR
curve for 5% DE genes is the same as the FNR.

the FNR is the same as the FDR. For example, when p0 = 0.99 and
we declare the top 1% genes to be DE, then the FDR and FNR are
both ∼20%. The proof is given in Section 2.

The plots in Figure 2 also show that we may have to consider care-
fully the genes included in an analysis. Genome-wide chips with
45 000 probes are now in common use; if the number of DE genes is
fixed, increasing the number of probes will increase the proportion
of non-DE genes p0. This will result in larger FDR, sometimes dra-
matically so, for example, compare the FDR curves for p0 = 0.95
versus p0 = 0.99 for n = 30.

3.3 Discovery by other statistics
The gene discovery approaches above can be extended to other
statistics, such as fold change, correlation coefficient, rank-based
statistics or permutation-based P -values and various adjusted P -
values. Many of these statistics are either exact one-to-one maps or
highly correlated with the t-statistic, so we can expect roughly sim-
ilar relationships between false positive rate, FDR, sensitivity and
sample size.

3.4 How many samples do we need?
If the proportion of truly non-DE genes p0 is not so large (e.g. 0.9),
then it makes sense that we should be able to identify a lot more
significant genes than if p0 is close to one. If we can guess what
p0 is, it may be sensible to declare the top (1 − p0) × 100% genes
as significant as shown in Figure 2. In Figure 3, we show that the
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success of such procedure depends on the sample size and the size of
p0. If the sample is too small or if p0 is near one, the FDR may still
be too large. If p0 = 0.99 and we want to select the top 1% genes,
then the FDR is persistently high at >20%, unless the sample size is
more than 35 arrays per group. Around 45 arrays per group is needed
if we want to get 10% FDR.

There are currently several methods to estimate p0 (e.g. Efron
et al., 2001; Storey, 2002), so it might be sensible to declare the
top (1 − p0) × 100% genes as DE. If a pilot study is available,
one can estimate p0 and the distribution of DE genes, then plan the
study better. This is a similar situation as planning of experiments in
classical hypothesis testing framework. As previously stated, if we
declare the top (1 − p0) × 100% as DE genes, the FNR is the same
as the FDR. This means that in Figure 3, the middle FDR curve also
functions as the FNR, and controlling FDR automatically controls for
sensitivity. For example, 10% FDR corresponds to 90% sensitivity.

Figure 3 shows that the required sample size in an experiment
depends on (1) the number and (2) the distribution of the truly differ-
entially expressed genes, and (3) on how much FDR we can tolerate.
When the number of such genes is small, or when the fold changes
are small, a large sample size is needed to control for the FDR. In
small experiments involving say 5 arrays per group, one must hope
for genes with quite large fold changes (>3σ ), otherwise the situation
is hopeless.

3.5 Larger fold changes
We consider Scenario B of truly DE genes with log-fold changes
at {−2, +2} with proportion p1/2 each. As we note previously, at
5% significance level and 80% power, we only need n = 4 samples
per group to detect this effect size for one gene. Compared with
Figure 1, Figure 4 shows some reduction of FDR, although not very
dramatic if p0 is close to 1. Sensitivity is also increased, so at n = 30
arrays per group the sensitivity is 100% for critical value c = 5.
Nevertheless, the false positive rate is still much smaller than the
FDR, indicating that the FDR assessment is still better than P -value.
The same exercise can be repeated at larger fold changes, or with a
more complex distribution of fold changes, not only at two values,
but also at several values or over a range of values. Our key message
is similar, that is, the existence of genes with large fold changes is
the only hope that small experiments can still give reasonable results
with small FDR.

3.6 Genes with tiny effects
Presumably genes with tiny effects will not be of interest to the
scientists, partly because the discovery of these genes is not likely to
be replicated except in very large studies. This problem was discussed
by Efron (2004). These genes have a strong impact on the FDR
via two factors: (1) increasing the size of p0 and (2) widening the
null distribution of the observed t-statistic. Current procedures to
estimate p0 assume that we are interested in a sharp null hypothesis
of non-DE; in reality, we can imagine that the true log-fold change is
distributed around zero, and there will be a fraction of genes whose
log-fold change is near zero. If genes of tiny effects are not of interest,
then p0 should be extended to include these genes. From previous
analyses, we know that increasing p0 will increase the FDR, hence
making it harder to find the truly DE genes.

