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ABSTRACT

Motivation: The most used criterion in microarray data analysis is
nowadays the false discovery rate (FDR). In the framework of estim-
ating procedures based on the marginal distribution of the P-values
without any assumption on gene expression changes, estimators of
the FDR are necessarily conservatively biased. Indeed, only an upper
bound estimate can be obtained for the key quantity g, which is the
probability for a gene to be unmodified. In this paper, we propose a
novel family of estimators for 7o that allows the calculation of FDR.
Results: The very simple method for estimating no called LBE (Loca-
tion Based Estimator) is presented together with results on its variab-
ility. Simulation results indicate that the proposed estimator performs
well in finite sample and has the best mean square error in most of the
cases as compared with the procedures QVALUE, BUM and SPLOSH.
The different procedures are then applied to real datasets.
Availability: The R function LBE is available at http:/ifr69.vjf.
inserm.fr/lbe

Contact: broet@vijf.inserm.fr

1 INTRODUCTION

New transcriptome-oriented biotechnologies make nowadays pos-
sible the comparative analysis of thousands of genes expression
in parallel for selecting relevant genes the transcriptional changes
of which are related to a clinical or biological outcome (Schena,
2000). In such a case, a magjor multiple testing problem arises due
to the fact that alarge number of statistical tests are performed sim-
ultaneously (Hochberg and Tamhane, 1987). Until now, statistical
procedures devoted to this multiple testing problem mostly focused
on controlling or estimating false positive error criteria.

For cDNA microarray experiments, the most used criterion
nowadaysisthe false discovery rate (FDR) introduced by Benjamini
and Hochberg (1995). The FDR is the expected proportion of false
discoveries among all discoveries. Noting V the random variable
representing the number of false discoveries and R the number of
significant results obtained from aparticular multiple testing proced-
ure, Benjamini and Hochberg defined the FDR by FDR = E(V /R)
if R > 0, and 0 otherwise. Inlarge-scale hypotheses generating stud-
ies such as microarray experiments, the FDR seems more relevant
than the Family Wise Error Rate (FWER) defined by the probability
of committing at least one false discovery (Hochberg and Tamhane,
1987). In this setting, the purpose of this paper isto propose a novel
procedure for estimating the FDR.

*To whom correspondence should be addressed.

In their seminal paper, Benjamini and Hochberg (1995) presented
astep up method in order to control the FDR and discussed another
criterion, later called the positive FDR (pFDR) by Storey (2001).
This criterion is defined as pFDR = E[(V/R)|R > 0]. However,
Benjamini and Hochberg did not consider thiscriterion dueto thefact
that it cannot be controlled since under the complete null hypothesis
(@l null hypothesestested aretrue), all significant results (if thereare
significant ones) are necessary false discoveries. Then, pFDR = 1
and itisimpossibleto insure that pFDR < « for agiven o # 1.

Storey (2001) demonstrated that if the test statistics are indepen-
dent and identically distributed, for afixed rejection region I", which
isthe same for every test,

PFDR(T") = Pr(H = 0T € T) = ™2 Prg(; Z'ff) =0

where H isthe variable such as H = 0 if the null hypothesis Hy is
true, H = 1if thealternative hypothesis H; istrue, g = Pr(H = 0)
isthe probability of not being modified and T isthetest statistic used
for all tested hypotheses.

From its definition, the pFDR is obvioudly related to the FDR
through pFDR = FDR/[Pr(R > 0)]. Since Pr(R > 0) tends to one
when the number of tested hypotheses tends to infinity, these two
criteria are asymptotically equivalent and, in the following, we will
note FDR for both of them.

Storey and Tibshirani (2003) proposed a method (implemented in
R function QVALUE) for obtaining aconservatively biased estimator
for the pFDR based on the marginal distribution of the P-values
without making any assumption on the distribution related to the
modified genes. In practice, from (1), estimating the FDR is based
on the separate estimation of the following three terms Pr(T € I),
Pr(T € T'|H = 0) and 7o where only an upper bound estimator of
the latter quantity can be obtained.

Relying on the same framework, two procedures named BUM
(Pounds and Morris, 2003) and SPLOSH (Pounds and Cheng, 2004)
have been recently proposed. In practice, al these three methods
are based on the marginal distribution of the P-values and provide
a conservatively biased estimator for the FDR resulting from the
overestimation of mg.

In this paper, we provide a class of estimators for an upper bound
of 7y based on the expectation of the transformed P-values and
from which we can obtain results on the asymptotic distribution. As
for QVALUE, BUM and SPLOSH, our procedure do not make any
assumption on the distribution related to modified genes. From our
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proposed estimators, we can easily obtain estimators of the FDR or
other quantities such as the g-values (Storey, 2003).

