
Machine Learning, 50, 251–277, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Ranking Learning Algorithms: Using IBL and
Meta-Learning on Accuracy and Time Results

PAVEL B. BRAZDIL pbrazdil@liacc.up.pt
CARLOS SOARES csoares@liacc.up.pt
LIACC/Faculty of Economics, University of Porto, Portugal

JOAQUIM PINTO DA COSTA jpcosta@liacc.up.pt
LIACC/Faculty of Science, University of Porto, Portugal

Editors: David Aha

Abstract. We present a meta-learning method to support selection of candidate learning algorithms. It uses
a k-Nearest Neighbor algorithm to identify the datasets that are most similar to the one at hand. The distance
between datasets is assessed using a relatively small set of data characteristics, which was selected to represent
properties that affect algorithm performance. The performance of the candidate algorithms on those datasets is
used to generate a recommendation to the user in the form of a ranking. The performance is assessed using a
multicriteria evaluation measure that takes not only accuracy, but also time into account. As it is not common in
Machine Learning to work with rankings, we had to identify and adapt existing statistical techniques to devise an
appropriate evaluation methodology. Using that methodology, we show that the meta-learning method presented
leads to significantly better rankings than the baseline ranking method. The evaluation methodology is general
and can be adapted to other ranking problems. Although here we have concentrated on ranking classification
algorithms, the meta-learning framework presented can provide assistance in the selection of combinations of
methods or more complex problem solving strategies.

Keywords: algorithm recommendation, meta-learning, data characterization, ranking

1. Introduction

Multistrategy learning is concerned with the combination of different strategies to solve
complex data analysis or synthesis tasks. A task may involve a number of steps, each
requiring one or more methods or strategies to be tried out. Some may be concerned with
pre-processing (e.g., discretization of numeric values), others involve transformation of the
given problem into a different one (e.g., division of a problem into interrelated subproblems).
These are followed by the stage of model generation (e.g., generation of a classifier for a
subset of data).

Clearly, the best combination of strategies depends on the problem at hand and methods
that help the user to decide what to do are required (Mitchell, 1997; Brachman & Anand,
1996). It would be useful to have a method that could not only present all different options at
each step, but also rank them according to their potential utility. In this paper we present an
approach to this problem, focussing on one stage only, model generation. In particular we
examine a framework that provides us with a ranking of candidate classification algorithms

252 P.B. BRAZDIL, C. SOARES AND J.P. DA COSTA

to be used. This is a special case of the problem of obtaining a recommendation on the utility
of different combinations of solution strategies. We have chosen to deal with the simpler
problem because it does provide us with enough challenges and needs to be resolved first.

1.1. Support for automatic classifier recommendation

Ideally, we would like to be able to identify or design the single best algorithm to be
used in all situations. However, both experimental results (Michie, Spiegelhalter, & Taylor,
1994) and theoretical work (Wolpert & Macready, 1996) indicate that this is not possible.
Therefore, the choice of which algorithm(s) to use depends on the dataset at hand and
systems that can provide such recommendations would be very useful (Mitchell, 1997).

We could reduce the problem of algorithm recommendation to the problem of perfor-
mance comparison by trying all the algorithms on the problem at hand. In practice this is
not usually feasible because there are too many algorithms to try out, some of which may
be quite slow. The problem is exacerbated when dealing with large amounts of data, as it is
common in Knowledge Discovery in Databases.

One approach to algorithm recommendation involves the use of meta-knowledge, that
is, knowledge about the performance of algorithms. This knowledge can be either of the-
oretical or of experimental origin, or a mixture of both. The rules described by Brodley
(1993) for instance, captured the knowledge of experts concerning the applicability of cer-
tain classification algorithms. More often the meta-knowledge is of experimental origin,
obtained by meta-learning on past performance information of the algorithms (i.e., per-
formance of the algorithms on datasets used previously) (Aha, 1992; Brazdil, Gama, &
Henery, 1994; Gama & Brazdil, 1995). Its objective is to capture certain relationships be-
tween the measured dataset characteristics and the performance of the algorithms. As was
demonstrated, meta-knowledge can be used to give useful predictions with a certain degree
of success.

1.2. Recommending individual classifiers or ranking?

An important issue concerns the type of recommendation that should be provided. Many
previous meta-learning approaches limit themselves to suggesting one algorithm or a small
group of algorithms that are expected to perform well on the given problem (Todorovski
& Džeroski, 1999; Kalousis & Theoharis, 1999; Pfahringer, Bensusan, & Giraud-Carrier,
2000). We believe this problem is closer in nature to ranking tasks like the ones commonly
found in Information Retrieval and recommender systems. In those tasks, it is not known
beforehand how many alternatives the user will actually take into account. For instance, the
first suggestion given by a search engine may be ignored in favor of the second one because
the latter site is faster and contains similar information. The same can be true of algorithm
selection. The user may decide to continue using his favorite algorithm, if its performance
is slightly below the topmost one in the ranking. Furthermore, when searching a topic on the
web, one may investigate several links. The same can also apply to a data analysis task, if
enough resources (time, CPU power, etc.) are available to try out more than one algorithm.
Since we do not know how many algorithms the user might actually want to select, we

RANKING LEARNING ALGORITHMS 253

provide a ranking of all the algorithms. Algorithm recommendation using meta-learning
was first handled as a ranking task by Brazdil, Gama, & Henery (1994). Later Nakhaeizadeh
& Schnabl (1998) and more recently Keller, Paterson, & Berrer (2000) and also Brazdil &
Soares (2000) used a similar approach. Here we cover some of these issues in greater depth.

1.3. Meta-learning algorithm

The issue concerning which method should be used for meta-learning does not yet have a
satisfactory answer. Here we chose to use the instance-based learning (IBL) approach for the
reasons explained next. In meta-learning the amount of data available (dataset descriptions,
including algorithm performance) is usually quite small. Hence the task of inducing models
that are general is hard, especially with algorithms that generate crisp thresholds, like
decision tree and rule induction algorithms usually do. IBL has also the advantage that the
system is extensible; once a new experimental result becomes available, it can be easily
integrated into the existing results without the need to reinitiate complex re-learning. This
property is relevant for algorithm selection because, typically, the user starts with a small
set of meta-data but this set increases steadily with time.

Existing IBL approaches have been used either for classification or regression. Given
that we are tackling a different learning problem, ranking, we had to adapt this method-
ology for this aim. We opted for a simple algorithm, the k-Nearest Neighbor (Mitchell,
1997, ch. 8), discussed in Sections 2 and 3. A distance function based on a set of statisti-
cal, information theoretic and other dataset characterization measures is used to select the
most similar neighbors, that is, the datasets whose performance is expected to be relevant
for the dataset at hand. The prediction, i.e., the recommended ranking, is constructed by
aggregating performance information for the given candidate algorithms on the selected
datasets. There are various ways how we can do that. We have shown earlier that a ranking
method based on the relative performance between pairs of algorithms, assessed using suc-
cess rate ratios, competes quite well with other alternative approaches (Brazdil & Soares,
2000).

1.4. Multicriteria assessment of performance

The evaluation measure that is commonly used in prediction problems is success rate.1

However, it has been argued that it is important to consider several measures, especially
in KDD, where the final user of the model is often not a data analyst (Nakhaeizadeh &
Schnabl, 1997). We may consider, in addition to success rate, the interpretability of the
model and also the speed of the algorithm. Interpretability is a highly subjective criterion
because it depends on the expertise of the user as well as on its preferences. As for speed,
some people could argue that it is not so important due to the increasing computational
power available nowadays. In our view this objection does not hold in general because
some algorithms may simply run for too long on the volumes of data gathered. Therefore,
we have decided to investigate how to take into account the information regarding accuracy
and speed (measured by the total execution time). It represents one important step in the
direction of multicriteria evaluation of classification algorithms.

254 P.B. BRAZDIL, C. SOARES AND J.P. DA COSTA

The ML and KDD communities usually ignore the issue of multicriteria evaluation, with
the noteworthy exception of Nakhaeizadeh & Schnabl (1997, 1998). There are obviously
many different ways of doing that but none has been widely adopted. Two important issues
should affect the design of multicriteria evaluation. Firstly, it should be taken into account
that the compromise between the criteria involved is often defined by the user. Thus, it
should be defined in a simple and clear way. Secondly, multicriteria measures should yield
values that can be interpreted by the user. We have tried to take these issues into account in
the measure presented in Section 3.1.

1.5. Evaluation of ranking methods

Ranking can be seen as an alternative ML task, similar to classification or regression,
which must therefore have an appropriate evaluation method. We describe a methodology
for evaluating and comparing ranking methods and how this is applied to our situation.
This is done in Sections 4 and 5, respectively. The rankings recommended by the ranking
methods are compared against the observed rankings using Spearman’s rank correlation
coefficient (Neave & Worthington, 1992). To compare different ranking methods we use
a combination of Friedman’s test and Dunn’s Multiple Comparison Procedure (Neave &
Worthington, 1992).

