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Abstract

Kurtosis can be measured in more than one way. A modi*cation of Geary’s measure of
kurtosis is shown to be more sensitive to kurtosis in the center of the distribution while Pearson’s
measure of kurtosis is more sensitive to kurtosis in the tails of the distribution. The modi*ed
Geary measure and the Pearson measure are used to de*ne a joint test of kurtosis that has high
uniform power across a very wide range of symmetric nonnormal distributions. c© 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Karl Pearson introduced the idea of kurtosis to describe distributions that di5ered
from normal distributions in terms of peakedness. Pearson (1905) referred to leptokurtic
distributions as being more peaked and platykurtic distributions as being less peaked
than normal distributions, but modern de*nitions of kurtosis acknowledge the fact that
kurtosis will be in8uenced by both the peakedness and the tail weight of a distribution
(Ruppert, 1987) and can be “formalized in many ways” (Balanda and MacGillivray,
1988). According to van Zwet (1964), only symmetric distributions should be compared
in terms of kurtosis and kurtosis should not be measured by a single number.
The renewed interest in assessing kurtosis may be due to the increasing use of

normal-theory covariance structure methods which are known to perform poorly in
leptokurtic distributions (Bollen, 1989, pp. 415–418; Hu et al., 1990) and Micceri’s
(1989) *ndings that the majority of real data sets exhibit leptokurtosis. Normal-theory
inferential procedures for variances and Pearson correlations also perform poorly in the
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presence of leptokurtosis (Sche5Ie, 1959, p. 336; Kowalski, 1972). Kurtosis also a5ects
the power of tests regarding means. Although inferential methods for means are very
robust to kurtosis, the median will be a more eJcient measure of location than the
mean in many leptokurtic distributions such as the Laplace and Student’s t distribution
with df¡ 5. Nonparametric tests of location such as the Mann–Whitney test can be far
more powerful than the t-test in certain leptokurtic distributions (Hodges and Lehmann,
1956).
Geary (1936) introduced a measure of kurtosis which he de*ned as �=� where

�=E(|Y −	|). Under normality, it can be shown that �=�=(2=
)1=2 = 0:7979. Geary’s
measure of kurtosis never gained widespread usage, possibly because 0¡�=�6 (2=
)1=2

in leptokurtic distributions so that large increases in leptokurtosis have small numerical
e5ects on �=�. We propose a simple transformation of Geary’s measure that, like Pear-
son’s measure, equals 3.0 under normality and increases without bound with increasing
leptokurtosis. The transformation also improves the small-sample sampling distribution
of the test statistic under the null hypothesis of normality.

2. Two measures of kurtosis

The population value of Pearson’s measure of kurtosis may be de*ned as

�2 = E(X − 	)4={E(X − 	)2}2 (1)

which is equal to 3 in normal distributions and is greater than 3 in leptokurtic distri-
butions. The usual estimator of �2 is

�̂2 = n�(Xi − 	̂)4={�(Xi − 	̂)2}2; (2)

where 	̂ = �Xi=n and n is the sample size.
Extensive tables of lower and upper critical values of �2 that can be used for

one-sided and two-sided tests of �2 =3 are available (D’Agostino and Stephens, 1986;
Ramsey and Ramsey, 1993, 1995). Most statistical packages report �2 − 3 or Fisher’s
estimator of �2 − 3 (see DeCarlo, 1997) which is unbiased in normal distributions.
Anscombe and Glynn (1983) proposed the following transformation of �̂2:

z� = [1− 2=9c1 − {(1− 2=c1)=(1 + c3{2=(c1 − 4)}1=2}1=3]=(2=9c1)1=2; (3)

where

c1 = 6 + (8=c2){2=c2 + (1 + 4=c2)1=2};

c2 = {6(n2 − 5n+ 2)=(n+ 7)(n+ 9)}{6(n+ 3)(n+ 5)=n(n− 2)(n− 3)}1=2;

c3 = {�̂2 − 3(n− 1)=(n+ 1)}={24n(n− 2)(n− 3)=(n+ 1)2(n+ 3)(n+ 5)}1=2:
Reject normality if |z�|¿z�=2 where z�=2 is the point on the standard normal distribution
exceeded with probability �=2. A one-sided test of leptokurtosis rejects normality if
z� ¿ z�.
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Under normality �=�= (
=2)1=2 (Stuart and Ord, 1994, p. 361) and it follows that

