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Abstract

When evaluating the performance of a stochastic opti-
mizer it is sometimes desirable to express peformance in
terms of the quality attained in a certain fraction of sample
runs. For example, the sample median quality is the best es-
timator of what one would expect to achieve in 50% of runs,
and similarly for other quantiles. In multiobjective opti-
mization, the notion still applies but the outcome of a run is
measured not as a scalar (i.e. the cost of the best solution),
but as an attainment surface in k-dimensional space (where
k is the number of objectives). In this paper we report an
algorithm that can be conveniently used to plot summary
attainment surfaces in any number of dimensions (though
it is particularly suited for three). A summary attainment
surface is defined as the union of all tightest goals that have
been attained (independently) in precisely s of the runs of a
sample of n runs, for any s € 1..n, and for any k. We also
discuss the computational complexity of the algorithm and
give some examples of its use. C code for the algorithm is
available from the author.

1 Introduction

Plots visualizing approximation sets obtained from runs
of multiobjective optimizers are useful for a number of rea-
sons:

1. Many performance indicators in multiobjective opti-
mization are not always capable of discerning order re-
lations between the approximation sets of even a single
pair of optimization runs [4].

2. Decision makers may have preferences towards certain
regions of or shapes of Pareto front, not generally (or
easily) expressible before optimization, but that are ul-
timately used to judge the quality of the approxima-
tions sets.

3. Some performance indicators do not adequately ex-
press the amount by which one approximation set
should be judged better than another.

4. Looking at approximation set shape can provide in-
sight into the strengths and weaknesses of an opti-
mizer, or provide information about how it is working.

5. Visualization methods can provide a ‘sanity check’ to
validate any performance indicators being used.

6. When the true Pareto front is known, seeing the dis-
tance away from it and coverage along it achieved can
provide a supplement to any performance indicators
used.

For these reasons, it is still (and will probably remain) com-
mon practice to supplement the use of performance indica-
tors with plots of approximation sets.

However, when running one or more algorithms sev-
eral times, plots of approximation sets, showing all points,
quickly become confusing and can even be misleading. In
particular, it is difficult to separate out individual approxi-
mation sets (i.e. from different runs of the algorithm(s) ) and
to understand clearly the distribution of the location and ex-
tent of the different approximation sets over multiple runs.
This is particularly so if performance differences are small
and if, say, 50 runs of two algorithms are to be plotted.

In this paper we present a method that builds on the sem-
inal work of Fonseca and Fleming [1] on attainment sur-
faces, a means of more clearly visualizing one or more ap-
proximation sets. In that article, summary or quantile at-
tainment surfaces were conceptually defined as the union of
all the ‘tightest goals’ attained in a fraction of at least s/n
of the approximation sets (or algorithm runs). Our contribu-
tion is an algorithm that can be conveniently used to com-
pute approximate attainment surfaces for plotting in any
number of objectives. The algorithm follows very closely
one given in [3], which was used to generate points weakly
dominated by an approximation set. Our algorithm takes n
approximation sets, and a parameter s € 1..n as input and
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Figure 1. Interpolating an approximation set
is easy to do but is ‘dangerous’ and incorrect

generates points (distributed on a grid), and lying on sum-
mary attainment surface s.

The rest of the paper is organized as follows. Section 2
revisits the concept of an attainment surface and demon-
strates its advantages by comparing some 2-d plots of points
from runs of an optimizer with plots of the associated at-
tainment surfaces. Section 3 goes on to recall the definition
of summary attainment surfaces and how these can be com-
puted from sampling lines. Section 4 constitutes the original
contribution of this paper. It gives a the new algorithm for
computing grids of points on a summary attainment surface
and derives the computational complexity of this algorithm.
Section 5 gives more examples of the use of the method, in-
cluding figures of 3-d attainment surfaces, and discusses the
correct interpretation of these plots. Section 6 concludes.

2 Attainment surfaces

Much of the description given in the following two sec-
tions follows closely the presentation in the original at-
tainment surfaces paper of [1], and is included here as a
‘memory-refresher’.

The output of a single run of a multiobjective optimizer
— an approximation set — on a two-objective minimization
problem, is plotted in Fig. 1. It is tempting to interpolate the
points obtained with a smooth curve, as shown in the plot,
and conclude that this should be the shape of the underly-
ing true Pareto front. Or, if not this, then to conclude that
the curve is what has been attained in this particular run of
the optimizer. Of course, everyone familiar with Pareto op-
timization should be clear that neither of these is a safe or
correct interpretation of the approximation set. However,
although it is not correct to interpolate the points with a
smooth line, one can replace the points by a boundary, and
usefully so; it is in fact possible to ‘draw a boundary in the
objective space separating those points that are dominated
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Figure 2. An attainment surface is the family
of tightest goals that has been attained by the
approximation set defining it

by or equal to at least one of the data points, from those that
no data point dominates or equals’ [1]. Such a boundary
is called an attainment surface, and one is shown in Fig. 2.
This boundary is ‘the family of tightest goals known to be
attainable as a result of the optimization run’ [1].

