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Abstract

We explore the relationship between diversity measures and ensemble performance, for binary classification with simple majority

voting, within a problem domain characterized by asymmetric misclassification costs. Extending the work of Kuncheva and

Whitaker [Machine Learning 51(2) (2003) 181], we compare a set of diversity measures within two different data representations.

The first is a direct representation, which explicitly allows for consideration of asymmetric costs by indicating the specific values of

the predictions––which in turn allows for a distinction between more costly misclassifications in this domain (i.e., actual 0 predicted

as 1) and less costly ones (i.e., actual 1 predicted as 0). The second is an oracle representation, which indicates predictions as either

correct or incorrect, and therefore does not allow for asymmetric costs. Within these representations we identified and manipulated

certain situational factors, including the percentage of target group members in the population and the designed accuracy and

sensitivity of each constituent model. Based on a neural network comparison of diversity measures and ensemble performance, we

found that (1) diversity measure association with ensemble performance is contingent on the data representation, with Yule’s Q-
statistic and the coincident failure measure (CFD) as the best indicators in the direct representation and CFD alone as best indicator

in the oracle representation, and (2) diversity measure association with ensemble performance varies as situational factors are

manipulated; that is, diversity measures are differentially effective at different factor levels. Thus, the choice of a diversity measure in

assessing ensemble classification performance requires an examination of both the nature of the task domain and the specific factors

that comprise the domain.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we empirically investigate the rela-

tionship between a collection of diversity measures and

two performance criteria that are of interest in a two-

group marketing classification application with unequal

misclassification costs. The complexity of the applica-

tion leads us to believe that ensemble classifiers should

be more effective than individual approaches, so that if
reliable predictive models linking the diversity measures
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to the performance criteria of ensembles can be formed,
then the process of constructing effective ensembles

might be simplified. Because diversity has been advo-

cated as a positive ensemble characteristic [7,18, 23,25,

28,29], there is reason to believe that some measure(s)

should be linkable to performance. Studies have ex-

plored the use of diversity measures both in assessing the

performance of ensembles (e.g. [30]), as well as in

determining the composition of an ensemble through
‘thinning’ (e.g. [2]).

Because no single method for building and using an

ensemble(s) is appropriate across all situations [9], it is

important to understand how situational characteristics

impact the structure and performance of ensembles. Our

work therefore focuses on the issues of diversity and cost

mail to: galor@duq.edu
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in the demographic classification of television viewers

from their viewing behavior. The television advertising

industry is confronted by the growth of digital personal

video recorders (PVRs), which allow viewers to digitally

record television programming, and to skim over or
eliminate ‘in stream’ commercials [5]. More importantly

for this research, because a PVR can be programmed, it

also can record the viewing patterns of households and

disclose their choices to others. Advertisers and service

providers then can use data mining methods to infer

characteristics of the household from its viewing choi-

ces––i.e., to build a profile of the household––and then

send advertising to the PVR that is relevant to that type
of household. The benefit to the viewer is that he or she

receives advertising that potentially is more relevant and

useful, and by implication receives fewer unwanted

commercial messages. From the perspective of the

advertiser, such targeted advertisements are more likely

to be viewed and to influence purchasing behavior than

non-targeted ones.

To deliver targeted advertising, it is necessary to be
able to determine the members of a target group in a

way that is accurate, unobtrusive and auditable. We

developed a classification system that identifies the

demographic and psychographic (behavioral) charac-

teristics of viewers from their viewing patterns [34]. Our

work is based on the premise that ‘‘you are what you

watch’’––i.e., an individual’s viewing habits tends to

reveal his or her basic characteristics. Viewing patterns
include the types of shows viewed, how often each show

is watched, the time each show is watched, the duration

of each viewing, etc. Data mining techniques can use

those constituents to identify subsets of viewers rich in

the target group. Table 1 illustrates the gains achieved

from viewer profiling for five target gender/age segments

defined by Nielsen Media Services, Inc. (NMSI) (see [34]

for a discussion of segmentation strategies). From Table
1, if an ad is sent to everyone, 25.18% of the recipient

households include a female aged 18–34. If an ad is sent

only to households selected by the classification system,

58.06% of them include such a person. A household

selected by the classification system is 58.06/25.18¼ 2.3

times more likely to be of the desired type than one
Table 1

Performance of a viewer classification system, where h means that a househol
that the data mining system predicts that the household contains at least on

Demographic group ProbðhÞ

Female age 18–34 25.18

Female age >55 28.65

Male age 12–17 11.68

Male age 18–34 22.99

Male or female age 2–11 24.82

Note: The age-gender combinations included here are illustrative, and therefo

as children (2–11), teenagers (12–17), young adults (18–34), and older adults
selected at random; that ratio is the model’s lift. The lifts

in Table 1 are different for different segments because

some groups are easier to predict based on their viewing

patterns.