2. Selection of relevant datasets by the IBL meta-learner

Given a new problem (query dataset), we wish to generate a ranking of the given set of
candidate algorithms that would be related to their actual performance on that dataset,
without actually executing them. As it is not possible to determine a unique ranking that
would be valid for all datasets, we proceed as follows. We select, from a set of previously
processed datasets (training datasets), those that are similar to the given query dataset. We
expect that if two datasets are quite similar, so should be the corresponding performance of a
given candidate algorithm. Then we build the ranking based on this information. Selection is
performed with a simple instance-based learner, the k-Nearest Neighbor (k-NN) algorithm
(Mitchell, 1997). Given a case, this algorithm simply selects k cases that are nearest to it
according to some distance function.

Measuring the similarity between datasets is not a simple task. Here we follow the
approach of characterizing datasets using general, statistical and information theoretic mea-
sures (meta-attributes), described by Henery (1994). Examples of these three types of mea-
sures are number of attributes, mean skewness and class entropy, respectively. These kinds
of measures have frequently been used in meta-learning (Brazdil, Gama, & Henery, 1994;
Kalousis & Theoharis, 1999; Lindner & Studer, 1999). However, the number of meta-
attributes available is relatively large considering that the performance information avail-
able includes relatively few examples (datasets). This problem is exacerbated by the fact
that the nearest-neighbor algorithm is rather sensitive to irrelevant attributes (Mitchell,
1997). Therefore we selected a priori a small subset that, we believe, provides information
about properties that affect algorithm performance. Below, we present a summary of those
measures and the properties which they are expected to represent:

RANKING LEARNING ALGORITHMS 255

– The number of examples (n.examples) discriminates algorithms according to how scalable
they are with respect to this measure.

– The proportion of symbolic attributes (prop.symb.attrs) is indicative of the aptitude or
inadequacy of the algorithm to deal with symbolic or numeric attributes.

– The proportion of missing values (prop.missing.values) discriminates algorithms ac-
cording to how robust they are with respect to incomplete data. This measure was later
eliminated, as explained below.

– The proportion of attributes with outliers (prop.attr.outliers) discriminates algorithms
according to how robust they are to outlying values in numeric attributes, which are
possibly due to noise.2 An attribute is considered to have outliers if the ratio of the
variances of mean value and the α-trimmed mean is smaller than 0.7. We have used
α = 0.05.

– The entropy of classes (class.entropy) combines information about the number of classes
and their frequency, measuring one aspect of problem difficulty.

– The average mutual information of class and attributes (mut.info) indicates the amount of
useful information contained in the symbolic attributes. This measure was later dropped,
as explained below.

– The canonical correlation of the most discriminating single linear combination of nu-
meric attributes and the class distribution (can.cor) indicates the amount of useful in-
formation contained in groups of numeric attributes.

More details can be found in (Henery, 1994). Next, we performed a visual analysis of
this set of measures with the aim of identifying measures that seem to provide little useful
information. This was done by analyzing the correlation between values of a particular
meta-attribute chosen and the performance of each algorithm. For each meta-attribute and
algorithm pair, we plotted the values of the given meta-attribute and the ranks of the algo-
rithm for all the datasets considered (Section 3.3). Figure 1 shows the graphs for algorithm
C5.0 (tree) and the meta-attributes proportion of symbolic attributes and proportion of miss-
ing values. In the graph on the left-hand side, two clusters of points can be observed, on
the top-left and bottom-right corners. This indicates that C5.0 performs better on datasets
with more symbolic attributes and hence that this attribute should be kept. On the other
hand, we cannot observe clear patterns in the graph on the right-hand side, concerning the
proportion of missing values. This indicates that this meta-attribute may not be so useful.
We performed this analysis for all pairs of meta-attributes and algorithms, and decided to
drop two of the measures: proportion of missing values and average mutual information of
class and attributes.

The distance function used here is the unweighted L1 norm (Atkeson, Moore, & Schaal,
1997).

dist(di , d j) =
∑

x

∣∣vx,di − vx,d j

∣∣
max(vx,dk) − min(vx,dk)

where di and d j are datasets, and vx,di is the value of meta-attribute x for dataset di . The
distance is divided by the range to normalize the values, so that all meta-attributes have the
same range of values.

256 P.B. BRAZDIL, C. SOARES AND J.P. DA COSTA

Figure 1. Plots of two meta-attribute (proportion of symbolic attributes and proportion of attributes with missing
values) values against the rank of C5.0 (tree) for 53 datasets (see Section 3.3).

It may be the case that a meta-attribute is not applicable to a particular dataset. If dataset
di has no numeric attributes, then it makes no sense to calculate, for instance, the canonical
correlation meta-attribute. For such an attribute, dataset d j can be considered close to dataset
di if it also does not have any numeric attributes and their distance is 0. On the other hand,
if dataset d j does have numeric attributes, the dataset is considered to be different from di

in this respect. So, the distance is the maximum possible, i.e., 1, after normalization.

3. Ranking based on accuracy and time

The method described further on, referred to as the adjusted ratio of ratios (ARR) ranking
method, aggregates information concerning accuracy and time. It can be seen as an extension
of the success rate ratios (SRR) method. This method is presented in (Brazdil & Soares,
2000) together with two other basic ranking methods, average ranks (AR) and significant
wins (SW). The methods differ in the way performance information is aggregated to generate
a ranking and are commonly used in literature on comparative studies.

The argument that one algorithm is better than another is often supported by ratios of
success rates. This motivated us to consider the SRR method. Others prefer to provide infor-
mation about how the algorithms are ranked on different datasets. Finally, some researchers
prefer to count on how many datasets one method is significantly better than another. These
approaches provided a motivation to consider the AR and the SW ranking methods.

We could ask the question of which one is “better” in a given situation. We have investi-
gated this issue earlier (Brazdil & Soares, 2000). As the SRR method competed well with
the other two on the datasets considered, we have adopted it in further studies. This method
has an additional advantage: it can be easily extended to also incorporate time, as we shall
see in the next section.

RANKING LEARNING ALGORITHMS 257

3.1. Combining success rates and time

The ARR multicriteria evaluation measure combines information about the accuracy and
total execution time of learning algorithms. ARR is defined as:

ARRdi
ap,aq

=
SR

di
ap

SR
di
aq

1 + AccD ∗ log
(T

di
ap

T
di

aq

) (1)

where SRdi
ap

and T di
ap

represent the success rate and time of algorithm ap on dataset di ,
respectively, and AccD, which is explained below, represents the relative importance of
accuracy and time, as defined by the user.

The ARR measure can be related to the efficiency measure used in Data Envelopment
Analysis (DEA), an Operations Research technique (Charnes, Cooper, & Rhodes, 1978)
that has recently been used to evaluate classification algorithms (Nakhaeizadeh & Schnabl,
1997, 1998; Keller, Paterson, & Berrer, 2000). The efficiency measure of DEA identifies the
set of efficient algorithms, lying on a frontier (efficiency frontier). The philosophy underlying
both measures is the same. The efficiency measure of DEA uses a ratio of benefits and costs
to assess the overall quality of a given candidate, when compared to others. In the SRR
method presented earlier, the ratio of success rates, SRdi

ap
/SRdi

aq
, can be seen as a measure of

the advantage of algorithm ap over algorithm aq (i.e., a benefit). The equivalent ratio for
time, T di

ap
/T di

aq
, can be seen as a measure of the disadvantage of algorithm ap over algorithm

aq (i.e., a cost). Thus, like in DEA, if we take the ratio of the benefit and the cost, we obtain
a measure of the overall quality of algorithm ap. However, we note that time ratios have, in
general, a much wider range of possible values than success rate ratios. If a simple time ratio
were used it would dominate the ratio of ratios. This effect can be controlled by re-scaling.
We use log(T di

ap
/T di

aq
) that provides a measure of the order of magnitude of the ratio. The

relative importance between accuracy and time is taken into account by multiplying this
expression by the AccD parameter. This parameter is provided by the user and represents
the amount of accuracy he/she is willing to trade for a 10 times speedup or slowdown. For
example, AccD = 10% means that the user is willing to trade 10% of accuracy for 10 times
speedup/slowdown. Finally, we also add 1 to yield values that vary around 1, as happens
with the success rate ratio.

There are a few differences between ARR and the efficiency measure of DEA. The ARR
measure captures the relative performance of two algorithms for a given compromise be-
tween the criteria. To compare an algorithm to others, some aggregation must be performed,
as it will be shown in the next section. Furthermore, the weights are assumed to have pre-
defined values. In DEA the efficiency of an algorithm is obtained by comparing it to others
candidates and the compromise between the criteria is set automatically.

3.2. Generation of rankings

A ranking of the candidate algorithms is built by calculating the ARR value for each of them,
expressing their relative quality. For that purpose we aggregate the performance information

258 P.B. BRAZDIL, C. SOARES AND J.P. DA COSTA

selected by the k-NN algorithm for each algorithm in the following way. First we calculate
the geometric mean across all datasets and then the arithmetic mean across algorithms:

ARRap =
∑

aq

n
√∏

di
ARRdi

ap,aq

m
(2)

where n represents the number of datasets and m the number of algorithms. The higher
the ARR value of an algorithm, the higher the corresponding rank.3 The ranking is derived
directly from this measure.