The paper is organized as follows: in Section 2, we present the
general framework of the procedures QVALUE, BUM and SPLOSH
for obtaining a conservatively biased estimator for 7o based on the
marginal distribution of the P-values. In Section 3, we present a
general class of estimators for an upper bound of 7o with results
on its asymptotic distribution. In Section 4, we propose a particular
family of estimators and give guidelines for choosing one estimator
in the family depending on the experimental setup and the accuracy
needed. In Section 5, we present results from asimulation study that
compares proposed estimatorsto those provided by QVALUE, BUM
and SPLOSH. In Section 6, we apply the different methods on real
datasets and we conclude with a discussion.

2 GENERAL FRAMEWORK FOR PROCEDURES
BASED ON THE MARGINAL DISTRIBUTION OF
THE P-VALUES

Data can be modeled following a two components mixture model
(McLachlan and Peel, 2000) whereby the population of genes can be
considered as composed of two subpopulations of genes, those for
which the null hypothesis is true (unmodified genes), and those for
which the alternative hypothesisis true (modified genes). Let p; i =
1,...,m bethe P-values calculated for the m tested hypotheses. Let
P betherandom variablefor which the P-valuesarethe observations
and let f be the marginal probability density function (pdf) of P.
Denote fy the conditional pdf of P under the null hypothesisand f;
the conditional pdf of P under the alternative hypothesis. Then:

f(p) =mofolp) + (L= mo) f1(p). )

Under the null hypothesis (and if the assumption for the distribu-
tion of thetest statistic under the null hypothesisistrue) the P-values
are uniformly distributed on [0, 1] so that fo(p) = 10,1;(p) and the
relation (2) is: f(p) = mo + (1 — 7o) f1(p) where the conditional
density f1 is unknown. Since (1 — mp) f1(p) is non-negative and
assuming that f (or f1) isnon-increasing for p € [0, 1], then f (1)
is the smallest upper bound for 7o based on (2). Thus, an unbiased
estimator of f (1) provides a conservatively biased estimator of 7.
As seen below, the procedures QVALUE, BUM and SPLOSH are
based on this latter estimator whereas our procedure is based on the
expectation of transformed P-values.

A widely used estimator for g is the one proposed by Storey
and Tibshirani (2003). Using a tuning parameter » € [0,1], ng is
estimated by:

#{ p; Mi=1,...,
o) = TP =

Asargued by Storey and Tibshirani, there is atrade-off between bias
(which decreaseswhen A — 1) and variance (which increases when
A — 1). Considering 7o as a function of A, Storey and Tibshirani
proposed to use a cubic spline based method to estimate the quantity
limy_1 mo(A).
Actually, noting F the marginal cumulative distribution function
(cdf) of P, Storey and Tibshirani’s estimator can be viewed such as:
. 1-F®)
T[O(}\,) = 1—1 .

Then, the estimated quantity is:

1-F0) dF

A'Lmlfm(}”) = lin = ﬁ(l) =f@.

1 1-2

Pounds and Morris (2003) have proposed a parametric method
assuming that the marginal distribution of the P-values arises from
a beta-uniform mixture distribution. The model parameters are
estimated using the maximum-likelihood method, and 77p = f Q).

More recently, Pounds and Cheng (2004) have proposed a method
also based on the marginal distribution of the P-values, but apply-
ing a local regression method (LOESS; Loader, 1999) to obtain a
smooth estimate of f inatransformed space (for more details on the
transformation used, see Pounds and Cheng, 2004).

3 A GENERAL CLASS OF ESTIMATORS

The proposed class of estimators for an upper bound of g is
based upon the expectation of P under the model (2) that can be
expressed as:

E1(P)
Eo(P)’

= mo + (1 — 7o)

where Ey and E1 arethe expectations of the conditional distribution
of P under the null and the alternative hypothesis, respectively.
Since under the null hypothesis, P ~ U[0,1], Eo(P) = % S0
that the previous equation can be written as: 2E(P) = 7o + 2(1 —
o) E1(P).
It follows that an estimator of an upper bound of 7 leading to a
conservatively biased estimator of 7g issimply

=23 P, ©

since E(77p) < 1 (Appendix 1).

As shown below, a transformation of the random variable P can
be considered in order to reduce the bias of this estimator. Noting ¢
any function defined on [0, 1]:

Efp(P)] Ealp(P)]

—_—— = 1-—m)———. 4

EolpP)] 0 T T T Eofu(p) @
A function ¢ leading to an estimator with a lower bias than (3) is
such e Ealo(P)] E1(P)

1— ) 2B (g g 2B

0 e = 4T Eo(p)
that is:

Eilp(P)] _ Ea(P)

Eolg(P)] ~ Eo(P)’

Intuitively, functions ¢ that arewell-suited for achieving the above

inequality aresuch asthat takeonvalueswhicharegreater for P close

tolthanfor P closeto0. Thefollowing general theorem givesformal
conditions on ¢ that leads to the required inequality (5).