Thus, we found that television viewing data can be
used to profile viewers. But more importantly, we also

found that different data segments (e.g., weekend vs.

weekday viewing) and different data mining algorithms

(e.g., neural networks, logistic regression and linear

discriminant analysis) generate different sets of predic-

tions. Motivated by this discovery, and the general sense

in data mining research that combining classifiers can

provide better predictions than individual models [9], we
have taken an ensemble approach to classification of

television viewers.

A classifier or ensemble might be considered to per-

form ‘well’ if it simply produces better predictions than

random guessing [9]. Similarly, an ensemble might be

considered accurate if it produces predictions that,

overall, are better than the predictions of its constitu-

ents. Evidence suggests that ensembles indeed can be
more accurate than individual models [10,26]––but only

when their predictions reflect some level of diversity––

i.e., when they tend to disagree [1,4,8,10,15,18]. Bagging

and boosting methods, for example, improve perfor-

mance because they produce diverse classifiers [3,12,31].

While the conceptual meaning of diversity is agreed

upon––e.g., Dietterich defines diversity as the tendency

of constituent models to produce different errors on new
data points [9]––multiple ways have been proposed to

measure it.

From a set of 10 established diversity measures,

Kuncheva and Whitaker empirically explored the degree

to which the individual measures are indicative of

ensemble performance [21]. In our research we extend

the work of Kuncheva and her colleagues [19–22,32,35]

by including more diversity measures, by building
models using multiple predictor diversity measures, and

by incorporating unequal misclassification costs––the

latter resulting in different and multiple performance

measures and hence more complex predictive models.

Kuncheva and Whitaker considered several pairwise

and groupwise measures of diversity between and
d includes at least one member of the demographic group and ĥ means
e such person

ProbðhjĥÞ Lift ¼ ProbðhjĥÞ
ProbðhÞ

58.06 2.30

76.15 2.66

31.91 2.73

60.78 2.64

84.21 3.39

re do not include every segment. The ages shown can be characterized

(>55).
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among binary classifiers to determine the strength of

association between accuracy and each individual

diversity measure [21]. They used an oracle representa-

tion, which does not distinguish between types of out-

come errors. It assumes misclassification costs are
identical. However, in a targeting advertising environ-

ment, misclassification costs are not equal because er-

rors in accuracy are much more costly than errors in

sensitivity. Predicting that an observation is a member

of the target set is a business commitment to an adver-

tiser and a financial commitment from the advertiser,

and therefore carries a concrete dollar cost when in er-

ror. Ads have to be sent to x=ac households in order to
have an expected yield of x exposures to the target

audience, so the higher ac is, the lower the cost of the
advertising campaign. As discussed below, some of

Kuncheva and Whitaker’s conclusions extend to the

unequal misclassification case, but we found that the

relationship between the diversity measures and per-

formance is a function of both population and individ-

ual classifiers’ characteristics.
Within the context of ensemble binary classification

with simple majority voting, we address the following

research questions:

• Which numerical diversity measures appear to be sta-

tistically significant predictors of the performance of

an ensemble, where the predictive model is of arbi-

trary form and may involve multiple predictors?
• In extending Kuncheva and Whitaker’s study, do the

models for the direct representation differ from those

estimated using an oracle representation?

• Do variations on the diversity measures used by Kun-

cheva and Whitaker, or additional diversity mea-

sures, improve ensemble predictability?

• How do specific characteristics of the domain, such as

percentage of the target group in the population and
performance of individual models, impact the ability

of diversity measures to predict ensemble perfor-

mance?

• Would combinations of diversity measures make bet-

ter predictors of ensemble performance than individ-

ual measures?

The rest of the paper is organized as follows. In
Section 2 we define concepts and terms related to clas-
Table 2

Confusion matrix showing classifier performance in the context of both sym

that are actually members of the group labeled 1, specificity ðspÞ is the prop
sitivity (se) is the proportion of true positives

Predicted

0

Actual 0 ð1� pÞsp
1 pð1� seÞ
sifier performance and representation. In Section 3 we

discuss the diversity measures explored in this research,

while in Section 4 we describe our research approach,

including the individual experiments and their design

parameters. Section 5 describes the results from the
experiments within and across representations. Section 6

then concludes the paper with a discussion of the major

findings and their implications.
2. Performance and representation

Ensemble classification is based on the assumption
that a more diverse group of classifiers may perform

better than a less diverse one. As mentioned in Section 1,

we use accuracy and sensitivity to measure performance.

While the definition of the term tends to vary (see [14],

pp. 98–99 and p. 182), we define accuracy ðacÞ as mea-
suring the percentage of observations predicted by a

model to be members of a target group (i.e., predicted

1s) which actually are members of the group (i.e., actual
1s). Alternatively stated, it is the probability that an

observation is a 1 given that it is predicted as a 1; i.e.,

P ðactual ¼ 1jprediction ¼ 1Þ. Sensitivity in turn is the

conditional probability of predicting that an observa-

tion is a 1 given that it is a 1; i.e., Pðprediction ¼
1jactual ¼ 1Þ. The complementary conditional proba-

bility, Pðprediction ¼ 0jactual ¼ 1Þ ¼ ð1� sensitivityÞ is

an opportunity cost, measuring the proportion of the
available inventory (i.e., members of a particular

demographic group) not recognized as such by the

model.