We used a geometric mean because we prefer that the relative performance of ap and aq
across several datasets, ARRap,aq , verifies the following property: ARRap,aq = 1/ARRaq,ap.
This would not be true if the arithmetic mean was used.

In the following section we present the experimental setting and a simple example illus-
trating the use of this ranking method.

3.3. Experimental setting and an example of rankings

The set of meta-data used here was obtained from the METAL project (METAL Consortium,
2002). It contains estimates of accuracy and time for 10 algorithms on 53 datasets, using 10-
fold cross-validation.4 The algorithms include three decision tree classifiers, C5.0, boosted
C5.0 (Quinlan, 1998) and Ltree, which is a decision tree algorithm that can induce oblique
decision surfaces (Gama, 1997). Two rule-based systems were also used, C5.0 rules and
RIPPER (Cohen, 1995), as well as two neural networks from the SPSS Clementine pack-
age, Multilayer Perceptron (MLP) and Radial Basis Function Network (RBFN). We also
included the instance-based learner (IB1) and the naive Bayes (NB) implementations from
the MLC++ library (Kohavi et al., 1994). Finally, an implementation of linear discriminant
(LD) (Michie, Spiegelhalter, & Taylor, 1994) was also used. All algorithms were executed
with default parameters which is clearly a disadvantage for some of them (e.g., MLP and
RBFN).

The 53 datasets used included all datasets from the UCI repository (Blake, Keogh, &
Merz, 1998) with more than 1000 cases,5 plus the Sisyphus data6 and two confidential
datasets provided by DaimlerChrysler.

To illustrate the ARR ranking method presented earlier, we apply it to the full set of meta-
data, for three different settings of the compromise between accuracy and time, AccD ∈
{0.1%, 1%, 10%}. The setting AccD = 0.1% (AccD = 10%) represents a situation where
accuracy (time) is the most important criterion. The setting AccD = 1% represents a more
balanced compromise between the two criteria.

The rankings obtained (Table 1) represent an overall picture of the performance of the
algorithms on the 53 datasets. We observe that, as expected, the ranks of faster algorithms
(e.g., Ltree and LD) improve as time is considered more important (i.e., AccD = 10%),
while the opposite occurs for slower ones (e.g., boosted C5.0 and RIPPER).

To illustrate how we can generate a ranking using the k-NN meta-learning method, we
present an example. Suppose we want to obtain a ranking of the given algorithms on a
given dataset, abalone, without conducting tests on that dataset. We must, thus, use only

RANKING LEARNING ALGORITHMS 259

Table 1. Overall rankings based on the 53 datasets for three different settings of the compromise between accuracy
and speed. The dominant criterion is indicated next to the AccD value.

0.1% (accuracy) 1% 10% (time)

AccD rank ap ARRap ap ARRap ap ARRap

1 boosted C5.0 1.13 boosted C5.0 1.14 C5.0 (tree) 1.26

2 C5.0 (rules) 1.11 C5.0 (rules) 1.12 C5.0 (rules) 1.20

3 C5.0 (tree) 1.10 C5.0 (tree) 1.11 Ltree 1.18

4 Ltree 1.10 Ltree 1.10 boosted C5.0 1.17

5 IB1 1.06 IB1 1.06 LD 1.11

6 RIPPER 1.00 RIPPER 1.00 IB1 1.05

7 LD 0.98 LD 0.99 NB 1.03

8 NB 0.95 NB 0.96 RIPPER 0.99

9 MLP 0.88 MLP 0.87 MLP 0.77

10 RBFN 0.79 RBFN 0.78 RBFN 0.68

information about the performance of the algorithms on the remaining 52 training datasets
in the process. Table 2 presents a ranking generated by the ARR with the 5-NN method
(AccD = 0.1%), which selected the following datasets: vowel, pendigits, vehicle,
satimage, and letter.

The obvious questions is how good is this ranking? The overall ranking (Table 1) can be
used as a baseline for the purpose of this comparison. We note that this ranking is somewhat
different from the one shown in Table 2. In the following Section we explain how different
ranking methods can be evaluated and compared.

4. Evaluation of ranking methods

The framework for the empirical evaluation of rankings is based on a leave-one-out pro-
cedure. For each dataset (test dataset), we do the following: (1) build a recommended
ranking by applying the ranking method under evaluation to all but the test dataset (training
datasets), (2) build an ideal ranking for the test dataset, and (3) Measure the agreement
between the two rankings. The score of a ranking method is expressed in terms of the mean
agreement between the recommended ranking and the ideal ranking.

The agreement is a measure of the quality of the recommended ranking and thus also of
the ranking method that generated it.

4.1. Generation of the ideal ranking

The ideal ranking should represent, as accurately as possible, the correct ordering of the
algorithms on the test dataset. It is constructed on the basis of their performance as estimated
by conducting tests on that dataset. However, the ranking obtained simply by ordering the
estimates may not capture well the notion of a true situation.

260 P.B. BRAZDIL, C. SOARES AND J.P. DA COSTA

Table 2. Recommended ranking for abalone dataset using 5-NN for AccD = 0.1%.

Rank ap ARRap

1 boosted C5.0 1.13

2 IB1 1.13

3 Ltree 1.07

4 C5.0 (rules) 1.06

5 C5.0 (tree) 1.05

6 RIPPER 1.01

7 MLP 1.01

8 LD 0.93

9 RBFN 0.87

10 NB 0.82

In one of the tests carried out we have observed that, on the glass dataset, C5.0 (er-
ror 30%) and Ltree (error 32%) were ranked 2nd and 3rd, respectively. However, their
performance was not significantly different and the ideal ranking should reflect this. One
possibility would be to represent this tie explicitly, e.g., assign rank 2.5 to both. Our ap-
proach here is different, and exploits the fact that in such situations these algorithms often
swap positions in different folds of the N-fold cross-validation procedure. Therefore, we
use N orderings to represent the true ideal ordering, instead of just one. The ideal ordering
corresponding to fold j of dataset di is constructed by ordering the algorithms ap according
to (

∑
aq ARRdi , j

ap,aq)/m, where m is the number of algorithms and ARRdi , j
ap,aq is calculated in a

similar manner to Eq. (1), but using the performance information in the fold j rather than
the average.

4.2. Evaluation of the recommended ranking

To measure the agreement between the recommended ranking and each of the N orderings
that represent the ideal ranking, we use Spearman’s rank correlation coefficient (Neave &
Worthington, 1992)

rs = 1 − 6
∑m

i=1(rri − iri)2

m3 − m
(3)

where rri and iri are the recommended and ideal ranks of algorithm i respectively, and
m is the number of algorithms. An interesting property of this coefficient is that it is
basically the sum of squared errors, which can related to the commonly used error measure
in regression. Furthermore, the sum is normalized to yield more meaningful values: the
value of 1 represents perfect agreement and −1, perfect disagreement. A correlation of 0
means that the rankings are not related, which would be the expected score of the random
ranking method.

RANKING LEARNING ALGORITHMS 261

Table 3. Effect of rank error e = |rri − iri | in the value of the Spearman’s rank correlation coefficient.

e 1 2 3 4 5 6 7 8 9

d(e) 0.006 0.024 0.055 0.097 0.152 0.218 0.297 0.388 0.491

To support interpretation of the values obtained, we can use the following function:

d(e) = 6e2

m3 − m

which calculates the difference in the value of Spearman’s rank correlation if an algorithm
is incorrectly ranked by e positions, i.e., e = |rri − iri |. For example, suppose that the
algorithms in the 3rd and 5th positions have been swapped, in a ranking of 10 algorithms.
Therefore, for each of them e = |3 − 5| = 2 and the total difference in the correlation
value is 2 ∗ d(2) = 2 ∗ (6 ∗ 22/(103 − 10)) = 0.048. If all other algorithms were ranked
correctly the correlation would be 1 − 0.048 = 0.952. The inverse of this function can be
used to interpret correlation values obtained. Suppose, for instance, that a correlation value
of 0.952 was obtained in a ranking of 10 algorithms. As the previous calculations show,
this difference means that 2 algorithms two ranks apart were swapped. Table 3 lists values
of d(e) for rankings with 10 algorithms.

We illustrate the use of Spearman’s rank correlation coefficient (Eq. (3)) for recommended
ranking evaluation with a simplified example (Table 4). Given that the number of algorithms
is m = 6, we obtain rs =1− 6∗10.5

63−6 = 0.7. Note that naive Bayes and linear discriminant share
the second place in the recommended ranking, so they are both assigned rank 2+3

2 = 2.5,
following the method in (Neave & Worthington, 1992).7

As explained in the previous section, these calculations are repeated for all the folds,
permitting us to calculate the score of the recommended ranking as the average of the
individual coefficients or simply, as average correlation, rS .

