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ABSTRACT
Motivation: Estimation of misclassification error has received increas-
ing attention in clinical diagnosis and bioinformatics studies, especially
in small sample studies with microarray data. Current error estim-
ation methods are not satisfactory because they either have large
variability (such as leave-one-out cross-validation) or large bias (such
as resubstitution and leave-one-out bootstrap). While small sample
size remains one of the key features of costly clinical investigations
or of microarray studies that have limited resources in funding, time
and tissue materials, accurate and easy-to-implement error estimation
methods for small samples are desirable and will be beneficial.
Results: A bootstrap cross-validation method is studied. It achieves
accurate error estimation through a simple procedure with bootstrap
resampling and only costs computer CPU time. Simulation studies
and applications to microarray data demonstrate that it performs con-
sistently better than its competitors. This method possesses several
attractive properties: (1) it is implemented through a simple procedure;
(2) it performs well for small samples with sample size, as small as
16; (3) it is not restricted to any particular classification rules and thus
applies to many parametric or non-parametric methods.
Contact: wfu@stat.tamu.edu

1 INTRODUCTION
Cross-validation (CV) has been widely used in estimating prediction
errors in many statistical models such as regressions and classifica-
tions. It is well-known that CV provides unbiased estimation and is
easy to implement. However, recent discussions about the role of
CV in estimating misclassification error in microarray data analysis
raised concerns over its performance since CV presents large variab-
ility with small samples. Braga-Neto and Dougherty (2004) studied
cases where classifiers were trained based on a small number of genes
that investigators may be interested in. Ambroise and McLachlan
(2002) studied cases where classifiers were trained based on a large
number of genes available in microarray studies. While small sample
size remains one of the key features of microarray studies, it is
of great interest to develop methodologies that potentially provide
more accurate estimation with small samples (Dougherty, 2001; Brun
et al., 2003; Kim et al., 2002). Efron (1983) and Efron and Tibshirani
(1997) studied the leave-one-out bootstrap (LOOBT), 0.632 boot-
strap (BT632) and 0.632+ bootstrap (BT632+) methods for small
sample classification. Their methods improved error estimation by
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bootstrap resampling with training set separated from test set and
yielded slightly biased estimation. Ambroise and McLachlan (2002)
applied 10-fold CV and BT632+ methods to highly fit microarray
data, where the number of genes is huge, in the order of thousands,
while the sample size is relatively small, in the order of tens or hun-
dreds. Their findings with small samples are encouraging. We are
thus motivated to investigate whether bootstrap resampling improves
CV with small samples and study the bootstrap cross-validation
(BCV) method, a simple and straightforward method of estimating
misclassification error. We conclude that in many cases BCV per-
forms better than LOOBT, BT632 and BT632+ with small samples
in terms of mean relative squared error.

The paper is organized as follows. In Section 2 we introduce the
BCV method and show why BCV works. Section 3 compares BCV
with its competitors in estimating misclassification errors through
simulation studies. In Section 4 we apply BCV and other methods to a
microarray study on breast cancer patient prognosis and demonstrate
that BCV performs better than its competitors. Section 5 provides
some concluding remarks.

2 BOOTSTRAP CROSS-VALIDATION METHOD

2.1 The BCV procedure
We propose BCV by combining the bootstrap (Efron and Tibshirani,
1993) with CV (Geisser, 1975; Stone, 1974). Assume that we have a
sample S = {(x1, y1), . . . , (xn, yn)} of size n, where xi represents the
feature the observation (xi , yi) possesses and yi is the class label of
the observation. We draw bootstrap samples with replacement, S∗

b =
{(x∗

1 , y∗
1 ), . . . , (x∗

n , y∗
n)}, b = 1, . . . , B for some large B between

50 and 200. We require that each bootstrap sample have at least
three distinct observations in every class. For each sample S∗

b , we
carry out CV with a predetermined classification rule, such as the
linear discriminant analysis (LDA) and obtain an error estimation
rb. We then repeat this procedure B times and calculate the averaged
error estimation rBCV = B−1 ∑B

b=1 rb over all B bootstrap samples.
We call rBCV the BCV error. Note that <3 distinct observations in
one class can be problematic in training LDA classifier with cross-
validated bootstrap samples.

