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ABSTRACT
Motivation: The most used criterion in microarray data analysis is
nowadays the false discovery rate (FDR). In the framework of estim-
ating procedures based on the marginal distribution of the P -values
without any assumption on gene expression changes, estimators of
the FDR are necessarily conservatively biased. Indeed, only an upper
bound estimate can be obtained for the key quantity π0, which is the
probability for a gene to be unmodified. In this paper, we propose a
novel family of estimators for π0 that allows the calculation of FDR.
Results: The very simple method for estimating π0 called LBE (Loca-
tion Based Estimator) is presented together with results on its variab-
ility. Simulation results indicate that the proposed estimator performs
well in finite sample and has the best mean square error in most of the
cases as compared with the procedures QVALUE, BUM and SPLOSH.
The different procedures are then applied to real datasets.
Availability: The R function LBE is available at http://ifr69.vjf.
inserm.fr/lbe
Contact: broet@vjf.inserm.fr

1 INTRODUCTION
New transcriptome-oriented biotechnologies make nowadays pos-
sible the comparative analysis of thousands of genes expression
in parallel for selecting relevant genes the transcriptional changes
of which are related to a clinical or biological outcome (Schena,
2000). In such a case, a major multiple testing problem arises due
to the fact that a large number of statistical tests are performed sim-
ultaneously (Hochberg and Tamhane, 1987). Until now, statistical
procedures devoted to this multiple testing problem mostly focused
on controlling or estimating false positive error criteria.

For cDNA microarray experiments, the most used criterion
nowadays is the false discovery rate (FDR) introduced by Benjamini
and Hochberg (1995). The FDR is the expected proportion of false
discoveries among all discoveries. Noting V the random variable
representing the number of false discoveries and R the number of
significant results obtained from a particular multiple testing proced-
ure, Benjamini and Hochberg defined the FDR by FDR = E(V /R)

if R > 0, and 0 otherwise. In large-scale hypotheses generating stud-
ies such as microarray experiments, the FDR seems more relevant
than the Family Wise Error Rate (FWER) defined by the probability
of committing at least one false discovery (Hochberg and Tamhane,
1987). In this setting, the purpose of this paper is to propose a novel
procedure for estimating the FDR.

∗To whom correspondence should be addressed.

In their seminal paper, Benjamini and Hochberg (1995) presented
a step up method in order to control the FDR and discussed another
criterion, later called the positive FDR (pFDR) by Storey (2001).
This criterion is defined as pFDR = E[(V /R)|R > 0]. However,
Benjamini and Hochberg did not consider this criterion due to the fact
that it cannot be controlled since under the complete null hypothesis
(all null hypotheses tested are true), all significant results (if there are
significant ones) are necessary false discoveries. Then, pFDR = 1
and it is impossible to insure that pFDR < α for a given α �= 1.

Storey (2001) demonstrated that if the test statistics are indepen-
dent and identically distributed, for a fixed rejection region �, which
is the same for every test,

pFDR(�) = Pr(H = 0|T ∈ �) = π0 Pr(T ∈ �|H = 0)

Pr(T ∈ �)
, (1)

where H is the variable such as H = 0 if the null hypothesis H0 is
true, H = 1 if the alternative hypothesis H1 is true, π0 = Pr(H = 0)

is the probability of not being modified and T is the test statistic used
for all tested hypotheses.

From its definition, the pFDR is obviously related to the FDR
through pFDR = FDR/[Pr(R > 0)]. Since Pr(R > 0) tends to one
when the number of tested hypotheses tends to infinity, these two
criteria are asymptotically equivalent and, in the following, we will
note FDR for both of them.

Storey and Tibshirani (2003) proposed a method (implemented in
R function QVALUE) for obtaining a conservatively biased estimator
for the pFDR based on the marginal distribution of the P -values
without making any assumption on the distribution related to the
modified genes. In practice, from (1), estimating the FDR is based
on the separate estimation of the following three terms Pr(T ∈ �),
Pr(T ∈ �|H = 0) and π0 where only an upper bound estimator of
the latter quantity can be obtained.

Relying on the same framework, two procedures named BUM
(Pounds and Morris, 2003) and SPLOSH (Pounds and Cheng, 2004)
have been recently proposed. In practice, all these three methods
are based on the marginal distribution of the P -values and provide
a conservatively biased estimator for the FDR resulting from the
overestimation of π0.

In this paper, we provide a class of estimators for an upper bound
of π0 based on the expectation of the transformed P -values and
from which we can obtain results on the asymptotic distribution. As
for QVALUE, BUM and SPLOSH, our procedure do not make any
assumption on the distribution related to modified genes. From our
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proposed estimators, we can easily obtain estimators of the FDR or
other quantities such as the q-values (Storey, 2003).

The paper is organized as follows: in Section 2, we present the
general framework of the procedures QVALUE, BUM and SPLOSH
for obtaining a conservatively biased estimator for π0 based on the
marginal distribution of the P -values. In Section 3, we present a
general class of estimators for an upper bound of π0 with results
on its asymptotic distribution. In Section 4, we propose a particular
family of estimators and give guidelines for choosing one estimator
in the family depending on the experimental setup and the accuracy
needed. In Section 5, we present results from a simulation study that
compares proposed estimators to those provided by QVALUE, BUM
and SPLOSH. In Section 6, we apply the different methods on real
datasets and we conclude with a discussion.