Table 4. Simplified example of the evaluation of a recommended ranking using Spearman’s rank correlation
coefficient.

i rri iri (rri − iri)2

C5.0 (tree) 4 4 0

Ltree 1 1 0

IB1 6 6 0

LD 2 2.5 0.25

NB 5 2.5 6.25

boosted C5.0 3 5 4

∑m
i (rri − iri)2 10.5

rs 0.7

262 P.B. BRAZDIL, C. SOARES AND J.P. DA COSTA

One important consequence of having several orderings to represent the ideal ranking is
the following. The correlation coefficient will be 1 only if all the rankings are exactly the
same. In other words, the maximum average correlation will be less than 1 if at least one
of the orderings is different from the others. This sets a limit for the maximum achievable
value for the recommended ranking.

The critical values (Neave & Worthington, 1992) provide, for a given number of items
and confidence level, the threshold which determines whether two rankings are significantly
correlated or not. The critical value for a ranking of ten algorithms and for a 95% confidence
level (one-sided test) is 0.564. So, if the value is higher, it indicates that a significant
correlation might exist. As we are dealing with average values of the coefficient, strictly
speaking, no definite conclusions should be drawn. However, the critical value provides a
reference value that can be used to assess the quality of the generated rankings.

4.3. Results

The k-NN approach to ranking was evaluated empirically using two values of the number
of neighbors (k), 1 and 5. We chose 1-NN because it is known to perform often well (Ripley,
1996). The 5 neighbors represent approximately 10% of the 52 training datasets, and this
has lead to good results in a preliminary study (Soares & Brazdil, 2000). Finally we have
evaluated a simple ranking method consisting of applying ARR to all the training datasets
(i.e., 52-NN), which will be referred to as ARR. The ARR method can be considered as
a baseline to assess the improvements obtained due to meta-learning with k-NN. Three
different settings of the compromise between accuracy and time were considered, namely
AccD ∈ {0.1%, 1%, 10%}.

The three variants of the method were evaluated following the leave-one-out procedure
defined at the beginning of Section 4. The recommended rankings were compared to each of
the individual ideal orderings using Spearman’s rank correlation coefficient and the average
correlation obtained, rS , represents the score of the corresponding method on that iteration.

The results are presented in Table 5. The most important conclusion is that using meta-
learning with k-NN improves the results of the baseline ranking method, ARR. Furthermore,
the difference increases with the importance of accuracy. This is expected, given that the
selection of meta-attributes was made mainly having accuracy in mind. Besides, the baseline

Table 5. Mean average correlation (rS) obtained with ARR with 1-NN, 5-NN and all data for different values
of AccD on the METAL meta-data. The +/− column indicates the number of datasets where the corresponding
method has higher/lower correlation than ARR. The best results for each setting are emphasized. The dominant
criterion is indicated next to the AccD value.

ARR with 1-NN ARR with 5-NN ARR
Accuracy/time compromise
AccD mean rS +/− mean rS +/− mean rS

0.1% (accuracy) 0.619 32/21 0.543 28/24 0.524

1% 0.649 31/22 0.587 30/23 0.569

10% (time) 0.759 30/23 0.758 31/22 0.736

RANKING LEARNING ALGORITHMS 263

value for ARR when time is considered important (AccD = 10%) is relatively high (0.736),
and it is obviously more difficult to improve this value further.

We also observe that there is a clear positive correlation between the recommended
rankings generated and the ideal rankings. As mentioned earlier, Table 3 can be used to
provide an approximate interpretation of the values obtained. One such interpretation for
the score of 0.759 obtained by 1-NN for AccD=10% is that, on average, this method
approximately swapped one pair of algorithms by two positions and another one by four
(2 ∗ 0.024 + 2 ∗ 0.097 = 0.242). Another interpretation for the same situation is that it
misplaced two pairs of algorithms by three positions and another two by one rank (4 ∗
0.055 + 4 ∗ 0.006 = 0.242).

One surprising result is the good performance of the baseline method, ARR. The expected
performance of this method—in an unrealistic setting where the distribution of the ranks of
algorithms was uniform—would be equal to the expected performance of a random ranker,
i.e., 0. In our experiments, the values obtained ranged from 0.524 to 0.737. The explanation
for this is that the rank distribution in our meta-data is very uneven. The algorithm boosted
C5.0 is very often in the first position. This was unmatched, say, by RBFN with default
parameters. Therefore, the task of improving the performance of the baseline ranking method
is quite difficult.

The performance of 1-NN is particularly good, with an advantage of almost 0.10 when
accuracy is the dominant criterion. In summary, our results show that the IBL approach
proposed together with an adequate selection of meta-features performs better than the
baseline, despite the good performance of the latter. To determine whether this improvement
is statistically significant rather than caused by chance, we conducted appropriate statistical
tests which are presented in the next section.

5. Comparison of ranking methods

To test whether the results presented in the previous section are statistically significant,
we have used Friedman’s test, a distribution-free hypothesis test on the difference between
more than two population means (Neave & Worthington, 1992). The reasons for this choice
are (1) we have no information about the distribution of the average correlation coefficient in
the population of datasets, so a distribution-free test is required, (2) the number of methods
we wish to compare (i.e., samples) is larger than 2, and (3) the samples are related because
the methods are evaluated on the same set of datasets. According to Neave & Worthington
(1992) not many distribution-free methods can compete with Friedman’s test with regard
to both power and ease of computation.

Here, the hypotheses are:

H0: There is no difference in the mean average correlation coefficients, rS , for the three
ranking methods (ARR with 1-NN, ARR with 5-NN and ARR with all data).

H1: There are some differences in the mean average correlation coefficients, rS , for the three
ranking methods.

To illustrate Friedman’s test we compare four fictitious ranking methods (j = 1, . . . , 4)
on simulated meta-data consisting of three datasets (Table 6). For the sake of simplicity,

264 P.B. BRAZDIL, C. SOARES AND J.P. DA COSTA

Table 6. Some steps in the application of Friedman’s test to compare ranking methods.

dataset 1 dataset 2 dataset 3

Method j rs R1
j rs R2

j rs R3
j R̄ j (R̄ j − R̄)2

1 0.357 1 −0.171 2 0.630 1 1.3 1.36

2 0.314 2 −0.086 1 0.577 2 1.7 0.69

3 0.301 3 −0.214 3 0.552 3 3 0.25

4 0.295 4 −0.401 4 0.218 4 4 2.25

we assume that the ideal ranking consists of a single ordering rather than N, one for each
fold of the cross-validation procedure (Section 4). First, we rank the correlation coefficients
obtained by the ranking methods for each dataset. We thus obtain Rdi

j , representing the
rank of the correlation obtained by ranking method j on dataset di , when compared to the
corresponding correlations obtained by the other methods on the same dataset. Next, we

calculate the mean rank for each method, R̄ j =
∑

i R
di
j

n , where n is the number of points in
the sample (datasets in the present case) and the overall mean rank across all methods, R̄. As
each method is ranked from 1 to k, where k is the number of methods being compared, we
know that R̄ = k+1

2 = 2.5. Then, we calculate the sum of the squared differences between
the mean rank for each method and the overall mean rank, S = ∑

j (R̄ j − R̄)2. Finally, we

calculate Friedman’s statistic, M = 12nS
k(k+1) . In this simple example, where n = 3 and k = 4,

we obtain S = 4.56 and M = 8.2.
The rationale behind this test is that if H0 is true, that is, if all methods perform equally

well on average, then the distribution of ranks should be approximately uniform for all
methods. In other words, each method should be ranked first approximately as many times
as it is ranked second, and so on. If this were true, the mean rank for each method would be
similar to the overall mean rank, i.e., R̄ j
 R̄ and the sum of the squared difference between
those values would be small, S
 0. Consequently, Friedman’s statistic, M , which can be
seen as a normalized value of S, taking into account the size of the data, will also be small.
The larger the differences in performance, the larger the value of M . The null hypothesis will
be rejected if M ≥ critical value, where the critical value is obtained from the appropriate
table, given the desired confidence level, the number of samples (i.e., methods), k, and
the number of points (i.e., datasets), n. If this were the case, we can claim, with the given
confidence level, that the methods have different performance. In the example of Table 6,
where n = 3 and k = 4, the critical value is 7.4 for a confidence level of 95%. As the test
8.2 ≥ 7.4 is true, we reject the null hypothesis that the average performance of the four
ranking methods is the same.

Dealing with Ties: When applying this test ties may occur, meaning that two ranking
methods have the same correlation coefficient. In that case, the average rank value is assigned
to all the methods involved, as explained earlier for Spearman’s correlation coefficient. When
the number of ties exceeds a limit, the M statistic must be corrected.