By definition, BCV is in the framework of Breiman’s bag-
ging predictors (Breiman, 1996). Breiman studied a number of
classification rules and showed that bagging through bootstrap-
aggregating improves the performance of unstable estimators, such
as the classification and regression trees (CART), but does not yield
much improvement for stable estimators, such as k-nearest neighbors
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(KNN). The bagging predictor is defined as follows: for a given
sample S and a predetermined classification rule C, such as CART
or KNN, draw B bootstrap samples S∗

1 , . . . , S∗
B from S with B

between 50 and 200. Train classifier C on each bootstrap sample
S∗

b , b = 1, . . . , B, and estimate its misclassification error rC(S∗
b )

on S∗
b with a predetermined method, such as CV. The bagging pre-

dictor error is defined as the averaged misclassification error over B

bootstrap samples, r = B−1 ∑B
b=1 rC(S∗

b ). By definition BCV is a
bagging predictor, but LOOBT is not. Neither is BT632 nor BT632+
as a weighted average of LOOBT and resubstitution. Breiman’s con-
clusion was supported by extensive simulation results with sample
size ≥200. Further properties of bagging estimators in terms of bias,
variance, mean squared errors (MSE) and asymptotics have been
studied by Buja and Stuetzle (2000a,b) (available at http://www-
stat.wharton.upenn.edu/∼buja/), Buhlmann and Yu (2002), Chen
and Hall (2003) and Friedman and Hall (2000). Although bagging
predictors, such as random forest via bagged trees, were discussed
in Dudoit et al. (2002) for small sample studies in microarray data
analysis, BCV has not been studied specifically for samples as
small as 20.

2.2 Why BCV works
Since overlap of training and test data sets for classification may
induce bias and may lead to underestimation of misclassification
error, the above BCV procedure no doubt raises concerns with duplic-
ate observations in bootstrap samples. We now explain why BCV
works for small samples.

Consider the CV procedure for a given sample S =
{(x1, y1), . . . , (xn, yn)} of size n as aforementioned. Assume the
underlying distribution of the feature x is F in a feature-class label
pair (x, y). At the i-th step, i = 1, . . . , n, the observation (xi , yi) is
left out. A classification model G is trained with the remaining data
S(−i) and is denoted by G(−i). If the sample size n is large enough,
the remaining sample S(−i) still represents the empirical underlying
distribution F̂ well. The left-out observation xi has a range of dis-
tances to the sample points in S(−i), from small to large. Thus the
predicted class label ŷi = G(−i)(xi) has a large probability to be
equal to yi and the prediction performs well. This leads to a good
performance of CV. However, if the sample size n is small, the data in
S are sparse. Assume there are no duplicate observations. It implies
that the sample S(−i) tends to have a large distance from the left-out
observation (xi , yi). Thus prediction G(−i)(xi) does not perform well
and has a large variance. This is why CV performs poorly with small
samples.

It is known that bootstrap samples S∗ have duplicates. Here we
use the superscript * to indicate bootstrap samples or observations in
bootstrap samples. The duplicate copies of (x∗

i , y∗
i ) in the remaining

sample S∗(−i), when the observation (x∗
i , y∗

i ) is left out, may be
regarded as copies of observations (x, y∗

i ) with jittered feature x∗
i

that are close to x but x∗
i �= x. Thus the observation (x∗

i , y∗
i ) is close

enough to the remaining sample S∗(−i) to improve the performance of
prediction G∗(−i)(x∗

i ). Therefore, prediction by CV performs better
in bootstrap samples than in the original sample when sample size is
small. Heuristically for the same reason, BCV performs better than
LOOBT with small samples since LOOBT is computed in such a way
that it only counts errors from test data sets that have no overlap with
training data sets. Since BT632 and BT632+ have a large weight
on LOOBT, they do not perform as well as BCV in error estimation
with small samples.

In the next section, we demonstrate through simulations, that BCV
performs better than its competitors in estimating misclassification
error with small samples. We will focus on numerical comparison
of the performance of BCV with other error estimation methods, but
will not study the properties of BCV, such as how bias and standard
error of the estimate of misclassification error depend on sample size
and choice of classification rule, in this paper.