©)

THEOREM. Let fpand f3 betwo non-increasing probability dens-
ity functions of the random variable P defined on [0, 1] (denote fo
theonesuchaslim,_.1(f1/ fo)(x) < 1), andlet ¢ areal continuous
function defined on [0, 1] verifying the following conditions:

(I) Iimx%l p(x) = +00
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Table 1. Mean of al estimates for each simulated configuration with the methods QVALUE, BUM, SPLOSH and LBE withn = 1andn = 2

m 0 Conf. QVALUE BUM SPLOSH LBE LBE
n=1) n=2
100 0.2 (a) 0.249 306 0.320 796 0.209010 0.336 732 0.277032
(b) 0.197418 0.142823 0.120499 0.201 282 0.199170
(@] 0.225291 0.199 298 0.196 262 0.270588 0.244 248
0.5 @) 0.523161 0.451 669 0.400958 0.583062 0.546 987
(b) 0.506 183 0.364 379 0.338784 0.503977 0.505531
(© 0.512 346 0.428324 0.392608 0.542959 0.524 695
0.8 @ 0.784 258 0.744977 0.556 002 0.839616 0.831779
(b) 0.773398 0.703399 0.446574 0.801924 0.806 553
(© 0.761632 0.743 969 0.503310 0.812241 0.796 493
500 0.2 (@) 0.251933 0.321501 0.236 210 0.338584 0.283288
(b) 0.197976 0.142870 0.156 950 0.203072 0.199344
(© 0.223192 0.197 882 0.230946 0.270274 0.239555
0.5 (a) 0.536112 0.440 906 0.486 246 0.586 282 0.552493
(b) 0.495076 0.365937 0.418347 0.500949 0.497814
(© 0.513054 0.430535 0.479036 0.543493 0.524678
0.8 (@) 0.806 984 0.748141 0.671984 0.832719 0.819043
(b) 0.800555 0.705589 0.553156 0.801681 0.802838
(© 0.808455 0.749179 0.634703 0.817921 0.812607
2000 0.2 (a) 0.252816 0.320720 0.253153 0.337829 0.281443
(b) 0.198622 0.142818 0.170251 0.202 982 0.200213
(© 0.225407 0.197 825 0.255394 0.270831 0.241148
0.5 (a) 0.533424 0.436 461 0.524 105 0.586090 0.550845
(b) 0.499708 0.366 203 0.473210 0.501963 0.499 902
(©) 0.515855 0.431369 0.526475 0.544 224 0.526171
0.8 (@) 0.810799 0.751605 0.739347 0.834050 0.818 360
(b) 0.797784 0.705598 0.588101 0.800280 0.799031
(© 0.803206 0.750330 0.708212 0.816 658 0.807 745

(i) limyog(x) < +00
(iii) ¢ isconvex
(iv) @(Eo(P)) = Eo(P)
Then:
Ealg(P)] _ Ex(P)
Eolp(P)] ~ Eo(P)’
The proof of the theorem is given in Appendix 2.
In the following, we denote S the set of functions verifying (i) to

(iv), and the general class of estimators proposed for an upper bound
of mp is:

o= A/m) 370 o (pi)
Eole(P)]
Assuming theindependence of the P-values, we can obtain results
on the asymptotic distribution of 7. Indeed, according to the central
limit theorem, as m tendsto infinity:

. ( Elp(P)] 1 02)
o~ N , — ],
Eole(P))" Eole(P)]2 m

, peSs.

where E[¢(P)]/Eo[e(P)] is an upper bound of g and o2 is the
variance of the random variable ¢(P). Despite 2 is unknown, we
can obtain an upper bound of this variance as follows.

Denote o the variance of the random variable ¢ (P) under the null
hypothesisand let ®(P) = {¢(P) — E[p(P)]}2.

Since, lim,_,1(®(x)) = oo, lim,_o(®(x)) < oo and fp and f are
two non-increasing pdf such aslim,_, 1 [%(x)] <1, following the
lemma given in Appendix 2:

E[®(P)] — Eo[®(P)] < E(P) — Eo(P)

E{{p(P) — E[p(P)]}*} — Eo{{e(P) — E[p(P)]}*}
< E(P) — Eo(P)

02 — 08 < E(P) — Eo(P).

But, as stated previously (Appendix 1), E(P) < Eo(P), then
o2 < d.

Asthe distribution of the P-valuesis known under the null hypo-
thesis, we can obtain an upper bound of the asymptotic variance of

the estimator:
1 002
Eolp(P)> m’

In the next section, we propose a particular family of functions ¢
belonging to the class S and we provide a method to select one in
the family.