Assuming, for the sake of argument, that the figures in Table 6 were as follows. Suppose
that the correlation of methods 2, 3, and 4 on dataset 1 was 0.314 and the correlation of

RANKING LEARNING ALGORITHMS 265

methods 3 and 4 on dataset 2 was −0.401, we thus would have ties in dataset 1 among
methods 2, 3, and 4 and in dataset 2 between methods 3 and 4. In the former case, rank
(2+3+4)/3 = 3 is assigned to all the tied methods and, in the latter, rank (3 + 4) /2 = 3.5
to methods 3 and 4. Next, we calculate Friedman’s statistic as before, M = 5.5. Then, for
each dataset, we calculate t∗ = t3 − t , where t is the number of methods contributing to a
tie. Given that three methods are tied on dataset 1, we obtain t = 3 and t∗ = 24. On dataset
2, we obtain t = 2 and t∗ = 6 and on dataset 3, t = t∗ = 0. Next, we obtain T = 30 by
adding up all t∗’s. The correction factor is C = 1 − T

n(k3−k) , yielding 0.83 in our example.

The modified statistic is M∗ = M/C = 6.6. The critical values for M∗ are the same as
for M , so the null hypothesis cannot be rejected for a confidence level of 95% because
6.6 ≥ 7.4 is false.

5.1. Results of Friedman’s test

In the example used above, we have assumed, for simplicity sake, that the data consists of n
correlation values for each ranking method, where n is the number of datasets. However, as
explained in Section 4, our evaluation methodology generates n ∗ N points for each method,
where N is the number of folds in the cross-validation procedure used. Our comparison is
based on these detailed results. The only change required to the test described is to replace
n by n ∗ N . Applying Friedman’s test to the results of Section 4.3, we observe that there are
statistically significant differences at a 99% confidence level between the ranking methods
compared (Table 7).

5.2. Which method is better?

In the previous section we have shown that there are significant differences between the k = 3
methods. Naturally, we must determine which methods are different from one another. To
answer this question we use Dunn’s multiple comparison technique (Neave & Worthington,
1992). Using this method we test p = 1

2 k(k − 1) hypotheses of the form:

Table 7. Results of Friedman’s test. The dominant criterion is indicated next to the AccD value.

Accuracy/time compromise (AccD) 0.1% (accuracy) 1% 10% (time)

R̄1-NN 1.90 1.89 1.95

R̄5-NN 2.00 2.00 1.88

R̄AR R 2.10 2.11 2.17

M 10.0 13.8 24.4

k 3

nN 530

Critical value (99%) 9.21

Significantly different? Yes Yes Yes

266 P.B. BRAZDIL, C. SOARES AND J.P. DA COSTA

H(i, j)
0 : There is no difference in the mean average correlation coefficients between methods
i and j .

H(i, j)
1 : There is some difference in the mean average correlation coefficients between meth-
ods i and j .

Again we refer to the example in Table 6 to illustrate how this procedure is applied.
First, we calculate the rank sums for each method. In this case they are 4, 5, 9 and 12
respectively for methods 1 to 4. Then we calculate the normalized differences of rank sums,
Ti, j = Di, j/stdev for each pair of ranking methods, where Di, j is the difference in the rank

sums of methods i and j , and stdev =
√

nk(k+1)
6 . As before, k is the number of methods and

n is the number of datasets. In the example, where n = 3 and k = 4 we obtain stdev = 3.16.
To compare, for example, method 1 to methods 2 and 4, we get D1,2 = −1 and D1,4 = −8
and finally, we obtain T1,2 = −0.32 and T1,4 = −2.53. These calculations are repeated for
all pairs of methods.

The values of Ti, j , which approximately follow a normal distribution, are used to reject
or accept the corresponding null hypothesis at an appropriate confidence level. As we are
doing multiple comparisons simultaneously, we have to carry out the Bonferroni adjustment.
This technique redefines the significance level8 to be used in individual tests by dividing
the overall significance level, α, by the number of tests. It aims to prevent the chance
of obtaining significant conclusions by chance. Here we are doing pairwise comparisons
between k methods, so the adjusted significance level is α′ = α/k(k − 1). However, given
that the risk of obtaining false significant differences is somewhat reduced due to the
previous application of Friedman’s test, Neave & Worthington (1992) suggest a rather high
overall significance level, α, (between 10% and 25%). If we use an overall significance level
α = 25%, we obtain α′ = α/k(k − 1) = 2.08% for our example where k = 4. Consulting
the appropriate table we obtain the corresponding critical value, z = 2.03. If |Ti, j | ≥ z then
the methods i and j are significantly different. Using the values calculated above, we can
conclude that method 1 is significantly better than method 4 (|T1,4| ≥ 2.03 is true) but not
significantly better than method 2 (|T1,2| ≥ 2.03 is false).

5.3. Results of Dunn’s multiple comparisons procedure

Given that Friedman’s test has shown that there are significant differences between the three
methods compared, 1-NN, 5-NN and ARR, we have used Dunn’s multiple comparison
procedure to determine which ones are significantly different. Given that three methods are
being compared, the number of hypotheses being tested is p = 3. The overall significance
level is 25% which, after the Bonferroni adjustment, becomes 4.2%, corresponding to a
critical value of 1.73. We observe (Table 8) that the 1-NN method is significantly better
than the baseline method, ARR, on all settings of the accuracy/time compromise we have
tested. On the other hand, 5-NN is also significantly better than the baseline, except when
accuracy is very important (AccD = 0.1%), although the p-value (1.67) is quite close the
critical value (1.73). The performance of 1-NN and 5-NN is only significantly different when
AccD = 1%, although, as before, the p values are also close to the critical value. These
results confirm that IBL improves the quality of the rankings when compared to the baseline.

RANKING LEARNING ALGORITHMS 267

Table 8. Results of Dunn’s multiple comparison test. The symbol represents the “significantly better” relation.
The dominant criterion is indicated next to the AccD value.

Accuracy/time compromise (AccD) 0.1% (accuracy) 1% 10% (time)

T1-NN,ARR 3.16 3.71 3.55

T5-NN,ARR 1.67 1.90 4.74

T1-NN,5-NN 1.49 1.81 1.20

Critical value (25%) 1.73

1-NN ARR Yes Yes Yes

5-NN ARR No Yes Yes

1-NN 5-NN No Yes No

6. Discussion and further work

We have shown that meta-learning with k-NN improves the quality of rankings in general,
but the results raise a few questions that are addressed here.

6.1. Meta-learning within complex multistrategy learning systems

In this paper we have focussed our attention on the issue of how we can exploit meta-
learning to pre-select and recommend one or more classification algorithms to the user. The
choice of adequate methods in a multistrategy learning system may significantly improve
its overall performance. The approach described here is a first step in this direction. As the
meta-knowledge can be extended depending on which types of problem get encountered,
the whole system can adapt to new situations. Adaptability is often seen as a desirable
property and a crucial aspect of intelligent systems. Having a multiplicity of (possibly
adaptable) methods is on one hand an advantage, but of course, a question arises which
ones one should use when. One interesting problem in future should investigate how the
methodology presented could be applied and/or extended to make complex multistrategy
learning systems adaptable, so as to provide us with efficient solutions.

6.2. Meta-learning versus simpler strategies

Here we analyze the results of our meta-learning approach in terms of the trade-off between
accuracy loss and time savings (figure 2). Two simple reference strategies for this purpose
are cross-validation (CV) and the selection of the algorithm with the best average accuracy.
Although CV may also fail, it is currently the best method for performance estimation and
also for algorithm selection (Schaffer, 1993). However, it is rather impractical in a wide va-
riety of situations due to the size of the data and the number of algorithms available.9 In our
experimental setting, it achieved an accuracy of 89.93%, taking on average approximately
four hours to run all the algorithms on one dataset. As for the use of the algorithm with the
best performance, it can be seen as the “default decision” for algorithm recommendation.

268 P.B. BRAZDIL, C. SOARES AND J.P. DA COSTA

Figure 2. Average accuracy versus average execution time for the strategy of executing the top-N algorithms in
the recommended ranking, for all possible values of N, and simpler strategies of cross-validation (Top-10) and
selecting the algorithm which obtains the best accuracy, on average, (boosted C5.0).

In our experimental setting it is boosted C5.0, achieving an accuracy of 87.94% and taking
less than two minutes to run, on average. One could argue that, with such a small margin
for improvement (2%), it is not worthwhile to worry about algorithm selection: choosing
boosted C5.0 will provide quite good results on average. However, in some business ap-
plications (e.g., cross-selling in a e-commerce site that sells thousands of items daily), an
improvement of 2% or even less may be significant.

The strategy of executing the algorithm ranked in the first position is worse than executing
boosted C5.0. However, if we use the full potential of a ranking method, and execute the top
2 algorithms in the ranking (strategy Top-2 in the figure), the time required is larger than
boosted C5.0’s, although still acceptable in many applications (less than 6 min.) and the
loss of accuracy would be only 1.20%. Running one more algorithm (method Top-3) would
provide further improvement in accuracy (0.90% loss) while taking only a little longer (less
than 10 min.). CV performance is almost achieved by Top-5, (0.15% losses), still taking
what would be an acceptable amount of time in many applications (approximately 15 min.).
The overhead of meta-learning is negligible. On the 53 datasets used in this study, the
time to calculate the measures was never higher than 1 min10 and meta-learning using this
Nearest-Neighbor algorithm is almost instantaneous.