3 SIMULATION STUDIES
We compare BCV with its competitors in estimating misclassification
error based on random samples generated from two populations fea-
turing in either one-dimensional or multi-dimensional space. Here,
we only consider cases where observations belong to definitive cat-
egories with no exception. For complicated cases with observations
difficult to assign a category to, we refer readers to the work on outlier
detection by Wang et al. (1997). For one-dimensional feature space,
we consider both symmetric and asymmetric distributions. We gener-
ate small, moderate and large random samples of size n with equal or
unequal number of observations from known populations. Different
values of n are used in separate simulations with n = 16, 20, 30, 50
and 100. Although microarray data typically have thousands of genes
available, classifiers are usually trained based on a small number of
genes or features that are of interest to investigators, where features
can be extracted through dimension reduction methods, such as prin-
cipal component analysis (singular value decomposition) or partial
least squares (Nguyen and Rocke, 2002, 2004). We chose to have a
low-dimensional feature space in simulations and a small number of
genes in a case study in the next section for the purpose of accurate
computation of true conditional error because high-dimensional data
suffer from the curse of dimensionality (Hastie and Tibshirani, 1990),
where data are further apart in high dimensional space and result in
inaccurate error estimation. For cases where only a few genes are
of interest and are involved in training classifiers, our BCV method
applies directly and yields accurate error estimation. For cases where
a large number of genes are involved in training classifiers, our BCV
method has not been assessed and may not perform as well if it is
directly applied to a large number of genes. However, dimension
reduction methods can be applied to extract a few important fea-
tures; and our BCV method applies to the small number of important
features to yield accurate error estimation. Although our simulation
studies only consider two class discriminate analysis, the results can
be applied to multiple classes because a multiple class problem of m

classes (m > 2) can be converted, for the purpose of error estimation
but not classification, into m separate problems of two classes, class
i and non-class i (1 ≤ i ≤ m), with unequal number of observations.
The above error estimation methods and our simulation results are
readily applicable to multiple class discriminate analysis.

To compare BCV with its competitors, we estimate the condi-
tional error based on one given sample S = {(x1, y1), . . . , (xn, yn)}
randomly generated. The conditional error estimation is of interest
in many studies since true distributions are unknown in practice and
all inferences are made based on given samples.

3.1 Simulation study 1: two classes of equal number of
samples with one-dimensional normal feature

We generated data from one-dimensional normal distributions
Normal (0, 1) and Normal (�, 1) with � > 0. We demonstrate that
BCV performed consistently better in terms of mean squared relative
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Table 1. Mean relative deviation, square-root of MSRE and their standard errors of QDA misclassification errors by BCV, CV, LOOBT and BT632 in
1000 runs

� n BCV CV LOOBT BT632

Relative deviation R (SE)
1 20 0.0055 (0.0089)∗ 0.0810 (0.0129) 0.1917 (0.0108) 0.0851 (0.0101)

30 0.0284 (0.0077) 0.0451 (0.0091) 0.1553 (0.0091) 0.0784 (0.0085)
50 0.0248 (0.0066) 0.0252 (0.0072) 0.0985 (0.0075) 0.0505 (0.0070)

100 0.0049 (0.0047)∗ 0.0053 (0.0049)∗ 0.0345 (0.0049) 0.0158 (0.0049)√
MSRE (SE)

20 0.2828 (0.0055) 0.4171 (0.0149) 0.3926 (0.0084) 0.3314 (0.0069)
30 0.2452 (0.0053) 0.2917 (0.0074) 0.3265 (0.0070) 0.2805 (0.0062)
50 0.2098 (0.0038) 0.2293 (0.0055) 0.2557 (0.0057) 0.2283 (0.0050)

100 0.1480 (0.0030) 0.1559 (0.0032) 0.1612 (0.0034) 0.1543 (0.0032)
Relative deviation R (SE)

3 20 0.0469 (0.0230) 0.1277 (0.0262) 0.4393 (0.0269) 0.2085 (0.0252)
30 0.0339 (0.0200)∗ 0.1104 (0.0228) 0.2704 (0.0221) 0.1396 (0.0213)
50 0.0057 (0.0158)∗ 0.0614 (0.0174) 0.1322 (0.0165) 0.0618 (0.0163)

100 0.0191 (0.0117)∗ 0.0442 (0.0128) 0.0769 (0.0120) 0.0436 (0.0121)√
MSRE (SE)