To illustrate the issue of performance in the context

of both symmetric and asymmetric costs, let p denote

the proportion of vectors in S that are actually members
of the group labeled 1. For any classifier or ensemble,

the direct representation retains the assigned and true
group labels for each item in S, which can be cross-

classified into a confusion matrix of the form shown in

Table 2. Using standard ROC (receiver operating

characteristic) curve terminology, the specificity sp and

sensitivity se are, respectively, the proportion of true

negatives and the proportion of true positives achieved

by a classifier or ensemble. Specificity and sensitivity are

calculated as follows:

sp ¼ a=ðaþ cÞ
metric and asymmetric costs, where p is the proportion of vectors in S
ortion of true negatives achieved by a classifier or ensemble, and sen-

1

ð1� pÞð1� spÞ ð1� pÞ
pðseÞ p

1



Table 3

2 · 2 matrix showing the relationship between a pair of classifiers,

where Nxy is the number of observations for which classifier 1 predicts

x (0,1) and classifier 2 predicts y ð0; 1Þ
Classifier 2

1 0

Classifier 1 1 N 11 N 10

0 N 01 N 00

The total number of observations N ¼ N 11 þ N 10 þ N 01 þ N 00 (adapted

from [21]).
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se ¼ d=ðbþ dÞ
where a is the number of actual 0s predicted as 0, b is the

number of actual 1s predicted as 0, c is the number of

actual 0s predicted as 1, and d is the number of actual 1s
predicted as 1 ([14], pp. 131–140).

For reasons discussed later, we measure the quality of

the output of a classifier or ensemble using sensitivity

and the proportion of correct predictions of membership

in the group labeled 1, the accuracy using the direct

representation, ac. Because ac ¼ pðseÞ=½ð1� pÞð1� spÞþ
pðseÞ�, accuracy using the direct representation is a

function of both specificity and sensitivity (as derived
from [14]). By contrast, the oracle representation retains

only the correctness or incorrectness of the classifier’s or

ensemble’s labeling, not the assigned or true group

membership. Thus, the accuracy using the oracle repre-

sentation, ao, is the sum of the principal diagonal entries

in the confusion matrix, that is, ao ¼ ð1� pÞspþ pðseÞ.
Identifying and generalizing from the conditions

impacting ensemble performance requires a high level
of control over the situational factors comprising the

problem domain. Because the results obtained from

analysis of real-world data cannot be sufficiently

controlled, we have pursued an experimental ap-

proach––starting with the simulated output of multiple

classification methods, continuing with the generation

of consensus classifications from those simulated re-

sults, and ending with an understanding of the factors
impacting combination strategies. Simulated data sets

that are not linked per se to any particular domain

provide a much higher level of control over the situ-

ational parameters that might impact combination

strategies, while avoiding many of the idiosyncrasies

of real-world data and data mining methods. The

simulated data reflect the characteristics and con-

straints of the television viewing data upon which they
are based, and therefore comprise a realistic––even

though generated––representation of the actual view-

ing data.
3. Diversity measures

We used 22 diversity measures for each ensemble,
comprised of 15 pairwise and 7 non-pairwise measures.

The 15 pairwise measures are comprised of three val-

ues––the average across the members of the ensemble, as

well as the maximum, and minimum––for each of 5

pairwise measures. The formulas used to calculate

the measures are shown below (See Kuncheva and

Whitaker [21] for a complete description of measures (1)–

(4).We calculated those measures in the same manner and
use the same notation below. Note that Kuncheva and

Whitaker restrict their calculations to the average pair-

wise values.)
1. Yule’s Q-statistic (Q) [36] for two classifiers, Di and
Dk, is

Qi;k ¼
N 11N 00 � N 01N 10

N 11N 00 þ N 01N 10

where N is the total number of predictions, and Nxy is
the number of predictions for each intersection of Di
and Dk––as shown in Table 3. The average over all

pairs of L classifiers is:

Qav ¼
2

LðL� 2Þ
XL�1
i¼1

XL
k¼iþ1

Qi;k

2. The correlation coefficient ðqÞ for two binary classi-

fier outputs yi and yk is

qi;k ¼
N 11N 00 � N 01N 10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðN 11 þ N 10ÞðN 01 þ N 00ÞðN 11 þ N 00ÞðN 10 þ N 00Þ
p

3. The disagreement measure (Dis) [33] is

Disi;k ¼
N 01 þ N 10

N 11N 10 þ N 01N 00

4. The double-fault measure (DF) [13] is

DFi;k ¼
N 00

N 11 þ N 10 þ N 01 þ N 00

5. The general chi-square value ðv2Þ for deviation from

independence ([6, pp. 204–215]) is defined as follows.