6.3. Ranking versus ensemble methods

It could be argued that a suitable ensemble method could be used, eliminating, thus, the need
to rank individual algorithms. This is an interesting possibility, but it should be noted that
we included one ensemble method in our study, namely boosted C5.0. As figure 2 shows,
this method, like any other ensemble method, is expected to work well in some situations

RANKING LEARNING ALGORITHMS 269

only (boosted C5.0 was the best method in 19 out of 53 datasets). We expect that similar
situations will happen for other ensemble methods and, therefore, from our perspective, the
information about the performance of ensemble methods in the past can be used to rank
them, together with other algorithms.

6.4. Other meta-learning approaches

Meta-learning has been used to combine different biases in the same model. CAMLET
iteratively searches for the best bias for a given problem (Suyama, Negishi, & Yamaguchi,
1999). The Model Class Selection system recursively chooses the bias that is most adequate
for different subsets of the data (Brodley, 1993). One disadvantage of these methods is that
they require reprogramming to include new biases, unlike our ranking method, which can
be applied to off-the-shelf algorithms.

Meta Decision Trees (MDT) select a particular classifier for each case in a dataset, rather
than providing a prediction directly (Todorovski & Džeroski, 2000, 2003). In general, these
alternative meta-learning approaches perform better than the basic algorithms on some
datasets and worse in others. Their performance could possibly be improved if information
about the past performance of algorithms was used.

Another different approach to meta-learning is based on so-called self-modifying policies
(Schmidhuber, Zhao, & Schraudolph, 1997). This methodology is used to build complex
probabilistic algorithms based on a set of instructions, some of which are capable of changing
other instructions as well as themselves. This enables the algorithm to adapt its bias to the
problem at hand, not only in-between problems but also during their solution. However,
it is assumed that the series of problems are similar and thus bias selection depends on
long-term performance rather than focussing on the problems that are most similar to the
one at hand.

The knowledge transfer in between problems has recently been discussed also by
Hochreiter, Younger, & Conwell (2001), who proposed a method for meta-learning for
recurrent neural networks.

6.5. Analysis of ranking methods performance

Our results show that no meta-learning method is universally better than the others, as
would be expected. We analyzed the space of datasets, as defined by our characterization
measures, with the aim of identifying regions where each method performs best. Since the
set of features selected seems to be more adequate for discriminating accuracy, we focussed
on the setting where this is the dominant criterion (AccD = 0.1%). First, we standard-
ized each of the data characteristics X : the values Xi were replaced with (Xi − X̄)/σX ,
where X̄ and σX represent the average value and the standard error of X . Then, we sepa-
rated the datasets into three groups, depending on which of the ranking methods obtained
the best result, with 22 datasets on the 1-NN group, 13 in the 5-NN group and 19 in the
baseline group.11 Then, for each group, we calculated the average (standardized) value of
each of the characteristics. Some striking trends can be observed for most data characteris-
tics (figure 3). For instance, analyzing the proportion of symbolic attributes meta-feature,

270 P.B. BRAZDIL, C. SOARES AND J.P. DA COSTA

Figure 3. Average standardized value of data characterization measures, grouping the datasets by the method
which performed best.

5-NN seems to be better for datasets with values above average while the baseline wins in
exactly the opposite type of dataset. On the other hand, 1-NN has a tendency to be the best
for datasets where the proportion of symbolic attributes is close to the average. Another
interesting meta-feature is class entropy, where we observe that the baseline performs better
for datasets with less-than-average values, while the opposite occurs for the IBL variants.

6.6. Meta-learning algorithm

In previous work where IBL was used for meta-learning, some positive (Gama & Brazdil,
1995; Lindner & Studer, 1999) and some negative (Kalousis & Hilario, 2000; Pfahringer,
Bensusan, & Giraud-Carrier, 2000) results have been reported. These results are not con-
tradictory, however, because the meta-learning problems addressed are different. Some
address it as a regression problem, i.e., prediction of individual algorithm performance,
while others as a classification problem, i.e., selection of the best algorithm from a set of
candidate algorithms. We follow yet another approach to meta-learning, where the aim is
to rank all the candidate algorithms (Section 1.2). Our choice of k-NN is due to some of its
properties, like extensibility and ability to deal with small data (Section 1.3). The results
obtained indicate that this was a good choice (Sections 4 and 5).

One common criticism of the IBL approach is that it does not provide explicit knowledge
(e.g., a set of rules) to the user. However, each individual prediction can be explained quite
simply by showing the instances on which the decision is based. This can be particularly
useful in meta-learning because the user is probably more familiar with previous datasets
than with some of the complex measures that are used to characterize them. However, the
issue of whether a better ranking method can be devised remains open. We believe, however,
that the use of other types of algorithms, like decision trees, depends on the availability
of more meta-data (i.e., datasets), which may possibly be generated artificially. It is also

RANKING LEARNING ALGORITHMS 271

conceivable that the IBL approach could be improved (Atkeson, Moore, & Schaal, 1997),
namely by weighting the contribution of each neighbor by its distance to the query dataset.
The evaluation methodology presented here can be used to prove or disprove whether any
new ranking method brings about any quantitative improvement.

6.7. Comparison with other ranking methods

In (Keller, Paterson, & Berrer, 2000), an IBL approach to meta-learning is also used to
generate rankings of the algorithms. The main difference to our work is that the performance
of the algorithms on the selected datasets is aggregated in a different way, using the concept
of efficiency from Data Envelopment Analysis (Charnes, Cooper, & Rhodes, 1978). It is not
trivial to compare these two ranking methods because the ideal rankings are not created in
the same way. Measures that are independent of the ranking methods are required to enable
a fair comparison (Berrer, Paterson, & Keller, 2000). We plan to do this in the future.

A different approach to ranking is proposed by Bensusan & Kalousis (2001). The au-
thors proceed in two stages. In the first stage, the method predicts the performance of the
algorithms using regression algorithms and then it generates a ranking by ordering the esti-
mates. They test different regression algorithms and report better results for some of them
when compared to IBL ranking. However, these results should be interpreted with caution
given than the ideal ranking used consisted only of a single ordering based on average
performance (Section 4.1).

An interesting system is presented by Bernstein & Provost (2001), called Intelligent Dis-
covery Electronic Assistant (IDEA). IDEA consists of two components (1) a plan generator
that uses an ontology to build a list of valid processes (i.e., a learning algorithm plus pre- and
post-processing methods), and (2) a heuristic ranker that orders the valid processes based
on some heuristic. The heuristics are knowledge-based and can take into account user pref-
erences regarding accuracy and time, much like in the ARR measure presented here. Good
results are presented, but a more thorough evaluation could be carried out, namely because
the ideal ranking is again based on a single ordering only and the method is not compared
to appropriate baselines. IDEA is independent of the ranking method and, thus, it would
be interesting to replace their heuristic ranking method with ours, which is based on past
performance.

6.8. Meta-attributes

As mentioned in Section 2, obtaining data characteristics that are good predictors of relative
performance between algorithms is a very difficult task. Some of those measures may
be irrelevant, others may not be adequately represented (e.g., the proportion of symbolic
attributes is more informative than the number of symbolic attributes), while some important
ones may be missing (one attribute which we could experiment with is concept complexity
Vilalta (1999)). Furthermore, the number of data characteristics should not be too large
for the amount of available meta-data. Contrary to previous work using similar measures
(Gama & Brazdil, 1995; Lindner & Studer, 1999; Bensusan & Kalousis, 2001; Kalousis
& Theoharis, 1999; Sohn, 1999), we selected a set of measures a priori with the aim

272 P.B. BRAZDIL, C. SOARES AND J.P. DA COSTA

of representing some of the properties that affect the performance of algorithms. This
set can be refined, e.g., by introducing measures of resilience to noise, etc. (Hilario &
Kalousis, 1999). However, as our results show, most of the attributes we selected are mostly
useful to discriminate algorithms on the basis of accuracy. To avoid this bias, one can use
feature selection methods at the meta-level to choose the appropriate characteristics for a
given multicriteria setting. Todorovski, Brazdil, & Soares (2000) show that the quality of
rankings can be improved in this way. One important issue is that dataset characterization
is relational in nature. For instance, skewness is calculated for each numeric attribute and
the number of attributes varies for different datasets. The most common approach, which
was also followed here, is to do some aggregation, e.g., calculate the mean skewness.
Kalousis & Theoharis (1999) use a finer-grained aggregation, where histograms with a fixed
number of bins are used to construct new meta-attributes, e.g., skewness smaller than 0.2,
between 0.2 and 0.4, etc. Individual attribute information was used with ILP (Todorovski
& Džeroski, 1999) and CBR (Hilario & Kalousis, 2001) approaches, but no conclusive
results were achieved. A different type of data characterization is landmarking (Bensusan
& Giraud-Carrier, 2000; Pfahringer, Bensusan, & Giraud-Carrier, 2000), which can be
related to earlier work on yardsticks (Brazdil, Gama, & Henery, 1994). Landmarks are quick
estimates of algorithm performance on a given dataset obtained using simple versions of
the algorithms (Bensusan & Giraud-Carrier, 2000; Pfahringer, Bensusan, & Giraud-Carrier,
2000) or by sampling from the dataset (Fürnkranz & Petrak, 2001; Soares, Petrak, & Brazdil,
2001b).