!= 13:29(ln � − ln �) (4)

is approximately equal to 3 in normal distributions. The following estimator of ! is
proposed:

!̂= 13:29(ln �̂ − ln �̂); (5)

where �̂= �|Xi − 	̂|=n and �̂2 = �(Xi − 	̂)2=n.
Geary (1936) shows that var (�̂=�̂) := 0:21232=n. Applying the �-method gives

var(ln �̂− ln �̂) := 0:21232(�2=n�2). Under normality �=�= (
=2)1=2 and thus var(ln �̂−
ln �̂) := 0:21232
=2n and SE(!̂) := 13:29{0:21232
=2n}1=2 := 3:54=n1=2. In a prelimi-
nary empirical investigation, we found that the asymptotic standard error of !̂ can be
estimated more accurately by 3:54=(n+ 2)1=2.
Applying standard asymptotic results, it can be shown that the test statistic

z! = (n+ 2)1=2(!̂− 3)=3:54 (6)

has an approximate standard normal distribution under the null hypothesis of normality.
Reject normality if |z!|¿z�=2. A one-sided test of leptokurtosis rejects normality if
z! ¿z�.

3. Values of �2 and ! for some symmetric distributions

Values of �2 and ! are given in Table 1 for a variety of symmetric distributions.
Most of the values of �2 were obtained from standard sources such as Evans et al.
(1993), Zwillinger and Kokoska (2000) and Johnson et al. (1994). The values of !
were obtained by computing � for each distribution and then computing (4).
According to Oja (1981), a valid measure of kurtosis must be location and scale

invariant and also must obey van Zwet ordering which rank orders the distributions
in Set A of Table 1 from smallest to largest. Both �2 and ! are location and scale
invariant and both rank the distributions in Set A from smallest to largest. Note that �2
exists in distributions where E(z4) exists while ! exists in a larger class of distributions
where E(z2) exists.
Because �2 is more sensitive to tail weight than !, it is more likely than ! to

incorrectly classify distributions that di5er primarily in terms of peakedness. DeCarlo
(1997) and others have pointed that the Laplace distribution is clearly more peaked
than the t5 distribution but �2 = 6 for the Laplace and �2 = 9 for the t5. In contrast,
!= 4:61 for the Laplace and != 4:09 for the t5 and thus ! correctly classi*es these
distributions according to peakedness.

4. Small-sample Type I error rates of kurtosis-based normality tests

The z� test statistic has been studied extensively and is known to have excellent
Type I error control in small samples (D’Agostino et al., 1990). A z-test for Geary’s
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Table 1
Values of �2 and ! for some symmetric distributions

Set Member Distribution �2 !

A 1 Beta (1=2; 1=2) 1.50 1.37
2 Uniform 1.80 1.91
3 Normal 3.00 3.00
4 Logistic 4.20 3.55
5 Laplace 6.00 4.61

B 1 t(6) 6.00 3.82
2 t(5) 9.00 4.09
3 t(4) ∞ 4.61
4 t(3) ∞ 6.00
5 t(2) ∞ ∞

C 1 Lambda (0:50; 0:60) 1.99 2.16
2 Lambda (−0:33;−0:14) 9.36 4.52
3 Lambda (−0:38;−0:16) 11.61 4.71
4 Lambda (−0:43;−0:17) 13.21 4.81
5 Lambda (−0:55;−0:20) 22.21 5.14