Let Ri ¼
P
j Ni;j; Cj ¼

P
i Ni;j and N ¼

P
i

P
j Ni;j

where Ri is the sum of the ith row of the confusion

matrix, Cj is the sum of the jth column, and N is the

total number of observations.

Then the observed chi-square value is the sum of the

squared differences of the observed minus the ex-
pected cell frequencies divided by the expected cell

frequencies. That is,

v2 ¼
P
i

P
jðNi;j � EiÞ
Ei

; where Ei ¼
RiCi
N

The remaining seven non-pairwise diversity measures,

derived from all the models in an ensemble, are de-

scribed below (note that Kuncheva and Whitaker used

the non-pairwise measures (1)–(6); again, we calculated

the measures identically).
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1. The Kohavi–Wolpert variance (KW) [17] is

KW ¼ 1

NL

XN
j¼1
lðzjÞðL� lðzjÞÞ

where zj is the jth element of a data set Z ¼
fz1; z2; . . . ; zNg

2. The interrater agreement ðjÞ [11] can be calculated

from the KW variance, first by calculating the aver-

age individual classification accuracy ðpÞ:

p ¼ 1

NL

XN
j¼1

XL
i¼1
yj;i

j is then calculated from KW, p and L:

j ¼ 1� L
ðL� 1Þpð1� pÞKW

3. The entropy measure (E) varies between 0 and 1,

where 0 indicates no diversity among classifiers, and

1 indicates maximum diversity:

E ¼ 1

N

XN
j¼1

1

ðL� ½L=2�Þ minflðzjÞ; L� lðzjÞg

4. The measure of difficulty ðhÞ [15] is a measure of the
variance of X :

ha ¼ VarðXaÞ
where X is a discrete random variable with values

f0L ; 1L ; . . . ; 1g indicating the proportion of classifiers in

the ensemble correctly classifying a randomly drawn

input (x) from the problem distribution (see also [21]).
5. The generalized diversity (GD) measure [27] is calcu-

lated from the probability of failure of one or both of

two classifiers drawn randomly from an ensemble,

where pð1Þ ¼ probability that one classifier will fail

and pð2Þ ¼ probability that both classifiers will fail.

pð1Þ; pð2Þ, and the generalized diversity measure then

are calculated as follows:

pð1Þ ¼
XL
i¼1

i
L
pi and pð2Þ ¼

XL
i¼1

iði� 1Þ
LðL� 1Þ pi

GD ¼ 1� pð2Þ
pð1Þ

6. The coincident failure diversity (CFD) [27] is a varia-
tion on the GD measure (as noted in [21])

CFD ¼ 0; p0 ¼ 1:0
1

1�p0

PL
i¼1

L�i
L�1 pi; p0 < 1:0

�

7. We then use the same general chi-square test for inde-

pendence used in the pairwise analysis.
4. Research approach

Formally, we consider a binary classification task in

which the two classes are labeled 0 and 1, and a set
M ¼ fM1;M2; . . . ;Mcg of classifier methods that assign

label MiðxÞ 2 f0; 1g to N vectors x1; x2; . . . ; xN (where x

is the vector of values of the independent variables

and N is the number of items classified––as indicated

below). Let l be a subset of distinct member of the set
of indices f1; 2; . . . ; cg, where the cardinality of l is L.
We assume that L is odd. Let the labeling assigned by

the ensemble involving the indices in l, EðlÞ be given by

EðlÞ ¼ b1=2þ ðRi2lMi=lc, where b c is the integer floor,
that is, we use simple majority vote to assign the

ensemble’s label. Simple majority vote in our domain is

feasible across all ensemble sizes because of the voting

results are binary (i.e., restricted to either 0 or 1), and
because ensembles are assumed at present to contain an

odd number of members. Note that we deduce the

ensemble classification only from the labels MiðxÞ as-

signed by the methods, not from the values of the

underlying vectors.

4.1. Design parameters

The design parameters and values used include:

• Number of items classified (N ): the number of individ-
uals to be classified by each method. The results

should not be sensitive to the value of N , except that
the larger the value of N , the more possible values in
[0,1] that can be achieved by the ensemble. We used

N ¼ 1000.
• Percent in the population (p): the fraction of the gen-

eral population that belongs to the target group. We

used 10%, 20%, 30%, 40%, 50% and 60%, because in

a television viewing application, those are typical val-

ues for target audiences.

• Total number of models (c) from which an ensemble

can be created. This and L determine the number of

replications for each set of parameters, because we
generate all cCL ensembles of L items chosen from

the c possible. We used c ¼ 10.

• Number of models (L) that participate in the ensemble.
We set L ¼ 3, because it avoids tie votes while also

keeping the number of replications manageable. Thus

there are 10C3¼ 120 replications for each set of

parameters.

• Designed accuracy (ac) and sensitivity of each model
(se): each model label vector has the same range of

values for ac and se.