6.9. Multicriteria evaluation

We believe that there are situations where the compromise between accuracy and time
can be stated in the form of a percentage of accuracy the user is willing to trade for a
certain speedup. The ARR measure fits those situations. It is important to extend ARR
to include other performance criteria. However, some of these measures, e.g., novelty or
understandability, are highly subjective and others, e.g., complexity, are hard to compare
across different algorithms. Relatively little work has been dedicated to this issue (e.g.,
Nakhaeizadeh & Schnabl (1998)) without widespread use of the resulting measures, so we
opted to concentrate on criteria which are commonly used. Nakhaeizadeh & Schnabl (1998)
adapted DEA for this purpose where user preferences are stated in the form “criterion A is
50 times more important than criterion B.” This is not as user-friendly as ARR because it
implicitly assumes that criteria are measured in directly comparable units.

6.10. Ranking evaluation

Spearman’s correlation coefficient (or alternative rank correlation coefficients like Kendall’s
tau (Neave & Worthington, 1992)) represents an adequate measure of the agreement between
rankings of algorithms, but it does not distinguish between individual ranks. In practice,
however, it seems that swapping, say, the 5th and 6th algorithms, is less important than
swapping the first two. We could adopt the weighted correlation coefficient, discussed in
(Soares,Costa, & Brazdil, 2001a), to solve this problem.

RANKING LEARNING ALGORITHMS 273

Although we have shown the advantages of representing the ideal ranking as N orderings,
other possibilities could also be considered (Soares, Brazdil, & Costa, 2000). One such
possibility is to use a partial order representation, based on pairwise comparisons between
the algorithms. We should note that our ideal rankings are based on CV, which is not a
perfect estimation method although it serves well for practical purposes (Schaffer, 1993).

6.11. Ranking reduction

With the growing number of algorithms, some of alternatives presented in a ranking may
be redundant. Brazdil, Soares, & Pereira (2001) present a reduction method that eliminates
certain items in the ranking. Evidence is presented that this is useful in general, and leads
to time savings.

7. Conclusions

We have presented a meta-learning method to support the selection of learning algorithms
that uses the k-Nearest Neighbor algorithm to identify the datasets that are most similar to
the one at hand. The performance of the candidate algorithms on those datasets is used to
generate a ranking that is provided to the user. The distance between datasets is based on a
small set of data characteristics that represent a set of properties that affect the performance
of the learning algorithms. Although we concentrated on classification algorithms only, this
methodology can provide assistance in the selection of combinations of methods or more
complex strategies.

The performance of algorithms is assessed using the Adjusted Ratio of Ratios (ARR), a
multicriteria evaluation measure that takes accuracy and time into account. Other criteria,
e.g., interpretability and complexity, could also be included in the future.

As it is not yet a general practice in ML/KDD to work with rankings, we had to identify
and adapt existing statistical techniques to devise an appropriate evaluation methodology.
This enabled us to show that ARR with k-NN leads to significantly better rankings in general
than the baseline ranking method. The evaluation methodology is general and can be used
in other ranking problems.

In summary, our contributions are (1) exploiting rankings rather than classification or
regression, showing that is possible to adapt the IBL approach for that task, (2) providing
an evaluation methodology for ranking, (3) providing a multicriteria evaluation measure
that combines success rate and time, (4) identified a set of data characteristics that seem to
be good predictors of relative performance of algorithms and (5) providing a ground work
for ranking alternative solution strategies in a multistrategy system.

Appendix: The data mining advisor

The method for algorithm recommendation presented in this paper was developed as part of
the METAL Esprit project (METAL Consortium, 2002). This method is incorporated in the
publicly available Data Mining Advisor, at www.metal-kdd.org. We would like to thank

274 P.B. BRAZDIL, C. SOARES AND J.P. DA COSTA

Dietrich Wettschereck, Stefan Müller and Adam Woznica for their contributions to this
site.

Acknowledgments

We would like to thank anonymous referees of this paper for their constructive comments.
Thanks also to all the METAL partners for a fruitful working atmosphere, in particular
to Johann Petrak for providing the scripts to obtain the meta-data and to Jörg Keller, Iain
Paterson, Helmut Berrer and Christian Köpf for useful exchange of ideas. We also thank
DaimlerChrysler and Guido Lindner for providing us the data characterization tool. Finally,
we thank Rui Pereira for implementing a part of the methods and his useful contributions.
The financial support from ESPRIT project METAL, project ECO under PRAXIS XXI,
FEDER, Programa de Financiamento Plurianual de Unidades de I&D and from the Faculty
of Economics is gratefully acknowledged.

Notes

1. Given that this paper focus on classification tasks, we will use the term “success rate” and “accuracy” inter-
changeably.

2. We have no corresponding meta-attribute for symbolic attributes because none was readily available.
3. We represent higher ranks with smaller integers.
4. Not all experiments were executed on the same machine and so, a time normalization mechanism was

employed.
5. Some preparation was necessary in some cases, so some of the datasets were not exactly the same as the ones

used in other experimental work.
6. research.swisslife.ch/kdd-sisyphus.
7. The same reasoning is applied in the ideal rankings and when more than two algorithms are tied.
8. The significance level is (1—confidence level).
9. A few methods have been proposed to speed-up cross-validation (e.g. racing (Maron & Moore, 1994)).

However, these methods achieve much smaller gains in time when compared to our approach and, thus, were
not considered here.

10. We used the Data Characterization Tool (Lindner & Studer, 1999) that computes many measures other than
the ones we used. This means that the value presented is an upper bound on the time that is really necessary
to obtain them.

11. In one of the datasets we observed a tie between 1-NN and the baseline.

References

Aha, D. (1992). Generalizing from case studies: A case study. In D. Sleeman & P. Edwards (Eds.), Proceedings of
the Ninth International Workshop on Machine Learning (ML92) (pp. 1–10). San Mateo, CA: Morgan Kaufmann.

Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Locally Weighted Learning (Vol. 11) (pp. 11–74). Boston:
Kluwer.

Bensusan, H., & Giraud-Carrier, C. (2000). If you see la sagrada familia, you know where you are: Landmarking
the learner space. Technical report, Department of Computer Science, University of Bristol.

Bensusan, H., & Kalousis, A. (2001). Estimating the predictive accuracy of a classifier. In P. Flach & L.
de Raedt (Eds.), Proceedings of the 12th European Conference on Machine Learning (pp. 25–36). New York:
Springer.

RANKING LEARNING ALGORITHMS 275

Bernstein, A., & Provost, F. (2001). An intelligent assistant for the knowledge discovery process. In W. Hsu, H.
Kargupta, H. Liu, & N. Street (Eds.), Proceedings of the IJCAI-01 Workshop on Wrappers for Performance
Enhancement in KDD.

Berrer, H., Paterson, I., & Keller, J. (2000). Evaluation of machine-learning algorithm ranking advisors. In P.
Brazdil & A. Jorge (Eds.), Proceedings of the PKDD2000 Workshop on Data Mining, Decision Support, Meta-
Learning and ILP: Forum for Practical Problem Presentation and Prospective Solutions (pp. 1–13).

Blake, C., Keogh, E., & Merz, C. (1998). Repository of machine learning databases. Available at http:/www.
ics.uci.edu/∼mlearn/MLRepository.html

Brachman, R., & Anand, T. (1996). The process of knowledge discovery in databases. In U. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Advances in Knowledge Discovery and Data Mining, ch. 2 (pp.
37–57). AAAI Press/The MIT Press.

Brazdil, P., Gama, J., & Henery, B. (1994). Characterizing the applicability of classification algorithms using meta-
level learning. In F. Bergadano & L. de Raedt (Eds.), Proceedings of the European Conference on Machine
Learning (ECML-94) (pp. 83–102). Berlin: Springer-Verlag.

Brazdil, P., & Soares, C. (2000). A comparison of ranking methods for classification algorithm selection. In R.
de Mántaras & E. Plaza (Eds.), Machine Learning: Proceedings of the 11th European Conference on Machine
Learning ECML2000 (pp. 63–74). Berlin: Springer.

Brazdil, P., Soares, C., & Pereira, R. (2001). Reducing rankings of classifiers by eliminating redundant cases. In
P. Brazdil & A. Jorge (Eds.), Proceedings of the 10th Portuguese Conference on Artificial Intelligence (EPIA
2001). New York: Springer.

Brodley, C. (1993). Addressing the selective superiority problem: Automatic algorithm/model class selection. In
P. Utgoff (Ed.), Proceedings of the Tenth International Conference on Machine Learning (pp. 17–24). San
Mateo, CA: Morgan Kaufmann.

Charnes, A., Cooper, W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European
Journal of Operational Research, 2, 429–444.