Importantly, by exchanging the plot of the (approxima-
tion set) points only, with the plot of the attainment sur-
face, it is much easier to identify ‘gaps’ in the distribution
of points — thus the attainment surface emphasises the dis-
tribution achieved, as well as indicating the quality of the
individual points.

Another advantage of attainment surfaces over simply
plotting points comes when we want to display the outcome
of multiple runs of one or more optimizers. Usually, plots
showing several runs are confusing and misleading because,
once again, the eye is tempted to interpolate between points,
or worse, just finds it impossible to pick out the points of
one run from those of another. For illustration, see Fig. 3.
Plotting the same data using attainment surfaces again em-
phasizes gaps in the different runs of the optimizer(s) more
easily, making it much easier to interpret results correctly,
as shown in Fig. 4. (It is true that both Fig. 3 and Fig. 4
would benefit from colour, but the attainment surfaces plot
would benefit the more).

Moreover, plots of multiple attainment surfaces yield
two further important boundaries. There is a region above
and to the right of all attainment surfaces (region 1 in
Fig. 4); the boundary of this region (which is generally
made up of different sections of the different attainment sur-
faces) is the set of goal vectors that has been attained in ev-
ery single run of the optimizer(s). For a single optimizer,
each point on this surface (independently) is therefore an
estimate of a goal that is attained in the worst case (i.e. it
visualizes worst-case performance). Similarly, there is a re-
gion below and to the left of all surfaces (region 2 in Fig. 4),
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Figure 3. Plotting multiple approximation sets
can be confusing, even when there are only a
few points per set, and few sets
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Figure 4. Plotting multiple attainment sur-
faces (rather than the approximation sets’
points) makes it easier to interpret results
properly

which is the region not attained in any run. The boundary
thus represents what has been just attained by the combina-
tion of all the runs. In between these two boundaries is a
region that represents what has been attained in some runs
but not in others. The idea behind summary atainment sur-
faces (the concept was introduced in [1] but not referred to
by this name) is to divide this region further into regions
that were attained only in certain fractions of the runs. This
is explained in the next section.

3 Summary attainment surfaces from diago-
nal sampling lines

Consider the attainment surfaces plot in Fig. 5. Two
diagonal lines cutting through the attainment surfaces are
shown. Consider the lower sampling line: it intersects the

30

25 b

isE ‘ A= 8
10 ﬁ 8
| L
0 ‘ ‘ ‘

0 5 10 15 20 25 30
minimize f1(x)

minimize f2(x)

Figure 5. Diagonal lines used to sample the
attainment surfaces locate the position of
the jth summary attainment surface at differ-
ent places. The circles indicate two points
through which the third summary attainment
surface passes

five attainment surfaces at five distinct points, and these
points are obviously ordered along the sampling line. It is
thus simple to pick out intersection one, two, ..., or s on
this sampling line, counting from the lower left end. Inter-
section s on the sampling line is a goal (vector) that was
achieved in precisely s of the runs. In the figure the third
intersection on this line is circled. For the upper sampling
line, two pairs of intersections coincide but the third inter-
section is, nevertheless, at the circled point. So, the two
sample lines serve to define two points through which the
third summary attainment surface passes.

By using very many diagonal sampling lines, we could
build up a set of points that would approximately represent
the union of all goals achieved (independently) in precisely
s of the runs. We could join these goal vectors up using an-
other attainment surface, and this would summarise some
aspect of the distribution of approximation sets — it would
be a summary attainment surface.! If we had, say 51 runs of
an optimizer and we showed, say, the first, the twenty-sixth,
and the fifty-first summary attainment surfaces, this would
visualize the distribution of goals achieved more clearly
than plotting all 51 of the result surfaces. An important
reason why summary attainment surface plots are easier to
interpret than plots of many result surfaces is that summary
surfaces never cross each other. In other words, the sum-
mary attainment surface s weakly dominates summary at-
tainment surfaces s + 1, s + 2, etc., for all s. Five summary

LAt this point, we wish to distinguish a summary attainment surface,
which summarises a number of approximation sets, from an attainment
surface, which is just the surface defined by a single approximation set.
To make this distinction clearer, we will use the term ‘result attainment
surface’ or the shorter ‘result surface’ for the latter. For the former we will
also sometimes use a shorter form, i.e. ‘summary surface’
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Figure 6. Five summary attainment surfaces.
Notice how the surfaces never cross ea-
chother

attainment surfaces for the five surfaces of Fig. 5 are show
in Fig. 6.

Unfortunately, there is a problem with the diagonal sam-
pling line method of computing approximate summary at-
tainment surfaces: in three or more dimensions (objectives),
it is difficult to arrange the sampling lines so that they inter-
sect the surfaces in a ‘nice’ way that is informative to the
eye. This is because although evenly spaced diagonal lines
can be defined, the intersections along the diagonals will not
be evenly spaced in any dimension. Thus the eye has no ba-
sis from which to reconstruct the three or more dimensions.

Recently, however, [3] proposed another method for
finding points weakly dominated by an approximation set,
which uses axis-aligned lines (in effect). This means that a
uniform, grid-like sampling of the surface (in any number
of dimensions) can be easily obtained. We make use of this
method in our algorithm, described next.