2 GENERAL FRAMEWORK FOR PROCEDURES
BASED ON THE MARGINAL DISTRIBUTION OF
THE P -VALUES

Data can be modeled following a two components mixture model
(McLachlan and Peel, 2000) whereby the population of genes can be
considered as composed of two subpopulations of genes, those for
which the null hypothesis is true (unmodified genes), and those for
which the alternative hypothesis is true (modified genes). Let pi i =
1, . . . , m be the P -values calculated for the m tested hypotheses. Let
P be the random variable for which the P -values are the observations
and let f be the marginal probability density function (pdf) of P .
Denote f0 the conditional pdf of P under the null hypothesis and f1

the conditional pdf of P under the alternative hypothesis. Then:

f (p) = π0f0(p) + (1 − π0)f1(p). (2)

Under the null hypothesis (and if the assumption for the distribu-
tion of the test statistic under the null hypothesis is true) the P -values
are uniformly distributed on [0, 1] so that f0(p) = 1[0,1](p) and the
relation (2) is: f (p) = π0 + (1 − π0)f1(p) where the conditional
density f1 is unknown. Since (1 − π0)f1(p) is non-negative and
assuming that f (or f1) is non-increasing for p ∈ [0, 1], then f (1)

is the smallest upper bound for π0 based on (2). Thus, an unbiased
estimator of f (1) provides a conservatively biased estimator of π0.
As seen below, the procedures QVALUE, BUM and SPLOSH are
based on this latter estimator whereas our procedure is based on the
expectation of transformed P -values.

A widely used estimator for π0 is the one proposed by Storey
and Tibshirani (2003). Using a tuning parameter λ ∈ [0, 1], π0 is
estimated by:

π̂0(λ) = #{pi > λ; i = 1, . . . , m}
m(1 − λ)

.

As argued by Storey and Tibshirani, there is a trade-off between bias
(which decreases when λ → 1) and variance (which increases when
λ → 1). Considering π̂0 as a function of λ, Storey and Tibshirani
proposed to use a cubic spline based method to estimate the quantity
limλ→1 π̂0(λ).

Actually, noting F the marginal cumulative distribution function
(cdf) of P , Storey and Tibshirani’s estimator can be viewed such as:

π̂0(λ) = 1 − F̂ (λ)

1 − λ
.

Then, the estimated quantity is:

lim
λ→1

π̂0(λ) = lim
λ→1

1 − F̂ (λ)

1 − λ
= dF̂

dλ
(1) = f̂ (1).

Pounds and Morris (2003) have proposed a parametric method
assuming that the marginal distribution of the P -values arises from
a beta-uniform mixture distribution. The model parameters are
estimated using the maximum-likelihood method, and π̂0 = f̂ (1).

More recently, Pounds and Cheng (2004) have proposed a method
also based on the marginal distribution of the P -values, but apply-
ing a local regression method (LOESS; Loader, 1999) to obtain a
smooth estimate of f in a transformed space (for more details on the
transformation used, see Pounds and Cheng, 2004).

3 A GENERAL CLASS OF ESTIMATORS
The proposed class of estimators for an upper bound of π0 is
based upon the expectation of P under the model (2) that can be
expressed as:

E(P )

E0(P )
= π0 + (1 − π0)

E1(P )

E0(P )
,

where E0 and E1 are the expectations of the conditional distribution
of P under the null and the alternative hypothesis, respectively.

Since under the null hypothesis, P ∼ U [0, 1], E0(P ) = 1
2 so

that the previous equation can be written as: 2E(P ) = π0 + 2(1 −
π0)E1(P ).

It follows that an estimator of an upper bound of π0 leading to a
conservatively biased estimator of π0 is simply

π̂0 = 2
1

m

m∑
i=1

Pi (3)

since E(π̂0) ≤ 1 (Appendix 1).
As shown below, a transformation of the random variable P can

be considered in order to reduce the bias of this estimator. Noting ϕ

any function defined on [0, 1]:
E[ϕ(P )]
E0[ϕ(P )] = π0 + (1 − π0)

E1[ϕ(P )]
E0[ϕ(P )] . (4)

A function ϕ leading to an estimator with a lower bias than (3) is
such as

(1 − π0)
E1[ϕ(P )]
E0[ϕ(P )] ≤ (1 − π0)

E1(P )

E0(P )
,

that is:
E1[ϕ(P )]
E0[ϕ(P )] ≤ E1(P )

E0(P )
. (5)

Intuitively, functions ϕ that are well-suited for achieving the above
inequality are such as that take on values which are greater for P close
to 1 than for P close to 0. The following general theorem gives formal
conditions on ϕ that leads to the required inequality (5).

