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Absfmcf-The paired-difference t-test is commonly used in 
the machine learning community tu determine whether one 
learning algorithm is better than another on a given learning 
task. This paper suggests the use of the permutation test instead 
hecause it calculates the exact p-value instead of an estimate. The 
permutation test is also distribution free and the time complexity 
is trivial for the commonly used 10-fold cross-validation paired- 
difference test. Results of experiments on real-world problems 
suggest it is not uncommon tu see the t-test estimate deviate up 
to 30-5090 from the exact pvalue. 

I. INTRODUCTION 

A popular test used to compare two learning algorithms is 
the 10-fold cross-validation paired-difference t-test [ I ] ,  [21. 
This test uses Student’s t distribution to estimate a p-value 
representing the probability that the mean of the differences 
observed occurred randomly. If the resulting p-value is very 
low (usually below 0.10) it can be concluded that the ob- 
served difference is more than can be explained by random 
chance, and is therefore statistically significant. In the context 
of machine learning, this amounts to comparing how well 
algorithm A does compared to algorithm B on a particular 
learning problem characterized by a data set D. If the mean 
difference between algorithm A’s performance and algorithm 
B’s performance using data set D is statistically significant, 
there is support to prefer using algorithm A for that particular 
leaning problem. For this reason, tests comparing two or more 
algorithms are important in  validating the utility of machine 
learning algorithms and comparing them to each other in  
different problem domains. 

The problem with the t-test is that it does not yield the exact 
pvalue, but instead an approximation based on assumptions 
about the distribution of a paired-difference test. It is possible, 
however, to calculate the exact p-value i n  a trivial amount of 
time for the common 10-fold version of the paired-difference 
test using a permutation test. Since this test yields a more 
accurate p-value and is easily calculated, this paper suggests 
using the permutation test instead of approximating the p-value 
with Student’s t distribution. The results of experiments on 
several real world problems show it is not uncommon for the 
t-test approximation to deviate as much as 30-50% from the 

true p-value 

11. BACKGROUND 
A. Statistical Issues 

There are two assumptions associated with using Student’s 
t distribution to calculate the p value: 

1) The differences are normally distributed. 
2) The differences are independent. 

Since the t-test is robust to the first assumption, it often yields 
a reasonable approximation to the the true p-value which, in 
a paired-difference test, is: 

where n is the number of ways the mean difference can be 
as extreme or more extreme (for a two-sided p-value) than 
the observed mean difference and N is the total number 
of possible reassignments of the paired-differences given the 
results. It is a measure of how often it is expected that a 
difference as extreme or more extreme than the observed 
difference occurs randomly. The pvalue can also be calculated 
exactly in O(2”) time where n is the number of pairs. 
Although exponential, for the small amount of pairs usually 
used in the literature (k = 10). calculating the p-value exactly 
is not unreasonable. In fact, in  statistics the calculation of 
the exact p-value is known as a permutation test and is often 
available in popular statistical packages. 

Tables 1-111 show a simple example of how to calculate the 
p-value using a permutation test. Consider permutation 1 to be 
the original results of an experiment involving two algorithms 
being compared with, in  this simple example, a 3-fold cross 
validation paired-difference test. Table I uses 3 of the possible 
8 permutations to show how different permutations are created 
by swapping the results between algorithms. Notice the only 
difference between permutation 1 and permutation 2 in table I 
is that the first row or fold results have been swapped. In the 
same table, the difference between permutations I and 3 is that 
in 3, both the first and second row’s results have been swapped. 
Notice that swapping the results simply causes the sign on 
the difference to change, therefore, table I1 can show the 8 
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possible permutations giving only the change in the differences 
for each fold. For example, notice that the difference between 
permutations 1 and 5 in table I1 is that the sign on the third 
difference has changed, meaning the results for the third fold 
have been swapped. To obtain the pvalue, the number of mean 
differences as extreme or more extreme than the observed data 
are counted up and used as n in table 111. In this case, assuming 
permutation 1 represents the original results, the number of 
permutations that yield a mean greater than or equal to 0.0012 
or less than or equal to -0.0012 are counted (for a two-sided 
pvalue). The result includes permutations 1 (the original), 4, 
5, and 8 for a total of 4. Finally, dividing 4 by the total number 
of possible permutations, z3 or 8 yields the p-value, 0.5 as 
shown in table 111. Since the p-value is high in this case, 
the mean difference observed is not considered statistically 
significant. If the p-value had been below 0.10. the difference 
would have been considered significant. 