4 PROPOSED ESTIMATOR

Let p(x) = —In(1 — x). This function ¢ belongs to the class
S and we can show that Vn € N, E1(p(P)"1)/Eo(p(P)"t1) <
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Table 2. Standard error for each simulated configuration with the methods QVALUE, BUM, SPLOSH and LBE withn = 1andn = 2

m 0 Conf. QVALUE BUM SPLOSH LBE LBE
n=1 n=2)
100 0.2 (a) 0.144 446 0.020800 0.083601 0.056 776 0.111253
(b) 0.123129 0.005 259 0.046 003 0.045034 0.103125
(© 0.134 242 0.010784 0.062438 0.052016 0.114992
0.5 (a) 0.200141 0.044 201 0.120371 0.076 975 0.163175
(b) 0.192907 0.029 282 0.062 260 0.068 850 0.158191
(c) 0.199905 0.046 662 0.106579 0.073373 0.155267
0.8 @ 0.190442 0.067 848 0.152 469 0.092223 0.206415
(b) 0.201031 0.030335 0.125538 0.089315 0.205440
(c) 0.200243 0.046 509 0.140019 0.090272 0.195778
500 0.2 (a) 0.067970 0.009311 0.054 648 0.026 380 0.056 836
(b) 0.055716 0.002 369 0.017699 0.019997 0.043296
(c) 0.061 759 0.003785 0.034 406 0.023189 0.049990
0.5 (a) 0.091064 0.020922 0.069 278 0.033387 0.072376
(b) 0.091 746 0.013303 0.034630 0.032180 0.072119
(c) 0.092 356 0.020 756 0.068 751 0.034 396 0.074581
0.8 (a) 0.109 255 0.031400 0.108 568 0.039787 0.088537
(b) 0.109 257 0.013100 0.082031 0.039990 0.090 144
(c) 0.113246 0.019601 0.102903 0.041502 0.093249
2000 0.2 (a) 0.034 272 0.004 592 0.030933 0.013288 0.027721
(b) 0.028699 0.001148 0.007631 0.010340 0.023457
(c) 0.030548 0.002 085 0.016 979 0.011907 0.024 628
0.5 (a) 0.045018 0.010728 0.031426 0.016578 0.035501
(b) 0.043649 0.006 624 0.021714 0.015435 0.034110
(c) 0.045579 0.009997 0.034938 0.016 281 0.035719
0.8 (a) 0.055588 0.016 036 0.069977 0.020032 0.044 740
(b) 0.056874 0.006 834 0.042342 0.020287 0.046171
(c) 0.056 032 0.009539 0.065 325 0.020202 0.044 640

(E1(@(P)")/(Eo(p(P)™")) (Appendix 3). Then, the set of functions
¢(x)" leads to a family of estimators for which the bias for g is
decreasing with n.

It isworth noting that, under the null hypothesis, ¢ (P) followsan
exponential distribution with parameter 1. Then, using this variable
change, Eo(¢(P)") = n! (Appendix 4) and, for n € N, the proposed
estimator is:

. A/m) Y [, [—log(l — p)I”

TTO(n) =

(6)

n!

Following results stated in the previous section,

E(@®P)") 1 o
n! "2 m

ﬁo(n) ~ N |:

where cr(zn) isthe variance of the random variable ¢ (P)".
An upper bound of o(zn) is%z(n) =[Eo(@(P)?)]—[Eo(p(P)M]? =

(2n)! — (n)2. Then,
1 @) —@mh?  (3,)-1

Var (7o) < =
(o) = (n")2 m m

()

Asit can easily be seen, thereisabal ance between bias (decreasing
as n increase) and variance (increasing as n increase). Even if the
proposed estimator is an unbiased estimator for an upper bound of

70, it isimportant to preserve oneself from the risk to underestimate
7o due to the dispersion of the estimator.

In practice, for a specified number m of tested hypotheses, one
can choose n according to a certain value [ for the variance's upper

bound such as n = max [l, max (n € N*|% < l)] Other rules
may obviously be considered.

5 SIMULATIONS

In order to compare the proposed estimator of 7o named LBE (Loca-
tion Based Estimator) to those provided by QVALUE, BUM and
SPLOSH, we performed a simulation study as follows.