Theorem. Let f0 and f1 be two non-increasing probability dens-
ity functions of the random variable P defined on [0, 1] (denote f0

the one such as limx→1(f1/f0)(x) ≤ 1), and let ϕ a real continuous
function defined on [0, 1] verifying the following conditions:

(i) limx→1 ϕ(x) = +∞
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Table 1. Mean of all estimates for each simulated configuration with the methods QVALUE, BUM, SPLOSH and LBE with n = 1 and n = 2

m π0 Conf. QVALUE BUM SPLOSH LBE
(n = 1)

LBE
(n = 2)

100 0.2 (a) 0.249 306 0.320 796 0.209 010 0.336 732 0.277 032
(b) 0.197 418 0.142 823 0.120 499 0.201 282 0.199 170
(c) 0.225 291 0.199 298 0.196 262 0.270 588 0.244 248

0.5 (a) 0.523 161 0.451 669 0.400 958 0.583 062 0.546 987
(b) 0.506 183 0.364 379 0.338 784 0.503 977 0.505 531
(c) 0.512 346 0.428 324 0.392 608 0.542 959 0.524 695

0.8 (a) 0.784 258 0.744 977 0.556 002 0.839 616 0.831 779
(b) 0.773 398 0.703 399 0.446 574 0.801 924 0.806 553
(c) 0.761 632 0.743 969 0.503 310 0.812 241 0.796 493

500 0.2 (a) 0.251 933 0.321 501 0.236 210 0.338 584 0.283 288
(b) 0.197 976 0.142 870 0.156 950 0.203 072 0.199 344
(c) 0.223 192 0.197 882 0.230 946 0.270 274 0.239 555

0.5 (a) 0.536 112 0.440 906 0.486 246 0.586 282 0.552 493
(b) 0.495 076 0.365 937 0.418 347 0.500 949 0.497 814
(c) 0.513 054 0.430 535 0.479 036 0.543 493 0.524 678

0.8 (a) 0.806 984 0.748 141 0.671 984 0.832 719 0.819 043
(b) 0.800 555 0.705 589 0.553 156 0.801 681 0.802 838
(c) 0.808 455 0.749 179 0.634 703 0.817 921 0.812 607

2000 0.2 (a) 0.252 816 0.320 720 0.253 153 0.337 829 0.281 443
(b) 0.198 622 0.142 818 0.170 251 0.202 982 0.200 213
(c) 0.225 407 0.197 825 0.255 394 0.270 831 0.241 148

0.5 (a) 0.533 424 0.436 461 0.524 105 0.586 090 0.550 845
(b) 0.499 708 0.366 203 0.473 210 0.501 963 0.499 902
(c) 0.515 855 0.431 369 0.526 475 0.544 224 0.526 171

0.8 (a) 0.810 799 0.751 605 0.739 347 0.834 050 0.818 360
(b) 0.797 784 0.705 598 0.588 101 0.800 280 0.799 031
(c) 0.803 206 0.750 330 0.708 212 0.816 658 0.807 745

(ii) limx→0 ϕ(x) < +∞
(iii) ϕ is convex

(iv) ϕ(E0(P )) ≥ E0(P )

Then:
E1[ϕ(P )]
E0[ϕ(P )] ≤ E1(P )

E0(P )
.

The proof of the theorem is given in Appendix 2.
In the following, we denote S the set of functions verifying (i) to

(iv), and the general class of estimators proposed for an upper bound
of π0 is:

π̂0 = (1/m)
∑m

i=1 ϕ(pi)

E0[ϕ(P )] , ϕ ∈ S.

Assuming the independence of the P -values, we can obtain results
on the asymptotic distribution of π̂0. Indeed, according to the central
limit theorem, as m tends to infinity:

π̂0 ∼ N

(
E[ϕ(P )]
E0[ϕ(P )] ,

1

E0[ϕ(P )]2

σ 2

m

)
,

where E[ϕ(P )]/E0[ϕ(P )] is an upper bound of π0 and σ 2 is the
variance of the random variable ϕ(P ). Despite σ 2 is unknown, we
can obtain an upper bound of this variance as follows.

Denote σ 2
0 the variance of the random variable ϕ(P ) under the null

hypothesis and let �(P ) = {ϕ(P ) − E[ϕ(P )]}2.

Since, limx→1(�(x)) = ∞, limx→0(�(x)) < ∞ and f0 and f are

two non-increasing pdf such as limx→1

[
f1
f0

(x)
]

≤ 1, following the

lemma given in Appendix 2:

E[�(P )] − E0[�(P )] ≤ E(P ) − E0(P )

E{{ϕ(P ) − E[ϕ(P )]}2} − E0{{ϕ(P ) − E[ϕ(P )]}2}
≤ E(P ) − E0(P )

σ 2 − σ 2
0 ≤ E(P ) − E0(P ).

But, as stated previously (Appendix 1), E(P ) ≤ E0(P ), then
σ 2 ≤ σ 2

0 .
As the distribution of the P -values is known under the null hypo-

thesis, we can obtain an upper bound of the asymptotic variance of
the estimator:

1

E0[ϕ(P )]2

σ 2
0

m
.

In the next section, we propose a particular family of functions ϕ

belonging to the class S and we provide a method to select one in
the family.