4 Summary attainment surfaces from a grid
of points

4.1 The algorithm

The figure, Algorithm 1, gives the pseudocode of our al-
gorithm for computing and plotting points on any of the n
possible summary attainment surfaces, defined by an input
of n approximation sets. Here we are assuming minimiza-
tion of all objectives and the approximation sets 1..n are all
internally nondominated.

The algorithm works by considering one objective j at a
time. For each approximation set, independently, the points
are sorted in ascending order according to their jth objec-
tive values. Lines on a grid of resolution r in the remaining
k — 1 dimensions are then projected onto each of the results

Algorithm 1 Compute points on summary attainment sur-
face s with resolution . (Components of an objective vec-
tor are denoted using superscript)

1: procedure PLOT_ATTAINMENT(set; ..sety,, S, T)

2: read in approximation sets 1..n of dimension & ob-

jectives

3 for each objective j € 1..k do

4 for each approximation set m € 1..n do

5: sort points in ascending order on objective j
6: end for
7
8
9

for ¢ in 1 to r*~1) do

for each objective i € 1.k, # j do
: q* < point_on_grid(t)*
10: end for

11: weak_dom_count < 0

12: for each approximation set m € 1..n do

13: dominated < false

14: for next point p in sorted approximation
set m do

15: ¢ —pf

16: if p dominates ¢ then

17: dominated < true

18: break from for loop

19: end if

20: end for

21: if dominated = true then

22: increment weak_dom_count

23: intersection,, +— p’

24: end if

25: end for

26: sort intersections in ascending order

27: if weak_dom_count > s then

28: ¢’ « intersection,

29: print_vector(q)

30: end if

31: end for

32: end for

33: end procedure

surfaces. (This is visualized for a 3-objective case in Fig-
ure 7 with resolution » = 10, although intersections with
only one surface are shown for the sake of clarity.) The in-
tersections on each line are sorted and, if there are at least
s of them, then intersection s in the sorted list is the re-
quired one on summary surface s. Lines in each of the k
objective directions are used to build up the surfaces. Note:
the specification of the grid’s extent and resolution is done
by the user; the point_on_grid(¢) function then generates the
tth point, ¢ € 1..r¥=1, for projection onto the attainment
surface.
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Figure 7. Axis-aligned lines on an even grid in
k — 1 dimensions being projected onto a sin-
gle approximation set. The intersections are
shown by the triangular points. Notice how
the eye easily ‘sees’ the three dimensional
shape of the underlying surface

4.2 Computational complexity

For fixed resolution r, which sets the number of sam-
pling sites in each dimension, the above algorithm is clearly
exponential in k, since the total number of sampling ‘lines’
grows as r*~1. However, importantly, for a fixed total num-
ber of sampling lines (which is what determines how many
points are on the attainment surface), the complexity of the
algorithm is polynomial in n, in the size of the approxima-
tion sets, and in k. This polynomial time complexity means
that the algorithm runs in just a few seconds for even 50
approximation sets of up to a 1000 points, and three ob-
jectives, even when the resolution is high (see figures 9
and 10). This contrasts with an exact computation of all
the precise points where the attainment surface changes, a
calculation that is exponential in the approximation set size
when k is general, and which takes of the order of hours
or days for similar inputs (the author has tested a simple
implementation of such an algorithm).

5 Summary attainment surface plots in prac-
tice

In this section, we give two 3-d plots of summary attain-
ment surfaces, derived from running different algorithms
on a test function. We also show two futher higher resolu-
tion 3-d plots generated by our code on a mixed minimiza-
tion/maximization problem.

5.1 Real cases

Much of the time, attainment surface plots will be used to
visually compare the performance of two optimizers, after
several runs of each have been performed. In this case, the
best (1st) summary attainment surface for each algorithm
is not especially informative, unless one is likely to run the
optimizer multiple times in the final application. This is
because the 1st summary attainment surface merely visu-
alizes the goal vectors attained by the combination of all
runs. More frequently, it is more useful to get some feel for
the median and perhaps worst case performance of the opti-
mizer, in terms of what goals are attained. Plotting the me-
dian and worst summary surface for two algorithms gives
just four lines, and this is often easy to interpret on a single
2-d plot (for a 2-objective problem).

For three-objective problems, it is more difficult to show
plots that are informative in a static, monochrome envrion-
ment. However, plotting the same attainment surface from
two different algorithms, side by side, on the same axes
scales can do the trick, as shown in Figure 8.

5.2 Mixed minimization / maximization plots

The code we provide allows one to specify whether each
objective is to be minimized or maximized. This allows
plotting of mixed minimization / maximization attainment
surfaces on their original axes. Two such attainment surface
plots are shown in Figures 9 and 10. A higher resolution has
been@onidasionn in Figure 8.

An algorithm for computing an even, grid-based sam-
pling of a summary attainment surface, for general dimen-
sion k, was presented. The method is convenient for visual-
izing performance differences between algorithms because
it is quite cheap to compute compared to exact methods.
The fact that the intersections are derived from a grid means
that the eye easily interprets the plots, as demonstrated.
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