Data were generated to mimic a two class comparison study with
normalized log-ratio measurements for m genes | = 1, ... ,m)
obtained from 20 experiments corresponding to two conditions (j =
1, 2), each with 10 replicated samples (k = 1,...,10). Three tota
numbers of genes were considered (m = 100, 500 and 2000). In
each case, all values were independently sampled from a normal
distribution, X; ; x ~ N(u;j,1). For thefirst condition, all the data
were simulated with ;1 = 0. For the second condition, aproportion
7o of genesweresimulated with ;2 = 0 (unmodified genes) whereas
modified genes were simulated using three different configurations:
(a) niz = 1 for al modified genes; (b) ;2 = 2 for al modified
genes; (c) thefirst half with u;2 = 1, the second half with ;> = 2.
Different o values were considered (o = 0.2, 0.5 and 0.8).
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Table 3. Mean square error for each simulated configuration with the methods QVALUE, BUM, SPLOSH and LBE withn = 1andn = 2

m 0 Conf. QVALUE BUM SPLOSH LBE LBE
n=1) n=2
100 0.2 (a) 0.023275 0.015024 0.007063 0.021916 0.018299
(b) 0.015152 0.003297 0.008435 0.002028 0.010624
(@] 0.018642 0.000117 0.003908 0.007 685 0.015168
0.5 @) 0.040552 0.004 288 0.024 284 0.012818 0.028807
(b) 0.037214 0.019 250 0.029863 0.004 751 0.025030
(© 0.040074 0.007313 0.022 881 0.007 224 0.024 693
0.8 @ 0.036479 0.007 626 0.082759 0.010066 0.043574
(b) 0.041081 0.010251 0.140654 0.007973 0.042 207
(© 0.041529 0.005301 0.107611 0.008 291 0.038303
500 0.2 (@) 0.007 313 0.014 849 0.004 295 0.019901 0.010164
(b) 0.003105 0.003270 0.002 166 0.000409 0.001873
(© 0.004 349 0.000019 0.002 140 0.005476 0.004 061
0.5 (a) 0.009588 0.003929 0.004 984 0.008558 0.007 989
(b) 0.008434 0.018 150 0.007 865 0.001035 0.005 201
(© 0.008691 0.005 256 0.005 162 0.003074 0.006 166
0.8 (@) 0.011974 0.003674 0.028 164 0.002 652 0.008194
(b) 0.011925 0.009 085 0.067 654 0.001600 0.008 126
(© 0.012883 0.002967 0.037901 0.002042 0.008 845
2000 0.2 (a) 0.003963 0.014594 0.003781 0.019173 0.007 401
(b) 0.000825 0.003271 0.000943 0.000116 0.000549
(© 0.001577 0.000009 0.003357 0.005 159 0.002299
0.5 (a) 0.003142 0.004 152 0.001567 0.007 686 0.003844
(b) 0.001903 0.017945 0.001 189 0.000242 0.001 162
(©) 0.002 327 0.004 810 0.001920 0.002221 0.001959
0.8 (@) 0.003204 0.002599 0.008570 0.001560 0.002 337
(b) 0.003237 0.008 958 0.046 692 0.000412 0.002131
(© 0.003147 0.002558 0.012688 0.000685 0.002051

In each case, the P-values, calculated under the null hypothesis
Ho: i1 = wi2, were obtained from the Student’s statistic. Then, we
estimated 7o from QVALUE, BUM, SPLOSH and LBE.

In the previous section, we provide a method to select n for the
LBE estimator according to the experimental setup and a chosen
threshold / for the variance. Using this rule with | = 0.05? for the
variance, the selected valueisn = 1 for m = 100 and m = 500 and
n = 2form = 2000. However, for completeness, we considered the
LBE estimation withn = 1 and n = 2 in each case.

For each setup, 1000 iterations were performed. The mean, the
standard deviation and the mean square error of each estimator were
estimated over 1000 iterations.

Table 1 displays the means of the five estimators (for each simu-
lated configuration with the different methods). It shows that even
if all the estimators are supposed to be conservatively biased, BUM
and SPLOSH procedures dramatically underestimate 7o in most of
thesimulated configurations. Asan example, under configuration (b)
and with 7o = 80% and m = 500, the estimates mean for SPLOSH
and BUM procedures are 79 = 55% and 79 = 71%. For a few
cases, the estimates mean for QVALUE is less than ng, particularly
for asmall number of genes and high value of 7g. Nevertheless, the
greatest underestimation of QVALUE estimator isonly of 3.8% [for
7o = 80%, m = 100 and configuration (c)]. The proposed estimator
withn = 1 providesan upper boundfor g inall thecases. Forn = 2,
the mean of 77 over 1000 simulationsislessthan g with asmall dif-
ference (<3 x 10~%) in only six cases, which can be explained by the

variability of the estimates mean. The estimations provided by LBE
are greater than those provided by QVALUE in all cases except one.
However, thedifferenceisnot >8.7%forn = 1and 4.8%forn = 2.

Incontrast, Table2whichdisplaysthestandard error estimation for
each method, showsthat the standard error of the proposed estimator
for n = 1 is always less than the standard error of QVALUE (the
least differenceis 1.8%). Asexpected, the proposed estimator’ smean
decreases with n (in almost all cases) and variance increases in all
caseswith n. However, for n = 2, there are only two casesfor which
the proposed estimator standard error is greater than QVALUE's
standard error.