D 1 ScConN (0:2; 2:0) 4.68 3.70
2 ScConN (0:2; 2:5) 6.15 4.28
3 ScConN (0:2; 3:0) 7.54 4.89
4 ScConN (0:2; 4:0) 9.75 5.97
5 ScConN (0:2; 5:0) 11.14 6.87

E 1 ScConN (0:4; 0:30) 4.47 4.36
2 ScConN (0:4; 0:25) 4.62 4.62
3 ScConN (0:4; 0:20) 4.75 4.91
4 ScConN (0:4; 0:15) 4.86 5.23
5 ScConN (0:4; 0:10) 4.93 5.58

F 1 SU (0; 1:30) 10.10 4.64
2 SU (0; 1:20) 13.55 4.99
3 SU (0; 1:10) 20.36 5.49
4 SU (0; 1:00) 36.19 6.22
5 SU (0; 0:95) 57.73 6.59

Note: Descriptions of the distributions in Sets A and Bcan be found in Evans et al. (1993). Set
C contains a familyof four-parameter (�1; �2; �3; �4)Lambda distributions described by Ramberg et al.
(1979). Symmetric Lambda distributions with �1 = 0 and�3 = �4 are speci*ed here in terms of�2
and �3. Sets D and E containScConN(p; �) distributions in which anobservation is sampled with
probability 1− p from N(0, 1) andprobability p from N(0; �2)(Gleason, 1993). Set F contains a set
of symmetricdistributions from Johnson’s SU family of distributions(Stuart and Ord, 1994, p. 247).

index was developed by D’Agostino (1970a, b) and also was found to perform very
well in small samples. The Type I error rate of the new z! test will now be examined.

Table 2 gives the results of a computer simulation of the empirical one-sided and
two-sided Type I error rates for the z� test and the z! test at � = [0:10 0:05 0:01]
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Table 2
Empirical Type I error rates for kurtosis tests

z� test z! test Joint test

n �= 0:10 �= 0:05 �= 0:01 �= 0:10 �= 0:05 �= 0:01 �= 0:10 �= 0:05 �= 0:01

Two-sided test
10 0.089 0.041 0.005 0.099 0.042 0.008 0.081 0.035 0.006
20 0.095 0.047 0.009 0.099 0.048 0.010 0.087 0.042 0.010
30 0.099 0.050 0.011 0.100 0.049 0.011 0.092 0.047 0.011
40 0.101 0.053 0.012 0.100 0.049 0.011 0.096 0.049 0.012
50 0.102 0.053 0.013 0.100 0.050 0.011 0.097 0.050 0.012
100 0.103 0.053 0.013 0.100 0.050 0.010 0.099 0.052 0.013

One-sided test

10 0.106 0.056 0.011 0.063 0.036 0.012 0.084 0.046 0.012
20 0.100 0.051 0.011 0.077 0.044 0.014 0.089 0.049 0.013
30 0.100 0.049 0.010 0.084 0.047 0.014 0.092 0.049 0.013
40 0.099 0.049 0.009 0.087 0.048 0.014 0.093 0.049 0.013
50 0.099 0.049 0.009 0.088 0.048 0.014 0.094 0.050 0.013
100 0.098 0.048 0.009 0.090 0.050 0.013 0.097 0.051 0.012

and n = [10 20 30 40 50 100] based on 300,000 Monte Carlo samples from a normal
population. The simulation program was written in Gauss and executed in a Pentium
III class computer.
Table 2 shows that the two-sided Type I error rate for the z� test is slightly conserva-

tive for n¡ 30 and slightly liberal for n¿ 30. The two-sided Type I error rates for the
z! test are very close to � for all n¿ 20. The z! test has slightly better two-sided Type
I error control than the z� test or the D’Agostino test based on �̂=�̂ (see D’Agostino,
1970a).
An upper one-sided test provides an important test of leptokurtosis. Table 2 shows

that the upper one-sided Type I errors rates for the z� test are very close to � for all
n¿ 20. The upper one-sided Type I error rates for the z! test are slightly conservative
at �= 0:10 and �= 0:05 but slightly liberal at �= 0:01. The z� test has slightly better
upper one-sided Type I error control than the z! test.