• Voting policy: Currently, the consensus prediction of

an ensemble is achieved through a simple majority

(democratic) voting procedure, which is facilitated

by having an odd number of voting models in each

ensemble. While democratic voting is an effective

and popular approach [23,24], other more complex
voting schemes are potentially effective and could be

employed based on a variety of criteria [16]. (We dis-

cuss later the potential for extending this research



Table 4

Accuracy (ac), sensitivity (se) and percent-in-population (p) parameter

values across 60 experiments

Experiment (ac) (%) se (%) p (%)

1–6 40 20 10–60

7–12 40 40 10–60

13–18 60 20 10–60

19–24 60 40 10–60

25–30 60 60 10–60

31–36 60 80 10–60

37–42 80 20 10–60

43–48 80 40 10–60

49–54 80 60 10–60

55–60 80 80 10–60
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through manipulations of voting policy and random-

ized outcomes.)

4.2. Experiments

We designed a series of 60 experiments that were

defined as a specific combination of parameter values

that varied across the experiments. Table 4 indicates
how the parameters were distributed to each set of

experiments. For example, in the first set of six experi-

ments, designed accuracy and sensitivity were fixed at

40% and 20% respectively, while percent in the popu-

lation varied from 10% to 60%. In the second set,

accuracy remained at 40%, sensitivity was changed to

40%, and again percent in the population varied from

10% to 60%. The remaining sets of experiments were
designed similarly.

We should note that these values are not all-encom-

passing, but rather represent realistic constraints on the

values of the parameters based on the characteristics of

our problem domain. In advertising, the proportion of

the target group relative to the population at-large

generally is relatively small, which led us to restrict the

percent in the population parameter to less than 60%
(resulting in correspondingly high values for specificity).

Furthermore, certain parameter value combinations––

for example, accuracy ½P ðactual ¼ 1jprediction ¼ 1Þ� of
40%, sensitivity ½Pðprediction ¼ 1jactual ¼ 1Þ� of 60%,

and percent in population of 60% are impossible because

those values require that Pðactual ¼ 0 and prediction ¼
0Þ be less than zero; )14% in the case cited.

The data initialization phase of the experiment then
generated performance and diversity measures in the

context of the situational parameters defined for each of

the experiments described above. This phase proceeded

in the following sequence:

1. generation of the actual group assignment vector,

against which an ensemble’s performance is assessed.

In a real data set, this vector would indicate whether
or not an individual belongs to the target class (i.e.,

either 1 or 0). In the experimental approach, the vec-
tor is populated with 1s and 0s depending on the

value of the percent in the population (p) parameter.

For example, if the value of p is 20 (percent) and the

number of individuals (N) is 1000, then 200 of the val-

ues in the vector would be ‘1’, with the rest being ‘0’;
2. generation of c model prediction vectors, which repre-

sent the predictions of c different hypothetical mod-
els. The number and content of the vectors are

based on the value of c defined in the database, along
with the accuracy and sensitivity rates specified for

each of the prediction vectors;

3. assembly of subsets of the ðc ¼ 10Þ prediction vectors
into ensembles of ðL ¼ 3Þ voting vectors;

4. generation of ðcCL ¼ 120Þ ensemble predictions for

each individual by tallying the votes of each of the

participating voting vectors within each ensemble;

5. calculation of the accuracy and sensitivity rates of each

ensemble, which determines the likelihood of predicting;

6. determination of the ensemble’s performance by com-

paring it to the rates of the individual vectors/models

within the ensemble;
7. calculation of pairwise and non-pairwise diversity mea-

sures that relate pairs and groups of the models in

each ensemble across all the observations and for

each of the two groups separately, for each of two

alternative representations of the underlying classifi-

cation problem.

The performance and diversity measures then were
fed into neural network models (SPSS/Clementine) to

search for patterns showing which of the diversity

measures are most indicative of ensemble perfor-

mance––for both the oracle and direct representations.

The neural network used an exhaustive prune search to

identify the significant diversity measures. Exhaustive

pruning is similar to stepwise regression, in that only the

diversity measures (i.e., independent variables) consid-
ered significant in predicting performance are retained in

the network when it is trained. Generalizability of the

model was enhanced by withholding half of the sample

data when training the network, and then using the

other half to control overfitting. The random seed was

held constant across all models at a value of 12,345. We

essentially deferred the settings of the other model

parameters to Clementine, so that it would construct the
best model given the constraints imposed by exhaustive

pruning. Thus, parameters such as the number of nodes

and hidden layers were determined by the model

building routine in Clementine.
5. Results

Results from the experiments, which can be described

across and within representations, are both consistent

with, and different from, those of Kuncheva and Whi-
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taker. Comparing across representations, Yule’s Q sta-

tistic ðQavgÞ is the best indicator of ensemble perfor-

mance in the direct representation––where it is tied with

the coincident failure diversity (CFD) measure––but not

in the oracle representation, where CFD is the best
indicator of ensemble performance (see Table 5 Panels A