The estimated standard errors for LBE withn=1andn = 2 are
less than the upper bounds cal culated from (7) for the standard error.
Indeed, for m = 100, 500 and 2000 the calculated values are 0.1,
0.045, 0.022 (for n = 1) and 0.224, 0.1, 0.05 (for n = 2).

Table 3 presents the mean square error for each estimator. Com-
pared to QVALUE, Table 3 shows that for m = 100 and m = 500,
the proposed estimator with n = 1 has the lowest mean sgquare error
in 16 casesout of 18, and for m = 2000, the proposed estimator with
n = 2 hasthelowest mean square error in 6 cases out of 9. For 6 and
5 cases out of 27, SPLOSH and BUM have the lowest mean square
error over thefive estimators, respectively. However, it is quite diffi-
cult to interpret these results since it has been previously shown that
these latter estimators tend frequently to underestimate rg.

As an example, Figure 1 presents the histogram of the different
estimatorsfor thefour methodsin onecase[m = 2000, configuration
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Fig. 1. Estimates distribution for QVALUE, BUM, SPLOSH and LBE withn =

(), and o = 0.8]. It illustrates that the proposed estimator seems
to be normaly distributed in finite samples, which appears to be
roughly true for QVALUE, but not for BUM and SPLOSH. The
graphic diagram also illustrates that the variance of QVALUE is
higher than the variance of the proposed estimator, and that BUM
and SPLOSH, in this case, underestimate mg.

Concerning QVALUE and LBE, simulation results have shown
that the upper bound for 7o estimated by both methods is closer to
thetrue value as g isincreasing and thereisalarge overlap between
thedistributionsunder the null and alternative hypothesis. Thisisnot
surprising, since from (1) and (4), the bias is depending on 7o and
the distribution of the P-values under the alternative hypothesis.

Itisworth noting that for practical use, investigator would probably
truncate the estimator at one. However, simulations results (data not
shown) have shownthat if n ischosen according to the proposed rule,
truncating or not the estimator provides very close results.

6 EXAMPLES

Our proposed estimator together with QVALUE, BUM and SPLOSH
have been applied to the publicly available datasets from the breast
study conducted by Hedenfalk et al. (2001), the leukemia study con-
ducted by Golub et al. (1999) and the apolipoprotein Al (Apo Al)
experiment conducted by Callow et al. (2000).

The aim of the study of Hedenfalk et al. (2001) was to exam-
ine breast cancer tissuesfrom patientswith BRCA1-BRCA2-rel ated

[}
[}
[}
=
(]
[Tyl
i . .__
074 K 0.7a
B
=
(]
o~
=
(]
[Tyl
= _-. .
0.32 g 8 0.3
LBE.1

landn = 2inthecase: m = 2000, configuration (c) and o = 0.8.

cancer and cases of sporadic breast cancer to determine global gene
expression patterns in the different classes of tumors. The initial
dataset consists of 3226 genes expression ratios corresponding to the
fluorescent intensities from a tumor sample divided by those from
a common reference sample. For each gene, alog-expression ratio
was available. In this paper, we focus on the comparison of BRCA1
and BRCA2 with a subset of 3030 genes for which log-ratio values
>0.1 and <10 and the data were normalized following a classical
analysis of variance model [same asin Broét et al. (2004)].

Theam of the study of Golub et al. (1999) wasto identify the dif-
ferentially expressed genes between acute myeloid leukemia (AML)
and acute lymphoblastic leukemia (ALL). The expression levels of
6817 genes were measured using Affymetrix high-density oligo-
nucleotide chips. Data were pre-processed as described in Dudoit
et al. (2002), leading to the analysis of 3051 genes.

The aim of the study of Callow et al. (2000) was to identify genes
with altered expression in the livers of apo Al knock-out mice com-
pared to inbred control mice. The considered dataset consists of 6384
genes expression values corresponding to the log of the fluorescent
intensities from amice sample divided by those from acommon ref-
erence sample. We excluded genes having at least one fluorescent
intensity equal to zero so that 6226 genes were retained and the data
were standardized within arrays.

For each dataset, P-values were calculated for each gene from a
two-sample 7-test. Then, we applied the methods QVALUE, BUM,
SPLOSH and LBE to these sets of P-valuesin order to estimate mg.
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The estimates obtained for 7o by QVALUE, BUM, SPLOSH and
LBE (with n = 2, that corresponds for the three datasets to a
threshold I = 0.05 for the estimator’s variance) are as follows. For
the Hedenfalk et al. dataset: 0.669, 0.586, 0.622 and 0.688, respect-
ively; for the Golub et al. dataset: 0.496, 0.453, 0.524 and 0.525,
respectively; and for the Callow et al. dataset 0.901, 0.837, 0.830
and 0.895, respectively.

For each dataset, LBE and QVALUE estimates are very close,
which isnot surprising when looking at simulation results presented
in the previous section. For the two first datasets, QVALUE estimate
islower thanthe L BE estimate, but for thethird dataset, L BE estimate
islower.