The second effect of these genes is that they widen the null dis-
tribution of the statistic, which will also increase the FDR. As an
example, in Figure 5, instead of a point mass of probability p0 at 0
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Fig. 4. Similar to Figure 1, except the DE genes have log-fold changes at −2
and +2. Compared with Figure 1, the FDR is reduced and the sensitivity is
increased.
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Fig. 5. Similar to Figure 1, except the non-DE genes are diffused around zero-
fold change. Compared with Figure 1, here the FDR is generally increased.
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log-fold change, suppose we assume a mixture of log-fold changes
at −0.25, 0 and +0.25 with equal probability (all equal to p0/3).
Compared with Figure 1, for the same p0, the FDR is increased. For
example, from Figure 5, to get 80% sensitivity with n = 30 arrays
per group, for p0 equal to 0.90, 0.95 and 0.99 the FDR is 17, 30 and
69%, respectively. From Figure 1, the corresponding values are 4,
8 and 32%. Hence the impact of genes of small effects on the FDR
assessment can be substantial.

3.7 Data analysis
Assessment of sample size for a study requires knowledge of the
distribution of fold changes, but estimation of such distribution from
a dataset is beyond the scope of this paper. Instead here we will
only describe briefly how the concepts of FDR and sensitivity can
be applied to real data. There is a growing literature on the estima-
tion of FDR, but not of sensitivity. We consider the analysis of 240
cases of diffuse large B-cell lymphoma data from Rosenwald et al.
(2002). The average follow-up was 4.4 years, and 138 patients died
during this period. To simplify, we will ignore the censoring inform-
ation and compare the survivors and non-survivors. A ‘lymphochip’
cDNA microarray was used, containing 12 196 probes, but after
various quality controls, 7399 probes were used for analysis. The
computation of FDR follows the same mixture model

F(t) = p0F0(t) + p1F1(t),

where the null distribution F0(t) is computed using the permutation
of the group labels (e.g. Efron et al., 2001), and the test uses the
two-sample statistic with pooled variance. The permutation-based
result is valid without assuming log-normality or equal variance. (If
the sample size is large enough, the independence assumption is not
required, where in the computation the permutation of the group
labels is performed only once and applied to all the genes simultan-
eously. Commonly used permutation tests permute the labels for each
gene separately, as is done in this example.) Since F(t) is observed
and p0 can be estimated from the data (e.g. Efron et al., 2001), we
can estimate F1(t). The estimates of FDR and sensitivity are com-
puted using the formulae in Section 2.2, and they are constrained to
be monotone.

The top plot in Figure 6 shows the FDR and sensitivity curves for
a random subsample of n = 60 patients per group. Had the study
been done at this sample size, the sensitivity would be much too low
and there would not be any gene with low-FDR. With the full dataset
we are comparing n = 138 non-survivors versus 102 survivors, the
FDR curve is now low enough, although at a critical value of, say,
c = 2.5, the sensitivity is quite low at ∼0.2.

3.8 Robustness of the assumptions
In the previous illustrations we have made strong assumptions
regarding, for example, the log-normality and equal variance.
To check the robustness of these assumptions, we performed the
following study using the lymphoma data from above:

(1) Take a random subsample of n arrays from each group.