and B, Total column). This finding is notable in that it
Table 5

Number of diversity measure appearances as a function of p for the oracle r

Diversity

measure

Number of appearances

p ¼ 0:1 p ¼ 0:2 p ¼ 0:3 p

Panel A

Qavg 7 3 3

Qmax 5 4 6

Qmin 4 2 4

qavg 6 0 0

qmax 0 2 4

qmin 4 0 1

Davg 1 2 5

Dmax 4 5 5

Dmin 3 1 5

DFavg 2 0 3

DFmax 1 0 2

DFmin 1 0 3

v2avg 5 3 5

v2max 3 2 3

v2min 1 2 1

E 4 5 6

KW 1 2 5

j 4 0 5

h 5 1 3

GD 6 6 6

CFD 10 9 9 1

v2 9 6 7

Max possible 10 10 10 1

Panel B

Qavg 6 5 7

Qmax 5 1 7

Qmin 5 1 4

qavg 6 2 5

qmax 3 1 6

qmin 3 1 4

Davg 3 2 5

Dmax 1 0 3

Dmin 3 0 5

DFavg 4 0 2

DFmax 3 0 4

DFmin 3 0 2

v2avg 7 4 4

v2max 3 0 5

v2min 3 0 5

E 3 2 5

KW 4 0 4

j 8 4 4

h 6 3 5

GD 1 0 2

CFD 5 4 7

v2 8 3 6

Max possible 10 10 10 1
supports Kuncheva and Whitaker’s finding that the Q-
statistic is the best performance indicator, but only in

one of the representations.

It also is notable that within each data representa-

tion, the association between diversity measures and
ensemble performance is contingent on the values of

three manipulated experimental parameters: percent in
epresentation (Panel A) and direct representation (Panel B)

¼ 0:4 p ¼ 0:5 p ¼ 0:6 Total

2 5 6 26

3 3 1 22

3 3 3 19

3 2 2 13

3 3 3 15

0 2 1 8

6 7 5 26

2 5 4 25

3 4 3 19

0 2 2 9

0 2 2 7

2 2 2 10

3 2 2 20

3 4 3 18

2 2 1 9

4 7 4 30

4 7 4 23

4 4 5 22

3 5 3 20

3 7 4 32

0 9 9 56

4 4 5 35

0 10 10 60

5 9 2 34

5 5 2 25

2 5 2 19

4 5 1 23

3 7 0 20

1 3 1 13

3 6 1 20

3 4 0 11

3 4 1 16

0 2 0 8

1 2 0 10

1 2 0 8

3 3 0 21

1 5 0 14

2 5 0 15

3 3 2 18

2 6 1 17

3 4 3 26

3 4 2 23

1 1 1 6

6 6 6 34

0 2 3 22

0 10 10 60
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the population (p), designed direct accuracy ðacÞ, and
designed sensitivity (se). The results for the two leading

measures in both representations, Qavg and CFD, are

charted in Figs. 1–3 (for p, ac and se, respectively). The

X -axis of each graph indicates the manipulated levels
of the parameter, while the Y -axis shows the percent-

age of times that Qavg and CFD appeared in a final
% appearances

pct in population

Qavg oracle
CFD oracle

0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

Qavg conv
CFD conv 

Fig. 1. Percentage of appearances in a neural network model for Qavg

and CFD in the oracle and direct representations, as percent-in-pop-

ulation (p) increases from 0.1 to 0.6.

% appearances

accuracy (conventional)

Qavg oracle
CFD oracle
Qavg conv
CFD conv

0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

conv
conv

1

Fig. 2. Percentage of appearances in a neural network model for Qavg

and CFD in the oracle and direct representations, as designed direct

accuracy (ac) increases from 0.4 to 0.8.

% appearances

sensitivity

Qavg oracle
CFD oracle
Qavg conv
CFD conv

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

11

Fig. 3. Percentage of appearances in a neural network model for Qavg

and CFD in the oracle and direct representations, as designed sensi-

tivity (se) increases from 0.2 to 0.8.
neural network exhaustive prune model. The Y -axis
therefore indicates how well a particular measure pre-

dicts ensemble performance at each parameter level. As

shown in Fig. 1, in the direct representation, Qavg is a

better indicator of performance than CFD at certain
values of p (i.e., 0.1, 0.2 and 0.5), while CFD is better

than Qavg at other values (i.e., 0.4 and 0.6). The same

patterns are evident when the parameter-of-interest is

ac and se––i.e., Qavg is better at some values while CFD

is better at others. In the oracle representation, by

contrast, CFD is the best indicator of performance for

all values of all three parameters. While Figs. 1–3 show

that different parameter values appear to impact the
utility of CFD in predicting ensemble performance, the

impact is small relative to the fluctuations shown by

Qavg. That is, Qavg association with performance is

much more volatile within each representation, and

thus much more dependent on the specific value of a

parameter.