As compared to QVALUE, we can obtain upper bounds for the
variances, which are 1.65 x 1073, 1.64 x 10~3 and 8.03 x 1073 for
the Hedenfalk et al. dataset, the Golub et al. dataset and the Callow
et al. dataset, respectively. These variances correspond to standard
errors of 4.06, 4.05 and 2.83%, respectively.

As seen in Storey and Tibshirani (2003), FDR(r) is estim-
ated by (omt/#{p; < t}). When selecting all genes so that the
FDR is <10%, for the three experiments, QVALUE leads to select
290, 1206 and 9 genes, respectively, and our proposed method
leads to select 282, 1187 and 9 genes, respectively. BUM and
SPLOSH procedures generally led to select larger numbers of
genes but as shown by the simulation study, these procedures led
to underestimate mp in many cases and the true FDR may be
quite >10%.

7 DISCUSSION

In this paper, we propose a novel procedure for estimating the FDR
that proceeds, as QVALUE, BUM and SPLOSH, from the marginal
distribution of the P-values. For all these procedures, a key quant-
ity is the probability for a gene of being unmodified. Estimating
this latter quantity without making assumptions on the distribu-
tion of modified genes leads to a conservatively biased estimator of
the FDR.

In contrast to QVALUE, BUM and SPLOSH that proceed from
an estimate of the marginal density evaluated at one with complex
procedures, our proposed estimators are simply obtained from the
expectation of the transformed P-values. Moreover, we provide res-
ults on their asymptotic distribution under the assumption that the
P-vauesareindependent. From these estimators, FDR and ¢-values
are easy to obtain.

In order to select one particular estimator among the proposed
family, the following guidelines may be suggested. According to
the experimental setup and a threshold / = 0.05 for the variance
upper bound of the estimator, n = 1 for 2 < m < 2000, n = 2 for
2000 < m < 7500andn = 3form > 7500. However, thisthreshold
[ is arbitrary and should be chosen according to the accuracy
needed.

As seen in the simulation study, BUM and SPLOSH procedures
underestimate 7o in most of the cases, leading to an anticonservat-
ively biased estimator of the FDR. Simulations study has shown that
LBE and QVALUE expectations are close, the latter one providing
the less biased estimator of 7p. However, our proposed estimator
has the smallest variance, so that the risk to underestimate g is
smaller with LBE than with QVALUE. Regarding the bias and vari-
ance trade-off, the mean square error of the proposed estimator
is the smallest in most of the cases. Applying the four methods

on a rea dataset, QVALUE and LBE have provided very close
results, which is in agreement with the ssimulation results. BUM
and SPLOSH have led to select a greater number of genes, but
these results have to be taken cautiously when looking at simulation
results.

Although the proposed method is dedicated to the FDR, the esti-
mate of =g can be used with other criteria such as the local FDR
(Efron et al., 2001).

In conclusion, the proposed method for estimating an upper
bound of wy appears to be very useful for calculating the FDR
and should be recommended for its nice properties and its
simplicity.
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8 APPENDIX

8.1 Proof of E(mg) <1

Assuming that f, the marginal pdf isnon-increasing and fo = 10,1,
F, the margina cdf and Fy, then the conditional cdf under the null
hypothesis, are such as F > Fp. Then,

1
E(P) =1—/ F(x)dx
Ol
Eo(P) = 1—/ Fo(x)a'x
0

= E(P) < Eo(P) = E(p) = 2E(P) < 2Eo(P) = 1.
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8.2 Proof of theorem
The proof of the theorem follows the lemma:

LEMMA. Let fp and f1 two non-increasing probability density
function of therandomvariable P defined on [0, 1] (denote f; theone
suchaslim,_,1 % (x) < 1)andlet ¢ acontinuousfunction defined on
[0,1]suchas (i) lim,_ 1 ¢(x) = +ocand (ii) lim,_op(x) < +oo.

Then, E1[@(P)] — Eolp(P)] < E1(P) — Eo(P).

PROOF OF THE LEMMA

)

Va € [0, 1],
{E1le(P)] — Eole(P)]} — {E1(P) — Eo(P)}
- fo (00 = (1 — Fod
- /O ") — 0(f1 — fo)w)dx
+ f 0 = )= ()
&) fo and fi pdf

1
- /0 (f1— fo)(x)dx =0
= Va € [0, 1],

a 1
x /O (fi— foyydx = — / (fi— fo)@)dx
& lim [ﬁ(x)] <1
x—1 fo

= 3Ja* € [0,1]|Vx € [a*,1], (fi— fo)(x) <O

> /O [o(r) — x1(f1 — fo)(x)dx
< wp [p() — ] /0 (fi— fo)(x)dx

x€[0,a*]