20 0.7290 (0.0195) 0.8387 (0.0237) 0.9557 (0.0269) 0.8233 (0.0233)
30 0.6319 (0.0135) 0.7281 (0.0166) 0.7495 (0.0175) 0.6867 (0.0155)
50 0.4979 (0.0113) 0.5552 (0.0130) 0.5372 (0.0134) 0.5177 (0.0122)

100 0.3719 (0.0086) 0.4061 (0.0094) 0.3878 (0.0093) 0.3847 (0.0090)

∗Statistically nonsignificant deviation since the 95% confidence interval (Relative deviation ± 1.96 SE) contains 0.
Data generated from Normal (0, 1) and Normal (�, 1). Two hundred bootstrap samples were generated for BCV, LOOBT and BT632.

errors (MSRE) than its competitors including CV, LOOBT and
BT632.

For comparison purposes, we standardized the conditional errors
and calculated their relative deviation from the true conditional
misclassification error as follows. First, we generated a random
sample S = {(x1, y1), . . . , (xn, yn)} from the aforesaid two pop-
ulations Normal (0, 1) and Normal (�, 1) with n/2 observations
from each. In the sample S, yi is the class label of observation
(xi , yi), 1 for Normal (0, 1) and 2 for Normal (�, 1) and xi is the
feature of the observation with xi ∼ Normal (0, 1) if yi = 1 or
xi ∼ Normal (�, 1) if yi = 2. A quadratic discriminate analysis
(QDA) classifier C(S) was then trained based on the sample S,
and its true conditional error r(S) = PC(S){(x, y) misclassified |S}
was computed through 10 000 newly generated random observations
(x, y) from Normal (0, 1) and Normal (�, 1), 5000 from each. A
QDA allows unequal variances of the training data in two different
classes. We then computed the estimated conditional misclassifica-
tion errors r for the given sample S by BCV, CV, LOOBT and BT632.
A total of 200 bootstrap samples were generated in the computation
of BCV, LOOBT and BT632. We then computed the relative devi-
ation R(S) = {r − r(S)}/r(S) for each estimation method. Thus
a negative deviation indicates underestimation of true error while a
positive deviation indicates overestimation of true error.

Second, we repeated the above procedure 1000 times with dif-
ferent randomly generated samples Si , averaged the relative devi-
ations with R = 1000−1 ∑1000

i=1 R(Si), and calculated the MSRE
with MSRE = 1000−1 ∑1000

i=1 {R(Si)}2 to compare different error
estimation methods. We also compared these methods with absolute
scale of the deviation and MSE, and observed results similar to the
ones with relative scale. We present the results in relative scale only
and omit the ones in absolute scale.

Table 1 displays the mean relative deviation R, square-root of
MSRE and their standard errors (SE) over 1000 simulation runs by
BCV, CV, LOOBT and BT632 for sample size n = 20, 30, 50 and
100 and � = 1 and 3. The square-root of MSRE allows direct com-
parison with the mean deviation R to identify the dominating term
in

√
MSRE, either bias or variance. BCV had the smallest abso-

lute deviation and the smallest
√

MSRE consistently in all cases. In
several cases, BCV had nonsignificant deviation since the 95% con-
fidence interval (relative deviation ± 1.96 SE) contains 0, while CV,
LOOBT and BT632 had significant positive deviations. It is demon-
strated that in general BCV tends to yield more accurate estimation
than its competitors with small, moderate and large samples.

Figure 1 shows error densities in the relative scale by BCV, CV,
LOOBT and BT632 for � = 1. These densities were estimated
with density estimation function ‘density’ in the statistical analysis
package R with Gaussian window type (Silverman, 1986). CV was
positively skewed with a long tail for small sample size 20 and was
shifted away from 0 for moderate sample sizes 30 and 50. LOOBT
and BT632 were slightly positively shifted for small and moderate
sample sizes 20, 30 and 50. BCV seemed to have a symmetric distri-
bution about 0. Large sample size 100 made all densities symmetric
about 0.