5. Residual kurtosis in multiple-group designs

Bonett and Woodward (1990) found that the z� test can be applied to the residual
scores (yij − 	̂j) in multiple-group designs if nj¿ 10. We found that the z! test also
retains its excellent Type I error control with ANOVA residual scores if nj¿ 10. This
result is important because the sample size may be too small to test normality with
adequate power within each group. In multiple-group designs, a more powerful test of
normality can be obtained by computing z! or z� from the total sample of residual
scores.
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Table 3
Power of two-sided kurtosis tests and Shapiro–Wilk test at � = 0:05

Set Member n z� z! Joint Shapiro–Wilk

A 1 23 0.761 0.601 0.714 0.817
2 43 0.809 0.538 0.754 0.636
4 390 0.807 0.792 0.827 0.744
5 75 0.650 0.812 0.792 0.681

B 1 240 0.806 0.780 0.818 0.758
2 175 0.805 0.793 0.822 0.766
3 120 0.805 0.810 0.828 0.780
4 72 0.784 0.805 0.813 0.774
5 40 0.785 0.818 0.819 0.792

C 1 66 0.807 0.499 0.747 0.522
2 105 0.774 0.802 0.809 0.756
3 95 0.782 0.814 0.820 0.766
4 87 0.767 0.800 0.806 0.753
5 75 0.769 0.805 0.809 0.759

D 1 240 0.818 0.732 0.809 0.753
2 100 0.801 0.760 0.803 0.767
3 63 0.808 0.790 0.819 0.791
4 36 0.799 0.804 0.822 0.810
5 25 0.762 0.783 0.795 0.801

E 1 80 0.467 0.812 0.773 0.619
2 60 0.427 0.806 0.765 0.744
3 50 0.418 0.826 0.787 0.651
4 40 0.392 0.808 0.772 0.662
5 35 0.381 0.802 0.770 0.704

F 1 95 0.772 0.804 0.812 0.752
2 77 0.766 0.805 0.809 0.756
3 61 0.753 0.800 0.800 0.749
4 50 0.758 0.811 0.809 0.762
5 45 0.756 0.812 0.809 0.767

Mean (SD) 0.717 (0.143) 0.773 (0.082) 0.798 (0.027) 0.737 (0.065)

Mean (SD) at n= 25 0.368 (0.171) 0.397 (0.175) 0.408 (0.175) 0.375 (0.185)
n= 50 0.585 (0.213) 0.644 (0.219) 0.662 (0.207) 0.586 (0.217)
n= 100 0.795 (0.178) 0.844 (0.184) 0.861 (0.171) 0.806 (0.183)

6. Power of kurtosis tests

The z� test is known to be a powerful test of normality (D’Agostino et al., 1990).
Table 3 compares the empirical powers of the two-sided z� and z! tests at �=0:05 for
all of the distributions in Table 1 except the normal. Table 4 compares the empirical
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Table 4
Power of upper one-sided kurtosis tests and Shapiro–Wilk test at � = 0:05

Set Member n z� z! Joint Shapiro–Wilk

A 4 320 0.816 0.795 0.829 0.666
5 63 0.691 0.806 0.788 0.611

B 1 195 0.805 0.770 0.810 0.682
2 150 0.805 0.793 0.822 0.710
3 99 0.804 0.796 0.816 0.709
4 63 0.803 0.807 0.819 0.723
5 35 0.798 0.812 0.818 0.746