1
X / lo(x) — x1(f1 — fo)(x)dx

1
< inf oo — 21 [ (- fowds
> /O (o) — x1(fi — fo)(x) dx
1
+ / [o(r) — x1(f1— fo)(x)dx
5[ sup [p() —x]— inf [w(X)—X]}
xe[0,a*] x€la*,1]

X /O (f1— fo)(x)dx

4) Iin})w(x) < +o0 [condition (ii)]
@ continuous

= Va € [0,1],p(a) —a < +©

G) LetA= sup [p(x)—xl.

x€[0,a*]
|iml(p(x) = o0 [condition (i)]
= Iimlcp(x) —x =+
< VB > 0,3n > O|Vx € [0, 1],
{1-x<n=¢kx) —x> B}
= Jda™ > a*|Vx € [0, 1],
{x >a™ = o) —x > A}
= sup [p(x)—x]=< inf [p(x)—x]

xe[0,a**] x€la**,1]

=>|: sup (p(x) —x)— inf (@(X)—x)i|§0

xe[0,a**] x€la**,1]

=>|: sup (p(x) —x) — inf (<P(X)—x)i|

xe[0,a**] x€la**,1]

x /0 (fi— fo)(x)dx <0

r sincea*™ > a* 7]
1

N / (A= fowdx <0

=>/ (fr— fo)x)dx >0

0
= {E1lo(P)] — Eole(P)]} — {E1(P) — Eo(P)} =0
L = Eile(P)] — Eole(P)] < E1(P) — Eo(P)

PROOF OF THE THEOREM

(1) Note: As ¢ is convex (iii), following the Jensen inequality:
Eolep(P)] = ¢[Eo(P)]
(2) From the lemma:

E1[o(P)] — Eole(P)] < E1(P) — Eo(P)
CEle(P)] _ Eu(P) — Eo(P)

CEolg(P)] T T Eolg(P)]
Ealg(P)] ) _ Ea(P) = Eo(P) 1o 4y
Eolp(P)] ¢LE(P)]
Edle(P)] _, _ Ea(P) = Eo(P)
Eolp(P)] =~ Eo(P)

[since ¢l Eo(P)] = Eo(P) (V)]
Edg(P)] | _ Ex(P) _
Eolp(P)] "~ ~ Eo(P)
Exlg(P)] _ Ex(P)

Eolg(P)] = Eo(P)
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Ey(e(P)"™h) - Ey(e(P)")
8.3 Proof of Vn € N, 205 = o

[withg(P) = —(1— P)]
Following the same argumentation as previously, the following
variant of the theorem can easily be shown:

THEOREM. Let go and g1 two non-increasing pdf of
the random variable Z defined on [0,+o0] [dencte go
the one such as Iimx_>+oo§—;(x) < 1, and let ¥ a

real function defined on [0, +o0] T/erifying the following
conditions:

@) im0 ¥ (x) —x = 400
(i) limy—o¥(x) < +00
(iii) ¥ isconvex

(iv) V[Eo(Z)] > Eo(Z)

Then:

Ey(2)] _ Ea(Z)
Eoly/(2)] ~ Eo(2)

Denote go and g1 the conditional pdf of the random vari-
able Z = ¢@(P)" under the null hypothesis and under
the aternative hypothesis, respectively. IimHoo%(x) < 1L
Indeed:

1/n 1Un

0 iy B xe

x—>—+00 e

. _xl/n
JNim_a-e)

. 1
lim 81
xX— 400 &0

1n

Iimlfl(y) withy =1—¢e"*
y~>

<1

Lety : [0,+00] — Rsuchasy(Z) = Z+D/n,

(1) 1My oo ¥ (x) — x = lim,_, {00 x*HD/M _ x = J00.
(i) (0 =0=lim_o¥(x) < +o0
(i) ¥"(x) = [(n + 1)/n?1xT="/" > 0 = y isconvex
(iv) Eo(Z) = n! = 1 = Y[Eo(Z)] = Eo(Z)"V/" > Eo(Z)
(Appendix 4)

Then, following the previous theorem:

E\lY(2)] _ Ea(Z)
Eoly(2)] ~ Eo(Z)
Eslp(P)"] _ Exlp(P)"]
Eolp(P)"+'] ™ Eolp(P)"]

8.4 Proof of p(P) ~ exp(l) = Eo[e(P)"] = n!
Let X ~ exp(1)

The equality Eg[¢(P)"] = n! is obviously true for n = 1 and
n=2:

E(X) = 1!
E(X?) =2
Lets assume that E(X") = n! and lets show that E(X"t1) =
(n+ D)

+
E(XYlJrl) — /

0

o0
x"le*dx

—+00
= [—x”“eﬂ“]a'oo +(n+ 1)/ x"e Ydx
0

= (n+ DEX")
=(n+1)!
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