3.2 Simulation study 2: two classes of unequal number
of samples with one-dimensional normal feature

In this simulation study, we assess the performance of BCV, CV,
LOOBT and BT632 with unequal number of observations from
two populations Normal (0, 1) and Normal (�, 1) in one-dimensional
feature space similar to study 1. For sample size n = 20, 30 and
50, we generated a random sample of 7, 10 and 20 observations
from distribution Normal (0, 1), respectively, and the remaining from
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Fig. 1. Densities of conditional misclassification errors in relative scale estimated by different methods from 1000 simulation runs with data generated from
distributions Normal (0, 1) and Normal (1, 1).

Normal (�, 1) for � = 1 and 3 in two separate studies. We also
assessed the 5-fold CV (5FCV) method for error estimation. Table 2
displays the mean deviation and square-root of MSRE and their SE.
Similar to study 1, BCV achieved the smallest

√
MSRE except for

one case with � = 3 and n = 30, in which LOOBT had a slightly
smaller

√
MSRE (0.6682) than BCV (0.6761) but the difference was

not significant relative to the SEs. Also shown in this study is that
5FCV had the largest

√
MSRE compared with BCV, CV, LOOBT

and BT632, which indicates that 5FCV does not perform as well as
other error estimation methods. This is consistent with the discus-
sion about 10-fold CV in Ambroise and McLachlan (2002). We thus
chose not to include 5FCV in subsequent simulation studies.

3.3 Simulation study 3: two classes of equal number
of observations with one-dimensional
asymmetric feature

We generated random samples with asymmetric Chi-square
distributions χ2

1 and χ2
df with the degrees of freedom df = 3 and 5 in

two separate simulations. We trained a five nearest neighbor (5NN)
classifier and computed the relative deviation and

√
MSRE of mis-

classification errors by BCV, CV, LOOBT and BT632 with 1000
simulation runs. Table 3 displays the mean deviation and

√
MSRE

for sample size n = 16, 20, 30 and 50. BCV achieved the smallest√
MSRE in all cases except for one with df = 3 and n = 50,

where BT632 achieved a slightly smaller
√

MSRE than BCV with√
MSRE = 0.1921 and 0.2093, respectively.

3.4 Simulation study 4: two classes of equal number
of observations with multi-dimensional normal
feature

We generated a random sample S of size n from two population dis-
tributions in q-dimensional space with n/2 observations from each
distribution and q = 5 and 10 in two separate simulations. The first
distribution is a q-dimensional normal distribution [Normal (0, 1)]q ,
i.e. each coordinate follows a standard normal distribution and the
second distribution is [Normal (�, 1)]q with � = 1 and 0.8 for q = 5
and 10, respectively. We chose a smaller � value for q = 10
because the curse of dimensionality makes data points further apart in
higher-dimensional space. We trained a three nearest neighbor (3NN)
classifier on a given random sample and computed the true condi-
tional misclassification error by testing the 3NN classifier on 100 000
and 1 000 000 random points generated from the population distri-
butions for q = 5 and 10. Again, we tested on a larger set of sample
points for 10-dimensional feature due to the curse of dimensionality.
We then computed the relative deviation and

√
MSRE for BCV,

CV, LOOBT and BT632 with 500 simulation runs, where one new
random sample S was generated for each simulation run and 50 boot-
strap samples were generated to compute BCV, LOOBT and BT632.
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Table 2. Mean relative deviation, square-root of MSRE and their standard errors of QDA misclassification errors by BCV, CV, LOOBT, BT632 and 5FCV in
1000 runs

� n BCV CV LOOBT BT632 5FCV

Relative deviation R (SE)
1 20 −0.0574 (0.0085) −0.0543 (0.0097) 0.0306 (0.0095) −0.0308 (0.0092) −0.0290 (0.0101)

30 −0.0969 (0.0071) −0.0735 (0.0082) −0.0318 (0.0077) −0.0648 (0.0076) −0.0645 (0.0083)
50 −0.0306 (0.0061) −0.0229 (0.0066) 0.0108 (0.0066) −0.0121 (0.0064) −0.0149 (0.0067)√

MSRE (SE)
20 0.2758 (0.0056) 0.3125 (0.0065) 0.3015 (0.0060) 0.2919 (0.0058) 0.3198 (0.0071)
30 0.2431 (0.0055) 0.2698 (0.0059) 0.2465 (0.0050) 0.2500 (0.0053) 0.2702 (0.0062)
50 0.1965 (0.0044) 0.2096 (0.0048) 0.2084 (0.0045) 0.2042 (0.0045) 0.2127 (0.0049)