(2) Replace the observed gene-wise means by

mij = µij + t(n−1),ij sj /
√

n, i = 1, 2; j = 1, . . . , p,

where µij is the hypothetical true mean of gene j from group
i, and t(n−1),ij is a random realization from the t-distribution
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Fig. 6. The FDR (solid) and sensitivity (dashed) curves for the diffuse large
B-cell lymphoma data from Rosenwald et al. (2002). The two groups being
compared are the non-survivors versus survivors during follow-up. The left
plot shows that a sample size of 60 per group is not adequate since the FDR
is too high and the sensitivity too low. The right plot is based on the full study
samples, comparing 138 non-survivors versus 108 survivors.

with (n − 1) degrees of freedom, sj is the standard devi-
ation of gene j in the survivor group. The true means will
be set according to the groups, and, to mimic the theoretical
model, a proportion of p1 of the genes is allowed a shift of
±D (in standard deviation units):

µ1j ≡ 0,

µ2j ≡ Dsj × Bj ,

where Bj takes random value ±1 with probability p1/2. If
yijk is the log-expression of gene j in the k-th array of group
i, this step involves computing

yijk ← yijk − ȳij + mij ,

where ȳij is the observed mean.

(3) Perform the permutation-based analysis on the new dataset as
described above to compute the FDR and sensitivity.

The second step is based on the standard theory that

sample mean − true mean

std dev/
√

n

has t-distribution with n − 1 degrees of freedom. In effect, we gen-
erate a dataset that has all the properties of real microarray data,
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Fig. 7. Comparison of the theoretical FDR and sensitivity curves (both in
solid lines) versus the permutation-based curves (dashed lines). The data
are random subsamples from the lymphoma data, where the means are
recomputed to allow theoretical comparisons.

including non-normality, unequal variance and dependence, but the
fold changes have been set to have particular values conforming
to our theoretical model. Figure 7 compares the theoretical FDR
and sensitivity curves as previously computed and the correspond-
ing curves computed using the permutation test. In the computation
we use p0 = 0.9 and D = 1. The FDR curve computed using
the strict assumptions is remarkable robust for samples as small as
n = 10 per group. For larger n the theoretical sensitivity has positive
bias, which means that the true sensitivity in many studies is some-
what worse than our projection. Further investigation is needed to
understand and correct the bias of the theoretical sensitivity.

3.9 Software
An R package called OCplus for the computations of the oper-
ating characteristic (OC) curves in this paper is available at
http://www.meb.ki.se/∼yudpaw, containing functions to compute

• theoretical OC curves, such as FDR, false positive rate and sens-
itivity as a function of critical values. For example, Figure 1 of
this paper can be generated by the command

TOC(p0 = c(0.9, 0.95, 0.99), D = 1, n = 5)

• FDR as a function of sample size. Figure 3 of this paper can be
generated by the command

samplesize(p0 = 0.99, D = 1, crit.style = “top percentage”,

crit = c(0.005,0.01,0.02))

The TOC() command also allows general null hypotheses and gen-
eral alternatives. The empirical versions of the OC curves for real
data are available using the command EOC().

4 DISCUSSION
Technological progress in genome-wide measurements has changed
the scientific discovery process to more data-driven rather than
hypothesis-driven approaches. Our motivation comes mainly from
RNA expression microarray data analysis, where scientists are facing
a flood of such discoveries. It is not unusual to hear an investigator
declare with desperation that he/she has several thousand ‘signific-
ant’ genes, which make further steps in the experiment anything but
clear. Characterization of a gene list in terms of FDR is useful, so it
is important that more scientists understand the FDR concept, cer-
tainly in addition to the standard P -value. We have chosen to present
the FDR mostly from a conceptual perspective, as we believe it is
simpler to understand it that way. It is worth highlighting the use-
ful analogy between gene discovery and population screening for a
relatively rare disease. In the latter context it is well known that the
false positive rate is not sufficient to describe the performance of a
procedure. We have illustrated, however, that all the concepts in the
paper can be readily applied to real data analysis.

There are a lot of recent works on the extensions of FDR. Genovese
and Wasserman (2002) investigated the properties of the FNDR,
which is also similar to the ‘miss rate’ in Taylor et al. (2005). From
the simple table in the Methodology section, we have seen that when
the probability p0 of truly non-DE genes is high, as is usually the
case in practice, FNDR will be misleadingly small. For the same
reasons we prefer FDR over the P -value, we believe that the FNR is
more meaningful than the FNDR.