4 PROPOSED ESTIMATOR
Let ϕ(x) = − ln(1 − x). This function ϕ belongs to the class
S and we can show that ∀n ∈ N, E1(ϕ(P )n+1)/E0(ϕ(P )n+1) ≤
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Table 2. Standard error for each simulated configuration with the methods QVALUE, BUM, SPLOSH and LBE with n = 1 and n = 2

m π0 Conf. QVALUE BUM SPLOSH LBE
(n = 1)

LBE
(n = 2)

100 0.2 (a) 0.144 446 0.020 800 0.083 601 0.056 776 0.111 253
(b) 0.123 129 0.005 259 0.046 003 0.045 034 0.103 125
(c) 0.134 242 0.010 784 0.062 438 0.052 016 0.114 992

0.5 (a) 0.200 141 0.044 201 0.120 371 0.076 975 0.163 175
(b) 0.192 907 0.029 282 0.062 260 0.068 850 0.158 191
(c) 0.199 905 0.046 662 0.106 579 0.073 373 0.155 267

0.8 (a) 0.190 442 0.067 848 0.152 469 0.092 223 0.206 415
(b) 0.201 031 0.030 335 0.125 538 0.089 315 0.205 440
(c) 0.200 243 0.046 509 0.140 019 0.090 272 0.195 778

500 0.2 (a) 0.067 970 0.009 311 0.054 648 0.026 380 0.056 836
(b) 0.055 716 0.002 369 0.017 699 0.019 997 0.043 296
(c) 0.061 759 0.003 785 0.034 406 0.023 189 0.049 990

0.5 (a) 0.091 064 0.020 922 0.069 278 0.033 387 0.072 376
(b) 0.091 746 0.013 303 0.034 630 0.032 180 0.072 119
(c) 0.092 356 0.020 756 0.068 751 0.034 396 0.074 581

0.8 (a) 0.109 255 0.031 400 0.108 568 0.039 787 0.088 537
(b) 0.109 257 0.013 100 0.082 031 0.039 990 0.090 144
(c) 0.113 246 0.019 601 0.102 903 0.041 502 0.093 249

2000 0.2 (a) 0.034 272 0.004 592 0.030 933 0.013 288 0.027 721
(b) 0.028 699 0.001 148 0.007 631 0.010 340 0.023 457
(c) 0.030 548 0.002 085 0.016 979 0.011 907 0.024 628

0.5 (a) 0.045 018 0.010 728 0.031 426 0.016 578 0.035 501
(b) 0.043 649 0.006 624 0.021 714 0.015 435 0.034 110
(c) 0.045 579 0.009 997 0.034 938 0.016 281 0.035 719

0.8 (a) 0.055 588 0.016 036 0.069 977 0.020 032 0.044 740
(b) 0.056 874 0.006 834 0.042 342 0.020 287 0.046 171
(c) 0.056 032 0.009 539 0.065 325 0.020 202 0.044 640

(E1(ϕ(P )n))/(E0(ϕ(P )n)) (Appendix 3). Then, the set of functions
ϕ(x)n leads to a family of estimators for which the bias for π0 is
decreasing with n.

It is worth noting that, under the null hypothesis, ϕ(P ) follows an
exponential distribution with parameter 1. Then, using this variable
change, E0(ϕ(P )n) = n! (Appendix 4) and, for n ∈ N, the proposed
estimator is:

π̂0(n) = (1/m)
∑m

i=1[−log(1 − pi)]n
n! . (6)

Following results stated in the previous section,

π̂0(n) ∼ N

[
E(ϕ(P )n)

n! ,
1

(n!)2

σ 2
(n)

m

]

where σ 2
(n) is the variance of the random variable ϕ(P )n.

An upper bound of σ 2
(n) is σ 2

0(n) = [E0(ϕ(P )2n)]−[E0(ϕ(P )n)]2 =
(2n)! − (n!)2. Then,

Var(π̂0(n)) ≤ 1

(n!)2

(2n)! − (n!)2

m
=

( n
2n

) − 1

m
. (7)

As it can easily be seen, there is a balance between bias (decreasing
as n increase) and variance (increasing as n increase). Even if the
proposed estimator is an unbiased estimator for an upper bound of

π0, it is important to preserve oneself from the risk to underestimate
π0 due to the dispersion of the estimator.

In practice, for a specified number m of tested hypotheses, one
can choose n according to a certain value l for the variance’s upper

bound such as n = max
[
1, max

(
n ∈ N

∗| ( n
2n)−1
m

≤ l
)]

. Other rules

may obviously be considered.

5 SIMULATIONS
In order to compare the proposed estimator of π0 named LBE (Loca-
tion Based Estimator) to those provided by QVALUE, BUM and
SPLOSH, we performed a simulation study as follows.

Data were generated to mimic a two class comparison study with
normalized log-ratio measurements for m genes (i = 1, . . . , m)
obtained from 20 experiments corresponding to two conditions (j =
1, 2), each with 10 replicated samples (k = 1, . . . , 10). Three total
numbers of genes were considered (m = 100, 500 and 2000). In
each case, all values were independently sampled from a normal
distribution, Xi,j ,k ∼ N(µij , 1). For the first condition, all the data
were simulated with µi1 = 0. For the second condition, a proportion
π0 of genes were simulated withµi2 = 0 (unmodified genes) whereas
modified genes were simulated using three different configurations:
(a) µi2 = 1 for all modified genes; (b) µi2 = 2 for all modified
genes; (c) the first half with µi2 = 1, the second half with µi2 = 2.
Different π0 values were considered (π0 = 0.2, 0.5 and 0.8).
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Table 3. Mean square error for each simulated configuration with the methods QVALUE, BUM, SPLOSH and LBE with n = 1 and n = 2

m π0 Conf. QVALUE BUM SPLOSH LBE
(n = 1)