Relative deviation R (SE)
3 20 −0.0893 (0.0218) −0.0184 (0.0250) 0.1261 (0.0235) −0.0208 (0.0228) 0.0513 (0.0269)

30 −0.1580 (0.0168) −0.0774 (0.0199) 0.0171 (0.0178) −0.0757 (0.0178) −0.0595 (0.0202)
50 −0.0686 (0.0149) −0.0184 (0.0165) 0.0382 (0.0155) −0.0183 (0.0155) −0.0052 (0.0164)√

MSRE (SE)
20 0.7496 (0.0093) 0.7945 (0.0095) 0.7569 (0.0102) 0.7528 (0.0097) 0.8172 (0.0098)
30 0.6761 (0.0089) 0.7159 (0.0093) 0.6682 (0.0096) 0.6770 (0.0093) 0.7167 (0.0094)
50 0.6234 (0.0091) 0.6511 (0.0093) 0.6265 (0.0095) 0.6302 (0.0093) 0.6501 (0.0092)

Data generated from Normal (0, 1) and Normal (�, 1) and 7, 10 and 20 observations generated from Normal (0, 1) for sample size n = 20, 30 and 50, respectively. Two hundred
bootstrap samples were generated for BCV, LOOBT and BT632.

Table 3. Mean relative deviation, square-root of MSRE and their standard errors of 5NN misclassification errors by BCV, CV, LOOBT and BT632 in
1000 runs

df n BCV CV LOOBT BT632

Relative deviation R (SE)
3 16 0.0437 (0.0098) 0.1255 (0.0161) 0.2575 (0.0123) 0.0751 (0.0108)

20 −0.0380 (0.0085) 0.0673 (0.0137) 0.2225 (0.0111) 0.0478 (0.0098)
30 −0.1060 (0.0067) 0.0237 (0.0110) 0.1492 (0.0088) −0.0107 (0.0078)
50 −0.1297 (0.0052) −0.0224 (0.0086) 0.1150 (0.0067) −0.0318 (0.0060)√

MSRE (SE)
16 0.3126 (0.0062) 0.5235 (0.0138) 0.4672 (0.0088) 0.3510 (0.0071)
20 0.2718 (0.0063) 0.4390 (0.0103) 0.4153 (0.0081) 0.3124 (0.0066)
30 0.2375 (0.0053) 0.3497 (0.0083) 0.3165 (0.0066) 0.2480 (0.0056)
50 0.2093 (0.0041) 0.2739 (0.0064) 0.2415 (0.0052) 0.1921 (0.0042)

Relative deviation R (SE)
5 16 0.1222 (0.0149) 0.1228 (0.0202) 0.3234 (0.0184) 0.1278 (0.0162)

20 0.0120 (0.0128) 0.0298 (0.0169) 0.2662 (0.0163) 0.0804 (0.0142)
30 −0.0370 (0.0105) 0.0540 (0.0151) 0.2230 (0.0135) 0.0543 (0.0118)
50 −0.0734 (0.0086) 0.0184 (0.0119) 0.1697 (0.0111) 0.0169 (0.0097)√

MSRE (SE)
16 0.4869 (0.0115) 0.6515 (0.0181) 0.6642 (0.0161) 0.5265 (0.0130)
20 0.4032 (0.0086) 0.5360 (0.0136) 0.5794 (0.0134) 0.4559 (0.0099)
30 0.3335 (0.0075) 0.4815 (0.0127) 0.4809 (0.0115) 0.3782 (0.0090)
50 0.2828 (0.0058) 0.3778 (0.0090) 0.3888 (0.0090) 0.3082 (0.0067)

Data generated from χ2
1 and χ2

df . Two hundred bootstrap samples were generated for BCV, LOOBT and BT632.

Table 4 displays the mean deviation and square-root of MSRE. BCV
achieved the smallest

√
MSRE. Figure 2 shows the densities of the

errors estimated via different methods for sample size n = 16 and
30, q = 5 in the upper panels and q = 10 in the lower panels. CV
had a long tail to the right for small sample size n = 16 and q = 5.
LOOBT and BT632 had a tail longer than that of BCV. BCV achieved
the highest peak and seemed to be symmetric about 0.