TABLE I 
PERMUTATION TEST EXAMPLE PART I 

0.9336 
0.9302 
Mea" 

P",nri"n 7 

I Algorithm A I Algorithm B I Difference 1 
Permutation 1 I I .  

0.9330 I 0.9309 I onmi  
~ . . ~ ~  ~~~~~~ 

0.9315 0.0021 
0.9308 -0.0006 

0.0012 

0.9309 
0.9336 

0.9330 -0.0021 
0.9315 0.0021 

0.9302 
Mea" 

Permutation 4 
0.9309 

TABLE II 
PERMUTATION TEST EXAMPLE PART 2 

0.9308 -0.0006 
0.0002 

0.9330 -0.0021 

I 
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0.0021 5 0.0021 
0.0021 0.0021 

TABLE 111 
PERMUTATION TEST EXAMPLE PART 3 

B. Past Research 
Since being able to compare machine learning algorithms 

is one of the key elements in the research area, there have 
been several evaluations of popular practices, and suggestions 
for appropriate procedures. In [Z], Reich evaluates common 
practices for comparing machine learning methods and sug- 
gests appropriate practices, including the use of the 10-fold 
cross-validation paired-difference t-test. Salzberg criticizes 
mainstream philosophies and statistical methods in machine 
learning in [3], especially when using statistics to compare 
algorithms. He also criticizes the use of Student's t-test in re- 
sampled approaches because the assumption of independence 
between samples is violated. Dietterich [ I ]  supports Salzberg's 
criticism of the re-sampled paired t-test and also warns against 
the use of the 10-fold cross-validation paired-difference t-test. 
He offers a new t-test seeking to retain the power or ability of 
the 10-fold test to detect existing differences while improving 
on its error or tendency to detect non-existent differences. 
Dietterich also acknowledges that like the 10-fold test, his 
suggested test still violates the independence assumption. Ko- 
havi [4] suggests a stratified approach to cross-validation that 
lessens the effect of non-independence by forcing the folds to 
retain the same distribution as the original data and yields more 
accurate p-values. In [ 5 ] ,  Michaels further supports the use 
of stratified approaches because they represent the common 
"multi-modality" of classification error. He then suggests a 
unique method using replicate statistics that does not assume 
independence and results in improved confidence intervals that 
can be calculated efficiently. 

Moving away from the usual paired approaches, [6]  intro- 
duces a randomized ANOVA approach for comparing algo- 
rithms. In [7], Provost et. al. argue against the traditionally 
used classification accuracy for comparison and promote ROC 
analysis in its place. [8] gives an approach to using the area 
underneath ROC curves for evaluating machine learning algo- 
rithms. [9] shows the usage of ROC curves with artificial neu- 
ral networks. In, [IO], Maloof explains that ROC approaches 
employ analysis of variance methods (ANOVA) to determine 
if the results of the ROC analysis are statistically significant. 
He then empirically compares the standard ROC ANOVA 
approach to the LABMRMC method [ I  I ]  used commonly in 
the medical decision making community. He finds that the 
standard ROC ANOVA approach and the LABMRMC method 
can make different decisions as to the preferred learning al- 
gorithm and recommends using LABMRMC-type techniques 
because they more accurately model the assumptions in a 
cross-validation experiment. 

Although the 10-fold approach has received criticism in the 
above research, this paper focuses on using 10-fold cross- 
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validation not because it is the best method, only because it 
is very common. Here, it is suggested that if 10-fold cross- 
validation is to be used anyways, the exact p-value might as 
well be calculated instead of an approximation. 

111. MOTIVATION 
The most convincing reason to choose the permutation test 

instead of the t-test is because the p-value will be exact instead 
of approximated, thus yielding a more accurate prediction of 
how random a given result is. 