LBE
(n = 2)

100 0.2 (a) 0.023 275 0.015 024 0.007 063 0.021 916 0.018 299
(b) 0.015 152 0.003 297 0.008 435 0.002 028 0.010 624
(c) 0.018 642 0.000 117 0.003 908 0.007 685 0.015 168

0.5 (a) 0.040 552 0.004 288 0.024 284 0.012 818 0.028 807
(b) 0.037 214 0.019 250 0.029 863 0.004 751 0.025 030
(c) 0.040 074 0.007 313 0.022 881 0.007 224 0.024 693

0.8 (a) 0.036 479 0.007 626 0.082 759 0.010 066 0.043 574
(b) 0.041 081 0.010 251 0.140 654 0.007 973 0.042 207
(c) 0.041 529 0.005 301 0.107 611 0.008 291 0.038 303

500 0.2 (a) 0.007 313 0.014 849 0.004 295 0.019 901 0.010 164
(b) 0.003 105 0.003 270 0.002 166 0.000 409 0.001 873
(c) 0.004 349 0.000 019 0.002 140 0.005 476 0.004 061

0.5 (a) 0.009 588 0.003 929 0.004 984 0.008 558 0.007 989
(b) 0.008 434 0.018 150 0.007 865 0.001 035 0.005 201
(c) 0.008 691 0.005 256 0.005 162 0.003 074 0.006 166

0.8 (a) 0.011 974 0.003 674 0.028 164 0.002 652 0.008 194
(b) 0.011 925 0.009 085 0.067 654 0.001 600 0.008 126
(c) 0.012 883 0.002 967 0.037 901 0.002 042 0.008 845

2000 0.2 (a) 0.003 963 0.014 594 0.003 781 0.019 173 0.007 401
(b) 0.000 825 0.003 271 0.000 943 0.000 116 0.000 549
(c) 0.001 577 0.000 009 0.003 357 0.005 159 0.002 299

0.5 (a) 0.003 142 0.004 152 0.001 567 0.007 686 0.003 844
(b) 0.001 903 0.017 945 0.001 189 0.000 242 0.001 162
(c) 0.002 327 0.004 810 0.001 920 0.002 221 0.001 959

0.8 (a) 0.003 204 0.002 599 0.008 570 0.001 560 0.002 337
(b) 0.003 237 0.008 958 0.046 692 0.000 412 0.002 131
(c) 0.003 147 0.002 558 0.012 688 0.000 685 0.002 051

In each case, the P -values, calculated under the null hypothesis
H0: µi1 = µi2, were obtained from the Student’s statistic. Then, we
estimated π0 from QVALUE, BUM, SPLOSH and LBE.

In the previous section, we provide a method to select n for the
LBE estimator according to the experimental setup and a chosen
threshold l for the variance. Using this rule with l = 0.052 for the
variance, the selected value is n = 1 for m = 100 and m = 500 and
n = 2 for m = 2000. However, for completeness, we considered the
LBE estimation with n = 1 and n = 2 in each case.

For each setup, 1000 iterations were performed. The mean, the
standard deviation and the mean square error of each estimator were
estimated over 1000 iterations.

Table 1 displays the means of the five estimators (for each simu-
lated configuration with the different methods). It shows that even
if all the estimators are supposed to be conservatively biased, BUM
and SPLOSH procedures dramatically underestimate π0 in most of
the simulated configurations. As an example, under configuration (b)

and with π0 = 80% and m = 500, the estimates mean for SPLOSH
and BUM procedures are π̂0 = 55% and π̂0 = 71%. For a few
cases, the estimates mean for QVALUE is less than π0, particularly
for a small number of genes and high value of π0. Nevertheless, the
greatest underestimation of QVALUE estimator is only of 3.8% [for
π0 = 80%, m = 100 and configuration (c)]. The proposed estimator
with n = 1 provides an upper bound for π0 in all the cases. For n = 2,
the mean of π̂0 over 1000 simulations is less than π0 with a small dif-
ference (<3×10−3) in only six cases, which can be explained by the

variability of the estimates mean. The estimations provided by LBE
are greater than those provided by QVALUE in all cases except one.
However, the difference is not >8.7% for n = 1 and 4.8% for n = 2.

In contrast, Table 2 which displays the standard error estimation for
each method, shows that the standard error of the proposed estimator
for n = 1 is always less than the standard error of QVALUE (the
least difference is 1.8%). As expected, the proposed estimator’s mean
decreases with n (in almost all cases) and variance increases in all
cases with n. However, for n = 2, there are only two cases for which
the proposed estimator standard error is greater than QVALUE’s
standard error.

The estimated standard errors for LBE with n = 1 and n = 2 are
less than the upper bounds calculated from (7) for the standard error.
Indeed, for m = 100, 500 and 2000 the calculated values are 0.1,
0.045, 0.022 (for n = 1) and 0.224, 0.1, 0.05 (for n = 2).