4 APPLICATIONS TO MICROARRAY DATA
We assess the performance of BCV and its competitors with a
microarray study of breast cancer patients’ prognosis, in which a
gene expression profiling method was proposed in predicting the
prognosis for a patient with breast cancer based on 70 genes (van’t
Veer et al., 2002; van de Vijver et al., 2002). We chose this study
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Table 4. Mean relative deviation, square-root of MSRE and their standard errors of 3NN misclassification errors by BCV, CV, LOOBT and BT632 in 500 runs

(q, �) n BCV CV LOOBT BT632

Relative deviation R (SE)
(5, 1) 16 0.0441 (0.0153) 0.1324 (0.0255) 0.3910 (0.0197) 0.0714 (0.0171)

20 −0.0281 (0.0131) 0.0737 (0.0213) 0.3707 (0.0177) 0.0470 (0.0150)
30 −0.1038 (0.0100) 0.0073 (0.0170) 0.2913 (0.1402) −0.0029 (0.0118)√

MSRE (SE)
16 0.3481 (0.0111) 0.5918 (0.0202) 0.5926 (0.0167) 0.3932 (0.0121)
20 0.2934 (0.0095) 0.5198 (0.0184) 0.5424 (0.0157) 0.3373 (0.0111)
30 0.2472 (0.0073) 0.3805 (0.0125) 0.4277 (0.0120) 0.2640 (0.0083)

Relative deviation R (SE)
(10, 0.8) 16 0.0684 (0.0144) 0.1096 (0.0259) 0.4293 (0.0191) 0.0872 (0.0167)

20 0.0316 (0.0125) 0.1263 (0.0212) 0.4664 (0.0162) 0.1160 (0.0141)
30 −0.0373(0.0112) 0.0645 (0.0189) 0.3924 (0.0155) 0.0597 (0.0133)√

MSRE (SE)
16 0.3291 (0.0105) 0.5892 (0.0185) 0.6051 (0.0164) 0.3835 (0.0126)
20 0.2857 (0.0095) 0.5003 (0.0171) 0.5948 (0.0150) 0.3410 (0.0108)
30 0.2540 (0.0081) 0.4291 (0.0146) 0.5243 (0.0141) 0.3041 (0.0104)

Data generated from [Normal (0, 1)]q and [Normal (�, 1)]q . Fifty bootstrap samples were generated for BCV, LOOBT and BT632 methods.
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Fig. 2. Densities of conditional misclassification errors in relative scale estimated by different methods from 500 simulation runs with data generated from
distributions [Normal (0, 1)]q and [Normal (�, 1)]q . Upper panels: � = 1 and q = 5; Lower panels: � = 0.8 and q = 10.
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Table 5. Mean relative deviation, square-root of MSRE and their standard errors of KNN misclassification errors by BCV, CV, LOOBT and BT632 in
1000 runs

k n BCV CV LOOBT BT632

Relative deviation R (SE)
3 20 −0.1409 (0.0090) 0.0233 (0.0150) 0.2186 (0.0125) −0.0320 (0.0105)

30 −0.1864 (0.0074) −0.0132 (0.0121) 0.1504 (0.0102) −0.0787 (0.0087)√
MSRE (SE)

20 0.3183 (0.0064) 0.4734 (0.0110) 0.4528 (0.0100) 0.3324 (0.0072)
30 0.3003 (0.0058) 0.3835 (0.0087) 0.3568 (0.0084) 0.2872 (0.0063)

Relative deviation R (SE)
5 20 −0.0620 (0.0100) 0.0347 (0.0148) 0.2357 (0.0131) 0.0299 (0.0112)

30 −0.0894 (0.0087) 0.0257 (0.0123) 0.1914 (0.0114) 0.0116 (0.0100)√
MSRE (SE)

20 0.3208 (0.0065) 0.4702 (0.0124) 0.4761 (0.0108) 0.3564 (0.0080)
30 0.2879 (0.0059) 0.3894 (0.0092) 0.4071 (0.0091) 0.3156 (0.0071)

Data generated from the breast cancer prognosis study. Five genes were used in training the KNN classifiers and 200 bootstrap samples were generated for BCV, LOOBT and BT632.
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Fig. 3. Densities of conditional misclassification errors in relative scale estimated by different methods from 1000 runs of generating random sample S of size
n from the breast cancer prognosis data and testing on the remaining data. Upper panels: 3NN classifier; Lower panels: 5NN classifier.