Tables 5–7 present more detailed results which in-

clude all of the diversity measures. As a group, the tables
show the influence of each diversity measure, in both

representations, as p (Table 5), ac (Table 6) and se

(Table 7) vary across the range of values. Each table

shows (1) the number of times each measure appeared in

a final neural network model for each value of the

parameter of interest, and (2) the total number of times

the measure appeared across all models (the latter is

identical for each representation across all three tables).
Across all parameters, CFD is the most significant in 56

of the 60 experiments in the oracle representation (Table

5, Panel A)––followed distantly by the other measures.

In the direct representation (Table 5, Panel B), Qavg and

CFD essentially are tied––each showing significance in

34 experiments.

Within each of the individual parameters (p, ac and

se), the relationship between measure and performance
varies substantially across the two representations. The

results relative to each of the parameters are discussed

below.

5.1. Percent in population

For the percent-in-population (p) parameter, CFD is

consistently most related to performance in the oracle
representation (Table 5, Panel A) across all levels of p,

showing significance in at least 9 of 10 experiments at

each level. However, in the direct representation (Table

5, Panel B), different diversity measures are better indi-

cators of performance at different levels of p. For

example, although Qavg and CFD are most closely re-

lated to performance overall, Qavg is the single best

indicator only when p ¼ 0:2, 0.3 and 0.5, while CFD is
the best indicator when p ¼ 0:3, 0.4 and 0.6. Notably,

when p ¼ 0:1, interrater agreement (j) and v2 (non-

pairwise) become the best indicators.



Table 6

Number of diversity measure appearances as a function of (ac) for the oracle representation (Panel A) and direct representation (Panel B)

Diversity measure Number of appearances

ac ¼ 40% ac ¼ 60% ac ¼ 80% Total

Panel A

Qavg 7 10 9 26

Qmax 6 6 10 22

Qmin 2 7 10 19

qavg 4 3 6 13

qmax 3 4 8 15

qmin 2 1 5 8

Davg 5 10 11 26

Dmax 3 10 12 25

Dmin 4 8 7 19

DFavg 1 4 4 9

DFmax 0 5 2 7

DFmin 2 5 3 10

v2avg 3 10 7 20

v2max 3 7 8 18

v2min 0 4 5 9

E 6 13 11 30

KW 5 11 7 23

j 6 7 9 22

h 6 8 6 20

GD 5 14 13 32

CFD 9 24 23 56

v2 7 14 14 35

Max possible 12 24 24 60

Panel B

Qavg 8 16 10 34

Qmax 5 11 9 25

Qmin 5 10 4 19

qavg 2 12 9 23

qmax 3 6 11 20

qmin 1 10 2 13

Davg 3 10 7 20

Dmax 2 5 4 11

Dmin 4 7 5 16

DFavg 1 4 3 8

DFmax 0 7 3 10

DFmin 0 4 4 8

v2avg 2 9 10 21

v2max 1 7 6 14

v2min 2 7 6 15

E 2 9 7 18

KW 2 8 7 17

j 4 9 13 26

h 2 9 12 23

GD 0 4 2 6

CFD 4 15 15 34

v2 2 9 11 22

Max possible 12 24 24 60
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5.2. Accuracy

Similarly, varying the designed accuracy parameter

(ac) has a differential impact on the diversity measures

indications of performance. While CFD remains the

best indicator across all three levels of ac in the oracle

representation (Table 6, Panel A), the number of
experiments in which it is significant is not consistent––

unlike the results described above for different levels of

p. When ac ¼ 60% and 80%, CFD is by far the leading

measure. CFD shows significance in 24 and 23 experi-

ments (out of 24), respectively, while the next best

indicator is significant only in 14 out of 24 experiments.

However, when ac ¼ 40%, CFD is significant in 9 out of



Table 7

Number of diversity measure appearances as a function of se for the oracle representation (Panel A) and direct representation (Panel B)

Diversity measure Number of appearances

se ¼ 20% se ¼ 40% se ¼ 60% se ¼ 80% Total

Panel A

Qavg 5 10 4 7 26

Qmax 5 8 3 6 22

Qmin 2 7 4 6 19

qavg 4 3 3 3 13

qmax 4 3 4 4 15

qmin 2 3 1 2 8

Davg 8 7 5 6 26

Dmax 5 7 7 6 25

Dmin 4 6 5 4 19

DFavg 1 1 3 4 9

DFmax 1 0 3 3 7

DFmin 2 1 4 3 10

v2avg 10 6 1 3 20

v2max 4 7 3 4 18

v2min 2 2 3 2 9

E 7 8 9 6 30

KW 6 6 5 6 23

j 6 6 4 6 22

h 6 6 4 4 20

GD 6 9 10 7 32

CFD 16 16 12 12 56

v2 12 9 8 6 35

Max possible 18 18 12 12 60

Panel B

Qavg 13 12 3 6 34

Qmax 11 7 3 4 25

Qmin 9 5 2 3 19

qavg 7 3 5 8 23

qmax 9 4 2 5 20

qmin 3 3 3 4 13

Davg 4 4 4 8 20

Dmax 3 3 2 3 11

Dmin 6 1 1 8 16

DFavg 4 1 0 3 8

DFmax 3 2 2 3 10

DFmin 3 0 1 4 8

v2avg 2 4 6 9 21

v2max 4 2 3 5 14

v2min 4 2 4 5 15

E 2 4 4 8 18

KW 3 4 3 7 17

j 7 7 3 9 26

h 7 4 4 8 23

GD 2 0 3 1 6

CFD 6 11 8 9 34

v2 4 6 5 7 22

Max possible 18 18 12 12 60
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12 experiments, while v2 (non-pairwise) and Qavg are