Table 3 presents the mean square error for each estimator. Com-
pared to QVALUE, Table 3 shows that for m = 100 and m = 500,
the proposed estimator with n = 1 has the lowest mean square error
in 16 cases out of 18, and for m = 2000, the proposed estimator with
n = 2 has the lowest mean square error in 6 cases out of 9. For 6 and
5 cases out of 27, SPLOSH and BUM have the lowest mean square
error over the five estimators, respectively. However, it is quite diffi-
cult to interpret these results since it has been previously shown that
these latter estimators tend frequently to underestimate π0.

As an example, Figure 1 presents the histogram of the different
estimators for the four methods in one case [m = 2000, configuration
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Fig. 1. Estimates distribution for QVALUE, BUM, SPLOSH and LBE with n = 1 and n = 2 in the case: m = 2000, configuration (c) and π0 = 0.8.

(c), and π0 = 0.8]. It illustrates that the proposed estimator seems
to be normally distributed in finite samples, which appears to be
roughly true for QVALUE, but not for BUM and SPLOSH. The
graphic diagram also illustrates that the variance of QVALUE is
higher than the variance of the proposed estimator, and that BUM
and SPLOSH, in this case, underestimate π0.

Concerning QVALUE and LBE, simulation results have shown
that the upper bound for π0 estimated by both methods is closer to
the true value as π0 is increasing and there is a large overlap between
the distributions under the null and alternative hypothesis. This is not
surprising, since from (1) and (4), the bias is depending on π0 and
the distribution of the P -values under the alternative hypothesis.

It is worth noting that for practical use, investigator would probably
truncate the estimator at one. However, simulations results (data not
shown) have shown that if n is chosen according to the proposed rule,
truncating or not the estimator provides very close results.

6 EXAMPLES
Our proposed estimator together with QVALUE, BUM and SPLOSH
have been applied to the publicly available datasets from the breast
study conducted by Hedenfalk et al. (2001), the leukemia study con-
ducted by Golub et al. (1999) and the apolipoprotein AI (Apo AI)
experiment conducted by Callow et al. (2000).

The aim of the study of Hedenfalk et al. (2001) was to exam-
ine breast cancer tissues from patients with BRCA1–BRCA2-related

cancer and cases of sporadic breast cancer to determine global gene
expression patterns in the different classes of tumors. The initial
dataset consists of 3226 genes expression ratios corresponding to the
fluorescent intensities from a tumor sample divided by those from
a common reference sample. For each gene, a log-expression ratio
was available. In this paper, we focus on the comparison of BRCA1
and BRCA2 with a subset of 3030 genes for which log-ratio values
>0.1 and <10 and the data were normalized following a classical
analysis of variance model [same as in Broët et al. (2004)].

The aim of the study of Golub et al. (1999) was to identify the dif-
ferentially expressed genes between acute myeloid leukemia (AML)
and acute lymphoblastic leukemia (ALL). The expression levels of
6817 genes were measured using Affymetrix high-density oligo-
nucleotide chips. Data were pre-processed as described in Dudoit
et al. (2002), leading to the analysis of 3051 genes.

The aim of the study of Callow et al. (2000) was to identify genes
with altered expression in the livers of apo AI knock-out mice com-
pared to inbred control mice. The considered dataset consists of 6384
genes expression values corresponding to the log of the fluorescent
intensities from a mice sample divided by those from a common ref-
erence sample. We excluded genes having at least one fluorescent
intensity equal to zero so that 6226 genes were retained and the data
were standardized within arrays.

For each dataset, P -values were calculated for each gene from a
two-sample t-test. Then, we applied the methods QVALUE, BUM,
SPLOSH and LBE to these sets of P -values in order to estimate π0.
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The estimates obtained for π0 by QVALUE, BUM, SPLOSH and
LBE (with n = 2, that corresponds for the three datasets to a
threshold l = 0.052 for the estimator’s variance) are as follows. For
the Hedenfalk et al. dataset: 0.669, 0.586, 0.622 and 0.688, respect-
ively; for the Golub et al. dataset: 0.496, 0.453, 0.524 and 0.525,
respectively; and for the Callow et al. dataset 0.901, 0.837, 0.830
and 0.895, respectively.

For each dataset, LBE and QVALUE estimates are very close,
which is not surprising when looking at simulation results presented
in the previous section. For the two first datasets, QVALUE estimate
is lower than the LBE estimate, but for the third dataset, LBE estimate
is lower.

As compared to QVALUE, we can obtain upper bounds for the
variances, which are 1.65 × 10−3, 1.64 × 10−3 and 8.03 × 10−3 for
the Hedenfalk et al. dataset, the Golub et al. dataset and the Callow
et al. dataset, respectively. These variances correspond to standard
errors of 4.06, 4.05 and 2.83%, respectively.

As seen in Storey and Tibshirani (2003), FDR(t) is estim-
ated by (π̂0mt/#{pi ≤ t}). When selecting all genes so that the
FDR is <10%, for the three experiments, QVALUE leads to select
290, 1206 and 9 genes, respectively, and our proposed method
leads to select 282, 1187 and 9 genes, respectively. BUM and
SPLOSH procedures generally led to select larger numbers of
genes but as shown by the simulation study, these procedures led
to underestimate π0 in many cases and the true FDR may be
quite >10%.