because the large sample size of 295 patients makes it possible to
accurately estimate the conditional misclassification error for a given
small random sample. Although the gene expression profiling was
established with 70 genes, we chose 5 genes that are most highly

correlated with the patient’s prognosis and trained a KNN classifier
based on the random sample. We were aware of the bias in such
a gene selection procedure (Ambroise and McLachlan, 2002) and
chose to do so because gene selection is not the focus of this study.
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In biological experiments, investigators are often interested in certain
genes based on their knowledge and gene selection is thus subject to
selection bias as well. Therefore, we used these five genes to serve
the purpose of comparing different error estimation methods.

For the comparison, we carried out the following steps. (1) Take a
random sample S of size n = 20 or 30 with half the number having
good prognosis and the other half having poor prognosis. (2) Train
a KNN classifier based on the random sample S and compute its
empirical ‘true’ misclassification error by comparing the predicted
class of the remaining samples based on their gene expression levels
with the true clinical prognosis class. (3) Compute the conditional
error for the given random sample S by BCV, CV, LOOBT and
BT632. (4) Calculate the relative deviation of the conditional errors
from the ‘true’ error. (5) Repeat 1000 times the above steps (1)–(4)
and calculate the mean relative deviation R and

√
MSRE.

Table 5 shows the mean deviation and
√

MSRE. BCV achieved
the smallest

√
MSRE in all cases except one, where a 3NN classi-

fier was trained with a sample size n = 30 and BT632 performed
slightly better (

√
MSRE = 0.2872) than BCV (

√
MSRE = 0.3003).

Although CV achieved small relative deviation, its large variance
and large MSE made it less competitive. LOOBT had large relat-
ive deviation and large MSRE. In general, BCV performed better
than its competitors in terms of MSRE with small samples. Figure 3
shows densities of the errors estimated with different methods. BCV
had a short tail and a higher peak ∼0 while others had longer tails
and lower peaks. BCV had a density ∼0 while LOOBT had a shift
towards overestimation except for the 3NN classifier with n = 30,
where BCV, CV and BT632 had a shift toward underestimation.
In summary, BCV performed better than its competitors in error
estimation with small samples in this breast cancer patient prognosis
study.

5 DISCUSSION
Estimating misclassification error with small samples is a key issue in
statistics and bioinformatics, especially in microarray studies, where
sample sizes are usually small. Although CV provides unbiased
estimation in general, it presents large variability with small samples
and is thus not satisfactory. Other methods, such as LOOBT,
BT632 and BT632+, perform better than CV, but still yield biased
estimation.

In this paper, we proposed BCV, a simple procedure through
bootstrap resampling, applying CV on each bootstrap sample and
averaging the errors across all bootstrap samples. Although BCV
is in the framework of bagging predictors, it has not been stud-
ied particularly due to the concerns on overlapped training and test
data in cross-validated bootstrap samples. We found that such over-
lapping of training and test data in the cross-validated bootstrap
samples may facilitate accurate error estimation as an advantage
rather than a disadvantage for small samples. Simulation stud-
ies demonstrated that BCV performed consistently better than its
competitors, including the LOOBT and BT632. This result also
implies that BCV performs better than BT632+ in error estima-
tion because BT632+ takes a larger weight on LOOBT than BT632
(Ambroise and McLachlan, 2002; Efron and Tibshirani, 1997) and
would, if included in our simulation studies, make BT632+ fur-
ther biased toward overestimation of errors. Our application to a
microarray data set also confirmed that BCV provided accurate error
estimation.

BCV is a simple statistical procedure, and performs well with
samples of sizes as small as 16. It is not restricted to any specific
classification rules and thus applies to many parametric or non-
parametric classification methods. While BCV has advantages
compared to its competitors for small sample error estimation, its
performance with large samples is not critical since many simple
and computationally less expensive methods, such as CV, perform
well and serve the needs of error estimation with large samples. Con-
sequently, methods based on bootstrap resampling, such as BCV,
LOOBT, BT632 and BT632+ are computationally expensive and
hence are not recommended for large sample studies.
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