There are two theoretical reasons for choosing one statistical 
test over another: 

I )  It is less likely to detect a difference when there is none. 
2) It is less likely to miss a difference when there is one. 

Since the permutation test yields the exact p-value, it will 
always, by definition, be less likely than the t-test to detect 
a difference where there is none or miss a difference where 
there is one. 

Two practical considerations when choosing one statistical 
test over another are: 

I )  Is one statistic easier to calculate than the other in  terms 
of time and space requirements? 

2) Does the resulting conclusion change significantly 
enough in practice to choose one over the other? 

Since the number differences usually used in a paired- 
difference test is 10, the amount of time and space is relatively 
small with only 1,024 permutations to evaluate. The far from 
optimized implementation used for the experiments in section 
V runs in just over a tenth of a second. Therefore, the 
unanswered question is whether or not the p-values can differ 
enough in practice to promote the use of the permutation 
test. The rest of the paper seeks to answer this question 
giving both methods of calculating the p-value in section 
IV, then descriptions of experiments comparing both methods 
in section V. Section VI gives the experimental results and 
discusses them and section VI1 contains the conclusion and 
suggestions for further research. 

IV. METHODS 
The 10-fold cross-validated paired-difference test is used 

here to explain how to calculate both the t-test's approximation 
to the p-value and the exact p-value. The technique here can 
be used for a k-fold experiment or even for a re-sampled 
paired t-test (criticized in [ I ] ,  [3]), although the complexity 
grows exponentially in k or the number of times the data 
is re-sampled. The cross-validated paired-difference test is 
chosen in particular for its popularity among machine leaming 
researchers (see [ 2 ] ) .  The idea is if IO differences are already 
calculated, the amount of work to determine the exact p-value 
is trivial. 

A. Run the Experiments 
The first part of a 10-fold cross-validation experiment is 

to obtain results for each fold. Each fold usually consists 
of two sub-experiments which can be paired because they 
vary only in the treatment in  question. For example, two 
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equivalent art@cial neural networks (ANNs) trained on the 
same data in the same order, but with different random initial 
weight settings. Each ANN is trained and then tested and the 
difference in accuracy between the two is saved. The details 
behind selecting the training and testing sets for k-fold cross- 
validation can be found in [I]  and [2]. 

B. Calculating p from t 

After calculating the difference in accuracy between each of 
the 10 folds, the I O  resulting differences can be used to calcu- 
late either the t-test or exact p-value. First, to approximate the 
p-value, the t-statistic is calculated using the 10 differences: 

where Z is the mean of k differences where k is the number of 
differences-10 in this case-and SE, or the standard error 
of x is 

13) 

where rz is the standard deviation of the k differences. Cal- 
culated this way, t is known to follow Student's t distribution 
with k - 1 degrees of freedom. 

C. Calculating p exactly 
In order to calculate the exact p-value, the mean differences 

of all possible assignments of the given results must be evalu- 
ated. Evaluating all possible assignments involves calculating 
the mean difference of all possible reassignments of the group 
membership on each fold as in the example from section 11-A. 
The process explained in section 11-A can be restated as the 
pseudo-code in figure 1. 

1) given IO differences 
2) mean difference e mean(the ten differences) 
3) n c o  

5 )  repeat 
6) get next permutation 
7) 

8) n + n + l  
9) until all permutations tried 

10) p -value - $ 

4) N e 2" = 1024 . 

if mean(abs(permutati0n differences)) 2 abs(mean 
difference) 

Fig. I .  One way to calculate the exact p value using a permutation test. 

A given permutation can be characterized by whether or not 
each fold has its signed changed. This can be implemented as a 
binary number where each binary digit corresponds to whether 
or not one of the differences has its sign changed. For I O  folds, 
this yields all IO-digit binary numbers or 1,024 permutations. 
Trying each permutation is equivalent to counting to 1,024, 
calculating and comparing the mean differences for each 
permutation. The binary number can be mapped onto the 
differences using a mask, changing line 6 in figure 1 to 
the pseudo-code in figure 2. Therefore, calculating the 1,024 



differences is done easily and in a trivial amount of time using 
the given approach. 