7 DISCUSSION
In this paper, we propose a novel procedure for estimating the FDR
that proceeds, as QVALUE, BUM and SPLOSH, from the marginal
distribution of the P -values. For all these procedures, a key quant-
ity is the probability for a gene of being unmodified. Estimating
this latter quantity without making assumptions on the distribu-
tion of modified genes leads to a conservatively biased estimator of
the FDR.

In contrast to QVALUE, BUM and SPLOSH that proceed from
an estimate of the marginal density evaluated at one with complex
procedures, our proposed estimators are simply obtained from the
expectation of the transformed P -values. Moreover, we provide res-
ults on their asymptotic distribution under the assumption that the
P -values are independent. From these estimators, FDR and q-values
are easy to obtain.

In order to select one particular estimator among the proposed
family, the following guidelines may be suggested. According to
the experimental setup and a threshold l = 0.052 for the variance
upper bound of the estimator, n = 1 for 2 ≤ m < 2000, n = 2 for
2000 ≤ m < 7500 and n = 3 for m ≥ 7500. However, this threshold
l is arbitrary and should be chosen according to the accuracy
needed.

As seen in the simulation study, BUM and SPLOSH procedures
underestimate π0 in most of the cases, leading to an anticonservat-
ively biased estimator of the FDR. Simulations study has shown that
LBE and QVALUE expectations are close, the latter one providing
the less biased estimator of π0. However, our proposed estimator
has the smallest variance, so that the risk to underestimate π0 is
smaller with LBE than with QVALUE. Regarding the bias and vari-
ance trade-off, the mean square error of the proposed estimator
is the smallest in most of the cases. Applying the four methods

on a real dataset, QVALUE and LBE have provided very close
results, which is in agreement with the simulation results. BUM
and SPLOSH have led to select a greater number of genes, but
these results have to be taken cautiously when looking at simulation
results.

Although the proposed method is dedicated to the FDR, the esti-
mate of π0 can be used with other criteria such as the local FDR
(Efron et al., 2001).

In conclusion, the proposed method for estimating an upper
bound of π0 appears to be very useful for calculating the FDR
and should be recommended for its nice properties and its
simplicity.
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8 APPENDIX

8.1 Proof of E(π̂0) ≤ 1

Assuming that f , the marginal pdf is non-increasing and f0 = 1[0,1],
F , the marginal cdf and F0, then the conditional cdf under the null
hypothesis, are such as F > F0. Then,




E(P ) = 1 −
∫ 1

0
F(x)dx

E0(P ) = 1 −
∫ 1

0
F0(x)dx




⇒ E(P ) ≤ E0(P ) ⇒ E(π̂0) = 2E(P ) ≤ 2E0(P ) = 1.
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8.2 Proof of theorem
The proof of the theorem follows the lemma:

Lemma. Let f0 and f1 two non-increasing probability density
function of the random variable P defined on [0, 1] (denote f0 the one
such as limx→1

f1
f0

(x) ≤ 1) and let ϕ a continuous function defined on
[0, 1] such as (i) limx→1 ϕ(x) = +∞ and (ii) limx→0 ϕ(x) < +∞.

Then, E1[ϕ(P )] − E0[ϕ(P )] ≤ E1(P ) − E0(P ).

Proof of the lemma

(1) ∀a ∈ [0, 1],
{E1[ϕ(P )] − E0[ϕ(P )]} − {E1(P ) − E0(P )}

=
∫ 1

0
(ϕ(x) − x)(f1 − f0)(x)dx

=
∫ a

0
(ϕ(x) − x)(f1 − f0)(x)dx

+
∫ 1

a

(ϕ(x) − x)(f1 − f0)(x)dx

(2)
f0 and f1 pdf

⇒
∫ 1

0
(f1 − f0)(x)dx = 0

⇒ ∀a ∈ [0, 1],

×
∫ a

0
(f1 − f0)(x)dx = −

∫ 1

a

(f1 − f0)(x)dx

(3)
lim
x→1

[
f1

f0
(x)

]
≤ 1

⇒ ∃a∗ ∈ [0, 1]|∀x ∈ [a∗, 1], (f1 − f0)(x) ≤ 0

⇒
∫ a∗

0
[ϕ(x) − x](f1 − f0)(x)dx

≤ sup
x∈[0,a∗]

[ϕ(x) − x]
∫ a∗

0
(f1 − f0)(x)dx

×
∫ 1

a∗
[ϕ(x) − x](f1 − f0)(x)dx

≤ inf
x∈[a∗ ,1][ϕ(x) − x]

∫ 1

a∗
(f1 − f0)(x)dx

⇒
∫ a∗

0
[ϕ(x) − x](f1 − f0)(x) dx

+
∫ 1

a∗
[ϕ(x) − x](f1 − f0)(x)dx

≤
[

sup
x∈[0,a∗]

[ϕ(x) − x] − inf
x∈[a∗ ,1][ϕ(x) − x]

]

×
∫ a∗

0
(f1 − f0)(x)dx

(4)
{

lim
x→0

ϕ(x) < +∞ [condition (ii)]
ϕ continuous

}

⇒ ∀a ∈ [0, 1], ϕ(a) − a < +∞

(5) Let A = sup
x∈[0,a∗]

[ϕ(x) − x].

lim
x→1

ϕ(x) = +∞ [condition (i)]