Cohen, W. (1995). Fast effective rule induction. In A. Prieditis & S. Russell (Eds.), Proceedings of the 11th
International Conference on Machine Learning (pp. 115–123). San Mateo, CA: Morgan Kaufmann.

Fürnkranz, J., & Petrak, J. (2001). An evaluation of landmarking variants. In C. Giraud-Carrier, N. Lavrac, &
S. Moyle (Eds.), Working Notes of the ECML/PKDD 2000 Workshop on Integrating Aspects of Data Mining,
Decision Support and Meta-Learning (pp. 57–68).

Gama, J. (1997). Probabilistic linear tree. In D. Fisher (Ed.), Proceedings of the 14th International Machine
Learning Conference (ICML97) (pp. 134–142). San Mateo, CA: Morgan Kaufmann.

Gama, J., & Brazdil, P. (1995). Characterization of classification algorithms. In C. Pinto-Ferreira & N. Mamede
(Eds.), Progress in Artificial Intelligence (pp. 189–200). Berlin: Springer-Verlag.

Henery, R. (1994). Methods for comparison. In D. Michie, D. Spiegelhalter, & C. Taylor (Eds.), Machine Learning,
Neural and Statistical Classification, ch. 7 (pp. 107–124). Ellis Horwood.

Hilario, M., & Kalousis, A. (1999). Building algorithm profiles for prior model selection in knowledge discovery
systems. In Proceedings of the IEEE SMC’99 International Conference on Systems, Man and Cybernetics. New
York: IEEE Press.

Hilario, M., & Kalousis, A. (2001). Fusion of meta-knowledge and meta-data for case-based model selection. In
A. Siebes & L. de Raedt (Eds.), Proceedings of the Fifth European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD01). New York: Springer.

Hochreiter, S., Younger, A., & Conwell, P. (2001). Learning to learn using gradient descent. In G. Dorffner, H.
Bischof, & K. Hornik (Eds.), Lecture Notes on Comp. Sci. 2130, Proc. Intl. Conf. On Artificial Neural Networks
(ICANN-2001) (pp. 87–94). New York: Springer.

Kalousis, A., & Hilario, M. (2000). A comparison of inducer selection via instance-based and boosted decision
tree meta-learning. In R. Michalski & P. Brazdil (Eds.), Proceedings of the Fifth International Workshop on
Multistrategy Learning (pp. 233–247).

Kalousis, A., & Theoharis, T. (1999). NOEMON: Design, implementation and performance results of an intelligent
assistant for classifier selection. Intelligent Data Analysis, 3:5, 319–337.

Keller, J., Paterson, I., & Berrer, H. (2000). An integrated concept for multi-criteria ranking of data-mining
algorithms. In J. Keller & C. Giraud-Carrier (Eds.), Meta-Learning: Building Automatic Advice Strategies for
Model Selection and Method Combination.

276 P.B. BRAZDIL, C. SOARES AND J.P. DA COSTA

Kohavi, R., John, G., Long, R., Mangley, D., & Pfleger, K. (1994). MLC++: A machine learning library in c++.
Technical report, Stanford University.

Lindner, G., & Studer, R. (1999). AST: Support for algorithm selection with a CBR approach. In C. Giraud-Carrier
& B. Pfahringer (Eds.), Recent Advances in Meta-Learning and Future Work (pp. 38–47). J. Stefan Institute.
Available at http://ftp.cs.bris.ac.uk/cgc/ICML99/lindner.ps.Z

Maron, O., & Moore, A. (1994). Hoeffding races: Accelerating model selection search for classification and
function approximation. In J. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in Neural Information
Processing Systems (pp. 59–66). San Mateo, CA: Morgan Kaufmann.

METAL Consortium (2002). Esprit project METAL (#26.357). Available at www.metal-kdd.org.
Michie, D., Spiegelhalter, D., & Taylor, C. (1994). Machine Learning, Neural and Statistical Classification. Ellis

Horwood.
Mitchell, T. (1997). Machine Learning. New York: McGraw-Hill.
Nakhaeizadeh, G., & Schnabl, A. (1997). Towards the personalization of algorithms evaluation in data mining. In

R. Agrawal & P. Stolorz (Eds.), Proceedings of the Third International Conference on Knowledge Discovery &
Data Mining (pp. 289–293). AAAI Press.

Nakhaeizadeh, G., & Schnabl, A. (1998). Development of multi-criteria metrics for evaluation of data min-
ing algorithms. In D. Heckerman, H. Mannila, D. Pregibon, & R. Uthurusamy (Eds.), Proceedings of
the Fourth International Conference on Knowledge Discovery in Databases & Data Mining (pp. 37–42).
AAAI Press.

Neave, H., & Worthington, P. (1992). Distribution-Free Tests. London: Routledge.
Pfahringer, B., Bensusan, H., & Giraud-Carrier, C. (2000). Tell me who can learn you and i can tell you who you

are: Landmarking various learning algorithms. In P. Langley (Ed.), Proceedings of the Seventeenth International
Conference on Machine Learning (ICML2000) (pp. 743–750). San Mateo, CA: Morgan Kaufmann.

Quinlan, R. (1998). C5.0: An Informal Tutorial. RuleQuest. Available at http://www.rulequest.com/see5-unix.html.
Ripley, B. (1996). Pattern Recognition and Neural Networks. Cambridge.
Schaffer, C. (1993). Selecting a classification method by cross-validation. Machine Learning, 13:1, 135–143.
Schmidhuber, J., Zhao, J., & Schraudolph, N. (1997). Reinforcement Learning With Self-Modifying Policies

(pp. 293–309). Boston: Kluwer.
Soares, C., & Brazdil, P. (2000). Zoomed ranking: Selection of classification algorithms based on relevant per-

formance information. In D. Zighed, J. Komorowski, & J. Zytkow (Eds.), Proceedings of the Fourth European
Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD2000) (pp. 126–135).
New York: Springer.

Soares, C., Brazdil, P., & Costa, J. (2000). Measures to compare rankings of classification algorithms. In H. Kiers,
J.-P. Rasson, P. Groenen, & M. Schader (Eds.), Data Analysis, Classification and Related Methods, Proceedings
of the Seventh Conference of the International Federation of Classification Societies IFCS (pp. 119–124). New
York: Springer.

Soares, C., Costa, J., & Brazdil, P. (2001a). Improved statistical support for matchmaking: Rank correlation
taking rank importance into account. In JOCLAD 2001: VII Jornadas de Classificação e Análise de Dados
(pp. 72–75).

Soares, C., Petrak, J., & Brazdil, P. (2001b). Sampling-based relative landmarks: Systematically test-driving
algorithms before choosing. In P. Brazdil & A. Jorge (Eds.), Proceedings of the 10th Portuguese Conference on
Artificial Intelligence (EPIA 2001) (pp. 88–94). New York: Springer.

Sohn, S. (1999). Meta analysis of classification algorithms for pattern recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 21:11, 1137–1144.

Suyama, A., Negishi, N., & Yamaguchi, T. (1999). CAMLET: A platform for automatic composition of induc-
tive applications using ontologies. In C. Giraud-Carrier & B. Pfahringer (Eds.), Proceedings of the ICML-99
Workshop on Recent Advances in Meta-Learning and Future Work (pp. 59–65).

Todorovski, L., Brazdil, P., & Soares, C. (2000). Report on the experiments with feature selection in meta-level
learning. In P. Brazdil & A. Jorge (Eds.), Proceedings of the Data Mining, Decision Support, Meta-Learning
and ILP Workshop at PKDD2000 (pp. 27–39).

Todorovski, L., & Džeroski, S. (1999). Experiments in meta-level learning with ILP. In J. Rauch & J. Zytkow
(Eds.), Proceedings of the Third European Conference on Principles and Practice of Knowledge Discovery in
Databases (PKDD99) (pp. 98–106). New York: Springer.

RANKING LEARNING ALGORITHMS 277

Todorovski, L., & Džeroski, S. (2000). Combining multiple models with meta decision trees. In D. Zighed, J.
Komorowski, & J. Zytkow (Eds.), Proceedings of the Fourth European Conference on Principles and Practice
of Knowledge Discovery in Databases (PKDD00) (pp. 54–64). New York: Springer.

Todorovski, L., & Džeroski, S. (2003). Combining classifiers with meta-decision trees. Machine Learning Journal.
50:3 pp. 223–249.

Vilalta, R. (1999). Understanding accuracy performance through concept characterization and algorithm analysis.
In C. Giraud-Carrier & B. Pfahringer (Eds.), Recent Advances in Meta-Learning and Future Work (pp. 3–9).
J. Stefan Institute.

Wolpert, D., & Macready, W. (1996). No free lunch theorems for search. Technical Report SFI-TR-95-02-010,
The Santa Fe Institute. Available at http://lucy.ipk.fhg.de:80/∼stephan/nfl/nfl.ps

Received October 20, 2000
Revised November 28, 2001
Accepted June 2, 2002
Final manuscript July 30, 2002