It is arguable how much FDR one should tolerate. If gene discov-
eries require laborious clinical or biological validations, then one
might argue for a low-FDR. On the other hand, low-FDR means
high-FNR, which might not be acceptable either. Our point here is
that it is important to know first the FDR and FNR characteristics
of a study, so one has a realistic expectation about the results. The
decision about how low the FDR should be can be left open for the
investigators. One advantage of the FDR–sample size relationship
we show in Figure 3 is that FDR control is automatically a control
of FNR. This simplifies the conceptual planning of sample size of a
microarray study.

Many early microarray studies involved small numbers of arrays
(e.g. DeRisi et al., 1997; White et al., 1999; Lee et al., 2000; Smid-
Koopman et al., 2000; Tusher et al., 2001; Tibshirani et al., 2002;
Efron et al., 2001; Lock et al., 2002). All microarray studies of cancer
prognosis published between 1995 and April 2003 had a median of
25 patients (Ntzani and Ioannidis, 2003). The analysis here shows
that such studies are susceptible to large FDR, unless there is a large
proportion of truly DE genes, or there are some genes with very large
effects. A meta-study of 16 studies comparing two groups and done
between 1999 and 2002 (Pavlidis et al., 2003) used progressive re-
sampling from the existing data to study the effect of sample size on
selected gene lists. The authors suggested no less than 5 and 10–15
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replicates per group as optimal, but our analysis now shows that in
general one cannot provide such an assurance, as the optimal sample
size is a function of underlying parameters of the study.

The proportion of non-DE genes p0 turns out to be a key parameter
that determines the FDR characteristics of a microarray study. For a
given dataset there are several procedures to estimate this quantity
(Storey and Tibshirani, 2003; Storey, 2002; Efron and Tibshirani,
2002; Efron et al., 2001). For some experiments, for example, those
involving knockouts, biologically we might not expect a large num-
ber of DE genes, so one must be rather cautious in setting critical
values for DE. In general, the key message from our analysis is that
relatively large microarray studies, larger than many current stud-
ies, are required to control for FDR while maintaining reasonable
sensitivity.

Previous suggestions on sample size for microarray studies had
been based on classical significance level and power (e.g. Pan et al.,
2002; Dobbin et al., 2003; Yang et al., 2003; Zien et al., 2003; Gad-
bury et al., 2004; Wang and Chen, 2004; Dobbin and Simon, 2005).
In contrast, we present a sample size computation purely based on
FDR control. The latter approach is advantageous, since we have
argued here that FDR is a more natural scale to work on rather than
the P -value. Lee and Whitmore (2002) proposed sample size com-
putations based on controlling the absolute number of false positives.
Such a scale is better than the classical significance level, but again
it is not as appealing as the direct control of the FDR. Müller et al.
(2004) considered theoretically the question of optimal sample size,
by maximizing the number of DE genes for a given FDR.

In our analyses we have assumed that the genes are independent.
For the conceptual understanding of FDR, this is not an issue. How-
ever, for the sample size computation, this might be a problem. The
current theory of FDR (Storey and Tibshirani, 2003; Storey, 2002;
Efron, 2004) indicates that independence is not necessary, and similar
results can be expected to hold for weakly dependent genes, as would
be expected for genes connected in biological pathways. Our work
in normalization of microarray data (Ploner et al., 2005) shows that a
large collection of genes—that have been properly normalized—are
on the average uncorrelated. Further understanding of the genome-
wide dependence structure is needed for parsimonious modeling that
can be used to improve the sample size computation.

In summary, the simultaneous testing of thousands of hypotheses
in microarray data analysis allows a stronger assessment of false
positives in terms of FDR, so conceptual understanding of FDR is
becoming a necessity. The standard P -value is suited to single hypo-
theses, and does not give a proper sense of uncertainty when there are
many tests performed. Theoretical connections among FDR, sensit-
ivity and sample size allow us to plan studies with reasonable FDR
characteristics.
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