C 2 90 0.795 0.804 0.817 0.695
3 80 0.790 0.804 0.814 0.699
4 77 0.796 0.809 0.820 0.706
5 65 0.788 0.803 0.812 0.709

D 1 190 0.811 0.724 0.798 0.667
2 83 0.809 0.755 0.804 0.696
3 50 0.799 0.760 0.796 0.715
4 30 0.799 0.781 0.805 0.743
5 23 0.801 0.789 0.810 0.765

E 1 67 0.558 0.813 0.775 0.573
2 50 0.523 0.800 0.761 0.753
3 40 0.496 0.797 0.758 0.548
4 34 0.486 0.797 0.760 0.589
5 30 0.480 0.789 0.761 0.638

F 1 80 0.782 0.796 0.806 0.689
2 67 0.790 0.808 0.816 0.702
3 55 0.787 0.812 0.814 0.711
4 45 0.789 0.817 0.818 0.722
5 40 0.786 0.818 0.818 0.722

Mean (SD) 0.737 (0.117) 0.794 (0.022) 0.803 (0.022) 0.688 (0.055)

Mean (SD) at n= 25 0.440 (0.154) 0.462 (0.173) 0.474 (0.165) 0.385 (0.161)
n= 50 0.645 (0.177) 0.700 (0.202) 0.708 (0.188) 0.596 (0.203)
n= 100 0.839 (0.142) 0.873 (0.165) 0.883 (0.148) 0.805 (0.187)

powers of the one-sided z� and z! tests at � = 0:05 for all leptokurtic distributions
in Table 1. The Shapiro–Wilk test (Shapiro and Wilk, 1965) is also a very powerful
test of normality (Gan and Koehler, 1990) and this popular test, based on Royston’s
(1992) computational method, is included for comparison. The results in Tables 3
and 4 are based on 100,000 Monte Carlo samples from each distribution. To make
the comparisons among the three tests more meaningful and less complicated, the
empirical powers are reported for the sample size at which the most powerful test
achieves power of about 0.8. The sample sizes in Tables 3 and 4 also provide sample
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size requirements to reject the null hypothesis of normality with power of 0.8 for a
wide variety of symmetric nonnormal distributions. Tables 3 and 4 also report the mean
power at n= 25; 50, and 100.
Table 3 shows that the mean power of the two-sided z! test is higher than the mean

power of the two-sided z� test and the Shapiro–Wilk test across the 29 nonnormal
distributions in Table 1. However, the z� and z! tests are sensitive to di5erent types
of kurtosis. Speci*cally, the z� test is far more powerful than the z! test in platykurtic
distributions while the z! test tends to be more powerful than the z� test in highly
peaked leptokurtic distributions such as the Laplace and the scale-contaminated normals
in Set E.
Table 4 shows that the mean power of the one-sided z! test is higher than the mean

power of the one-sided z� test and the Shapiro–Wilk test. The z! test is more powerful
than the Shapiro–Wilk test in all 26 distributions and more powerful than the z� test
in 17 of the 26 distributions. These *ndings extend the results of D’Agostino and
Roseman (1974) who found that D’Agostino’s test based on �̂=�̂ was more powerful
than the Shapiro–Wilk test in detecting certain leptokurtic distributions.
The z! test is a powerful test of leptokurtosis in symmetric distributions. If the

distribution is skewed, the z! test should be accompanied by the standard test of
skewness (DeCarlo, 1997) which together provide a powerful and informative test of
normality in a manner described by D’Agostino et al. (1990).