⇒ lim
x→1

ϕ(x) − x = +∞

⇔ ∀B > 0, ∃η > 0|∀x ∈ [0, 1[,
{1 − x < η ⇒ ϕ(x) − x > B}

⇒ ∃a∗∗ > a∗|∀x ∈ [0, 1[,
{x > a∗∗ ⇒ ϕ(x) − x > A}

⇒ sup
x∈[0,a∗∗]

[ϕ(x) − x] ≤ inf
x∈[a∗∗ ,1][ϕ(x) − x]

⇒
[

sup
x∈[0,a∗∗]

(ϕ(x) − x)− inf
x∈[a∗∗ ,1](ϕ(x)−x)

]
≤ 0

⇒
[

sup
x∈[0,a∗∗]

(ϕ(x) − x) − inf
x∈[a∗∗ ,1](ϕ(x) − x)

]

×
∫ a∗∗

0
(f1 − f0)(x)dx ≤ 0




since a∗∗ > a∗

⇒
∫ 1

a∗∗
(f1−f0)(x)dx ≤ 0

⇒
∫ a∗∗

0
(f1 − f0)(x)dx ≥ 0

⇒ {E1[ϕ(P )] − E0[ϕ(P )]} − {E1(P ) − E0(P )} ≤ 0
⇒ E1[ϕ(P )] − E0[ϕ(P )] ≤ E1(P ) − E0(P )




Proof of the Theorem

(1) Note: As ϕ is convex (iii), following the Jensen inequality:
E0[ϕ(P )] ≥ ϕ[E0(P )]

(2) From the lemma:

E1[ϕ(P )] − E0[ϕ(P )] ≤ E1(P ) − E0(P )

Then:
E1[ϕ(P )]
E0[ϕ(P )] − 1 ≤ E1(P ) − E0(P )

E0[ϕ(P )]
⇒E1[ϕ(P )]

E0[ϕ(P )] − 1 ≤ E1(P ) − E0(P )

ϕ[E0(P )] [from (1)]

⇒E1[ϕ(P )]
E0[ϕ(P )] − 1 ≤ E1(P ) − E0(P )

E0(P )

[since ϕ[E0(P )] ≥ E0(P ) (iv)]

⇒E1[ϕ(P )]
E0[ϕ(P )] − 1 ≤ E1(P )

E0(P )
− 1

⇒E1[ϕ(P )]
E0[ϕ(P )] ≤ E1(P )

E0(P )
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8.3 Proof of ∀n ∈ N, E1(ϕ(P )n+1)
E0(ϕ(P )n+1)

≤ E1(ϕ(P )n)
E0(ϕ(P )n)

[with ϕ(P ) = −(1 − P)]
Following the same argumentation as previously, the following
variant of the theorem can easily be shown:

Theorem. Let g0 and g1 two non-increasing pdf of
the random variable Z defined on [0, +∞] [denote g0

the one such as limx→+∞ g1
g0

(x) ≤ 1], and let ψ a
real function defined on [0, +∞] verifying the following
conditions:

(i) limx→+∞ ψ(x) − x = +∞
(ii) limx→0 ψ(x) < +∞

(iii) ψ is convex

(iv) ψ[E0(Z)] ≥ E0(Z)

Then:

E1[ψ(Z)]
E0[ψ(Z)] ≤ E1(Z)

E0(Z)
.

Denote g0 and g1 the conditional pdf of the random vari-
able Z = ϕ(P )n under the null hypothesis and under
the alternative hypothesis, respectively. limx→∞ g1

g0
(x) ≤ 1.

Indeed:

lim
x→+∞

g1

g0
(x) = lim

x→+∞
f1(1 − e−x1/n

) × e−x1/n

e−x1/n

= lim
x→+∞ f1(1 − e−x1/n

)

= lim
y→1

f1(y) with y = 1 − e−x1/n

≤ 1

Let ψ : [0, +∞] → R such as ψ(Z) = Z(n+1)/n.

(i) limx→+∞ ψ(x) − x = limx→+∞ x(n+1)/n − x = +∞.

(ii) ψ(0) = 0 ⇒ limx→0 ψ(x) < +∞
(iii) ψ ′′(x) = [(n + 1)/n2]x(1−n)/n ≥ 0 ⇒ ψ is convex

(iv) E0(Z) = n! ≥ 1 ⇒ ψ[E0(Z)] = E0(Z)(n+1)/n ≥ E0(Z)

(Appendix 4)

Then, following the previous theorem:

E1[ψ(Z)]
E0[ψ(Z)] ≤ E1(Z)

E0(Z)

E1[ϕ(P )n+1]
E0[ϕ(P )n+1] ≤ E1[ϕ(P )n]

E0[ϕ(P )n]
8.4 Proof of ϕ(P ) ∼ exp(1) ⇒ E0[ϕ(P )n] = n!
Let X ∼ exp(1)

The equality E0[ϕ(P )n] = n! is obviously true for n = 1 and
n = 2:

E(X) = 1!
E(X2) = 2!

Lets assume that E(Xn) = n! and lets show that E(Xn+1) =
(n + 1)!:

E(Xn+1) =
∫ +∞

0
xn+1e−xdx

= [−xn+1e−x]+∞
0 + (n + 1)

∫ +∞

0
xne−xdx

= (n + 1)E(Xn)

= (n + 1)!
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