I )  for permutation = 1 to 1024 
2) 
3) if (permutation (bit AND) 2@') = 1 
4) difference[pair] = -difference[pair] 

for pair = I to 10 

Fig. 2. One way to enumerate all permutations given 10 pain of differences. 

V. EXPERIMENT 

To determine how well the p values generated by the 
permutation test compare with those resulting from a standard 
t-test, IO-fold cross-validation paired tests are conducted com- 
paring the accuracy of two feed-forward multilayer perceptron 
(artificial neural networks or ANN) classifiers each with a 
single hidden layer. The data sets used are described in table 
IV. The table also includes information about the number of 
hidden nodes of the ANNs used in each experiment. Every 
ANN used a leaming rate of 0.05. The training set for each 
fold is split into a training and hold-out set. The ANNs are 
trained on only the training partition, and then tested after 
each iteration on the hold-out partition. Training ceases when 
there has not been an increase in accuracy on the hold-out set 
for a period of 100 iterations. The ANN weight configuration 
resulting in the highest hold-out set accuracy is then tested on 
the test partition of the fold and that number is used as the final 
result to be compared with the other ANN in the the same fold. 
The only variation within each pair is different random initial 
weight settings, and therefore the resultant pvalues should be 
relatively large as there is no significant difference between the 
ANNs. The only other source of variation is the difference in 
each of the 10 folds which is part of the design of the 10-fold 
cross-validation paired-difference test (as explained in [I]  and 
P I .  

TABLE IV  

DATA SETS USED I N  THE EXPERIMENTS 

Data set I size I features 1 classes I nodes 
OCR I 500.000 I 64 I 83 I 32 

I ,<" I d I 1  I < . .  
._I 

wove21 
bupo 345 
glass 214 9 

VI. RESULTS AND DISCUSSION 
The resulting p-values are shown in table V. The p-values 

are the same or close for the iris and OCR data sets, but 
up to 50% different for the others. Although the conclusions 
would still be the same for both statistics in these cases, if the 
question of significance was closer than in the experiment, the 
t-test would be more likely to incorrectly detect a difference 
where there was none or miss a true existing difference. For 
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example, if the relative difference remains at around 30% 
between the t-test and permutation test p-values, a true pvalue 
of 0.1429-not usually held as significant4ould yield a t-test 
p-value of 0.10, often held as significant in the literature. Since 
the results suggests the t-test p-value can deviate as much as 
30-50% from the exact p-value, using the permutation test will 
result in finding less false significant values and missing less 
truly significant results. 

TABLE V 

&TEST AN0 PERMUTATION T E S T p V A L U E S  ON SEVERAL DATA SETS 

Data set I t 1  exact I difference I relative difference 
OCR I 0.9847 1 0.9746 1 0.0101 I I %  1 iris 

1 1 . 0  I ;:: 1 - 

1 ;% 1 pimu 0.6783 -0.3217 32% 
letter-recognition 0.01 17 0.0176 -0.W59 34% 

hupo 0.2091 0.5000 -0.2909 58% 
gluss 0.2443 0.5000 -0.2557 51% 

wuve21 0.8534 0.7852 0.0682 

VII. CONCLUSIONS 
The permutation test is suggested for use in place of the 

standard t-test for small ( IO pairs) paired-difference cross- 
validation tests because it is more accurate and the t-test 
approximation can deviate significantly from the true pvalue. 
A method of computing the permutation test p-value is given. 
The complexity of the permutation test is reasonable for small 
numbers of pairs and the resulting p-value is more precise and 
therefore less likely to detect significance where there is none, 
and more likely to detect significance if present. 

Future work will investigate the theoretically expected dif- 
ference between permutation and t-test calculated p-values. 
Also, a more thorough test comparing the error and power 
of the permutation test relative to the t-test is appropriate. 
10-fold cross-validation is criticized as having a high error 
in [I]. It is interesting to investigate how much of this error 
can be decreased through exact vs. approximate calculation of 
the resulting p-values, despite the fact that the error is more 
likely to come from the violated independence assumptions as 
discussed in [I], [31, [51. 
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