7. Joint test of kurtosis

The z� test is more powerful than the z! test in all platykurtic distributions we exam-
ined and the z! test is more powerful than the z� test in most leptokurtic distributions.
A more uniformly powerful test of kurtosis can be obtained by using both Pearson’s
measure of kurtosis and Geary’s measure of kurtosis. Although a joint Bonferroni test
of H0: �2 = 3 and ! = 3 could be used in an obvious way, a more powerful joint
test can be obtained by exploiting the correlation between z� and z! under the null
hypothesis of normality.
Under the null hypothesis of normality, Geary (1936) showed that �̂2 and �̂=�̂ have

an asymptotic bivariate normal distribution with �=−{12(
−3)}−1=−0:588. Given the
complexity of z�, we were not able to derive the correlation between z� and z! but we
were able to estimate it very accurately using Monte Carlo methods. The large-sample
correlation between z� and z! was found to be approximately 0.77. One-sided and
two-sided critical z-values were obtained by numerically integrating over a standardized
bivariate normal distribution with �= 0:77 are given in Table 5.
Let z∗�=2 denote a two-sided critical bivariate z-value and let z∗� denote a one-sided

critical bivariate z-value from Table 5. Reject normality if |z�|¿z∗�=2 or |z!|¿z∗�=2. A
one-sided test of leptokurtosis rejects normality if z� ¿ z∗� or z! ¿z∗� .
Table 2 shows that the joint test exhibits Type I error control similar to the z� test.

Table 3 shows that the joint test is more powerful, on average, than any of the other
tests. Furthermore, the joint test is more powerful than the Shapiro–Wilk test for 28 of
the 29 distributions and more powerful than the z� test for 25 of the 29 distributions
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Table 5
Critical z-values for joint test

� One-sided Two-sided

0.10 1.505 1.857
0.05 1.857 2.162
0.01 2.517 2.759

in Table 3. Table 4 shows that the joint test is a more powerful test of leptokurtosis
than any of the other tests for all 27 leptokurtic distributions in Table 4. Although no
currently available test of normality is known to be uniformly most powerful across
all alternative distributions, the joint test of kurtosis has very high uniform power
across the set of leptokurtic distributions considered here. Tables 3 and 4 also report
the mean power across all distributions at n= 25; 50 and 100. Note that the joint test
has the highest mean power at all three sample sizes. The variability in power across
distributions for the joint test at n = 25; 50 and 100 is low and this suggests that its
high mean power is not simply the result of a few cases where it has unusually high
power.

8. Summary

Kurtosis can be measured in more than one way, just as centrality or dispersion can
be measured in more than one way. Compared to �2; ! is in8uenced more by scores
close to the center of the distribution, and compared to !; �2 is in8uenced more by
scores in the tails of the distribution. Consequently, the z� test is more powerful than
the z! test in platykurtic distributions, but the z! test is more powerful than the z�
test in all highly peaked symmetric leptokurtic distributions we examined. The joint
kurtosis test introduced here exploits the unique strengths of two di5erent measures
of kurtosis and has high uniform power across a wide range of symmetric nonnormal
distributions.
Although the Shapiro–Wilk test is among the most powerful and widely used tests

of normality, when this test rejects the null hypothesis of normality it provides no
information regarding the shape of the distribution. D’Agostino et al. (1990) argue
convincingly that tests based on skewness and kurtosis measures are especially useful
in assessing the shape of a nonnormal distribution. Since ! and �2 are sensitive to
di5erent types of kurtosis, some researchers will now want to use the new joint test
of kurtosis along with the standard test of skewness.
The z! test is easy to compute, has excellent power and Type I error control, and

does not require special tables of critical values. The simplicity of ! and z! make
them ideal for textbook and classroom applications. Although it is now common to
avoid the discussion of kurtosis in introductory treatments of statistics, the fact that
! is a function of two common measures of dispersion and that the z! test does not
require special tables of critical values might encourage some authors to include this
important topic in future versions of their texts.
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In conclusion, we suggest that ! be referred to as G-kurtosis in honor of Geary and
to distinguish this type of kurtosis from Pearson’s measure. We also suggest that statis-
tical packages report G-kurtosis, z! and its p-value in addition to Pearson’s kurtosis, z�
and its p-value. The joint test described here can then be easily obtained from z! and
z�. If the joint test leads to a rejection of the null hypothesis, many researchers will
want to examine a normal probability plot to obtain additional descriptive information
regarding the shape of the distribution.
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