significant in 7 experiments. Thus, CFD is a better

indicator relative to the other measures at higher levels of

ac, and less so at lower levels of ac. At the same time,

Qavg becomes a relatively better indicator when ac is a

lower value (i.e., 40%). Although Qavg is well behind

CFD as an overall indicator (appearing in 26 NN

models compared to 56 for CFD), it is tied for 2nd when
ac ¼ 40%, appearing in only two fewer models than

CFD at that level of ac.

5.3. Sensitivity

The patterns for variations in the sensitivity param-

eter (se) are similar to those shown for accuracy. In the

oracle representation, CFD is the leading indicator of
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performance across values of sensitivity, although again

it tends to vary. For se ¼ 40% and 80%, CFD is sig-

nificant in substantially more models than the second

place measure (16 vs. 10 and 12 vs. 7). For se ¼ 20% and

60%, the gap between CFD and its nearest competitor
shrinks somewhat (16 vs. 12 and 12 vs. 10). In the direct

representation, Qavg is the leading measure at the lower

levels of se, 20% and 40%, while it trails CFD at the

higher levels of 60% and 80%.

The specific impact of se on the v2avg measure is

notable, since v2avg becomes a substantially better indi-

cator of performance as the value of se increases. At

se ¼ 20%, it appears in only 2 out of 18 measures (11%),
and is essentially the worst indicator of ensemble per-

formance. As se increases to 80%, the number of models

within which v2avg is significant rises to 9 out of 12 (75%),
where it becomes the best indicator of ensemble per-

formance (although tied with CFD and j).
6. Conclusions

The major findings of this research show that the

ability of diversity measures to predict ensemble per-

formance varies depending on (1) the type of data rep-

resentation used, either direct or oracle, and (2) the

values of specific situational parameters within each of

the data representations. These are significant because,

in a decision making task, they suggest the use of a
contingent approach in selecting diversity measures for

performance evaluation, in several respects. First, the

choice of diversity measures becomes contingent on data

representation, and by extension, on the impact of

misclassification costs. In the context of asymmetric

misclassification costs––i.e., within the direct represen-

tation––Yule’s Q-statistic is a relatively good indicator

of performance. But in the oracle representation,
wherein misclassification costs are treated identically,

the Q-statistic appears less effective than several other

measures, particularly the coincident diversity (CFD)

measure.

Second, as noted, the choice of diversity measures

also is contingent on variations in situational parame-

ters, particularly within the direct representation. That

is, in a domain characterized by asymmetric misclassi-
fication costs, Yule’s Q-statistic is a preferred measure of
performance at certain parameter levels, but not at

others. By contrast, in a domain characterized by sym-

metric misclassification costs, CFD is the best choice

across all levels of each parameter––although other

diversity measures become more competitive with CFD

at certain parameter levels.

Furthermore, the imposed data representation affects
the relevancy of some parameters. For example, the

percent-in-population (p) parameter is relevant only in

the direct representation because it directly impacts the
calculated values of accuracy and sensitivity. In this

representation, because both accuracy and sensitivity

are determined based on whether an actual observation

is a member of the target group, knowing the percentage

of members in the population is required. By contrast,
because the oracle representation records predictions as

either correct or incorrect, without regard to the value of

the prediction itself, knowing the percentage of members

in the population is not required.

By exploring the impact of data representation and

situational factors, this research has sought answers to

the general ‘open question’ of diversity measure utility

posed by Kuncheva and Whitaker. But a number of
questions remain. While this study contributes to a

general understanding of how diversity measures are

impacted by situational factors, we do not yet under-

stand, for example, why Yule’s Q and CFD are better

relative indicators of performance, or why their per-

formance varies across parameter values. More work

across the research community is required to discover

what other factors might be important, and to learn
how and why the various elements of the classification

problem impact the choice of diversity measures.

Several of the parameters held constant in this study

are amenable to further exploration. They include the

total number of models generated ðcÞ, the number of

participating models ðLÞ, the randomized outcome of

designed accuracy and sensitivity, and the voting pol-

icy––which can be extended beyond the simple demo-
cratic process used in this study to include more

complex, weighted approaches. Because the ability of

diversity measures to reflect ensemble performance is

contingency-based, exploration of these additional

factors will help in building a consensus understanding

of how and why diversity measures––and perhaps even

diversity itself––are important to ensemble perfor-

mance.
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