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In model selection, usually a ‘‘best’’ predictor is chosen from a collec-
� Ž .4 Ž .tion m ?, s of predictors where m ?, s is the minimum least-squaresˆ ˆ

predictor in a collection UU of predictors. Here s is a complexity parame-s
ter; that is, the smaller s, the lower dimensionalrsmoother the models
in UU .s

� Ž .4If LL is the data used to derive the sequence m ?, s , the procedure isˆ
� Ž .4called unstable if a small change in LL can cause large changes in m ?, s .ˆ

� Ž .4With a crystal ball, one could pick the predictor in m ?, s havingˆ
minimum prediction error. Without prescience, one uses test sets, cross-
validation and so forth. The difference in prediction error between the
crystal ball selection and the statistician’s choice we call predictive loss.
For an unstable procedure the predictive loss is large.

This is shown by some analytics in a simple case and by simulation
results in a more complex comparison of four different linear regression
methods. Unstable procedures can be stabilized by perturbing the data,

� XŽ .4getting a new predictor sequence m ?, s and then averaging over manyˆ
such predictor sequences.

1. Introduction.

1.1. The prediction problem. In the ‘‘supervised’’ prediction problem, one
has a ‘‘learning’’ set of data consisting of measurements on N cases, where
each case consists of a response variable y and a prediction vector x sn n
Ž .x , . . . , x taking its value in x . That is, this learning set LL consists of1n M n

�Ž . 4data y , x , n s 1, . . . , N . We assume here that the response variable isn n
numerical. For notation, we use lower case letters for vectors with compo-

Ž .nents indexed by case number n s 1, . . . , N, i.e., y s y , y , . . . , y . Lower1 2 N
Ž .case bold letters denote vectors indexed by dimension, i.e., x s x , . . . , x ,n 1 Mn n

and the inner product of two such vectors u, v is written as uv.
Ž .The goal of prediction is to use LL to construct a function m x, LL , defined

Ž .for x in x such that m ?, LL gives accurate predictions of future responses.
�Ž X X .More specifically, suppose that we have a large test set TT s y , x , n sn n

X4 Ž .1, . . . , N sampled in some sense which we will make more specific later
Ž X .from the same distribution as LL . Then we want m x , LL to be an accuraten

X Ž X X .estimate of y for all y , x g TT. Assuming squared error loss, we want then n n
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prediction error

1 2X XPE m , y y m x , LLŽ . Ž .Ž .ÝX n nN n

to be small.
Ž .The standard approach to the construction of a predictor m x, LL goes like

� Ž .4this: a large class of functions UU s m x is defined. For instance, if all
coordinates of x are numerical, UU could be the set of all linear functions of x.
Or UU could be some specified set of nonlinear functions. The usual next step

Ž .is to select as the prediction function m x that m g UU which minimizes theˆ
prediction error on the learning set. That is, take m to be the minimizer inˆ
UU of

225 5RSS m s y y m s y y m x .Ž . Ž .Ž .Ý n n
n

The difficulties in this approach are well known. If UU is high dimensional,
then m ‘‘overfits’’ the data. It will have low mean-squared prediction error onˆ

Ž .LL low RSS but higher prediction error on test sets. On the other hand, if UU
is too low dimensional, it may not contain a good fit to the data. That is, it
‘‘underfits’’ the data.

1.2. An example. As a simple example, take LL to consist of 20 pairs
Ž . w xy , x , n s 1, . . . , 20, where the x are iid uniform on y1, q1 andn n n

y s 2 x 2 q « ,n n n

� 4 Ž .where the « are N 0, 1 . Suppose UU is the class of all tenth-degreen
w x Žpolynomials on y1, 1 . The lowest RSS polynomial will give a good fit small

.RSS to the points in LL . But it is wriggly between the points in LL and at the
ends of the interval. It will have high prediction error on future data drawn
from the same distribution as LL .

The tenth-degree polynomial predictor ‘‘overfits’’ the data. In statistical
terms it has too large a variance}too many parameters are being estimated.
Put another way, the space UU is too large.

Now take UU to be the class of all first-degree polynomials. Then the
least-squares minimizer in UU is linear and very smooth. But it gives a poor
approximation to the underlying parabolic relation between y and x. In this
case, m ‘‘underfits’’ the data. Variance is low but bias is high. The space UU isˆ
too small.

Here is a way to get a compromise between overfitting and underfitting.
Take UU to be the space of all tenth-degree polynomials. Let UU ; UU be thek
space of all polynomials of degree less than or equal to k, where k s
0, 1, 2, . . . , 10. Note that UU ; UU . For k large, UU contains many wrigglyk kq1 k
functions}as k becomes smaller, the functions in UU become smoother.k

Ž . 5 5 2Let m ?, k be the polynomial in UU that minimizes y y m . Thus, we nowˆ k
Ž . Ž . Ž .have a sequence of predictors m ?, 0 , m ?, 1 , . . . , m ?, 10 which are polynomi-ˆ ˆ ˆ
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als of degree 0, 1, . . . , 10. The problem now is to pick the best of these. Here
are three ways to make this selection:

Ž .1. Knowing how the data was generated, pick m ?, 2 .ˆ
Ž X X .2. Conjure up a test set containing one million pairs y , x , each drawnn n

Ž Ž ..from the same distribution as LL . Use the test set to compute PE m ?, kˆ
and select

kU s arg min PE m ?, k .Ž .Ž .ˆ
k

Call kU the crystal ball best value of k.$
Ž Ž .. Ž Ž ..3. Estimate PE m ?, k by PE m ?, k . For instance, one can use bootstrap orˆ ˆ

Ž Ž ..cross-validation to get estimates of PE m ?, k . Then estimate the best kˆ
as

$
k̂ s arg min PE m ?, k .Ž .Ž .ˆ

k

ˆCall k the fallible estimate.

The question that we explore in this paper is how much accuracy do we
lose by not having a crystal ball, that is, an infinite test set. With a crystal
ball, we select the predictor whose true prediction error is

PE m ?, kU s min PE m ?, k .Ž . Ž .Ž . Ž .ˆ ˆ
k

Without a crystal ball, the selected predictor has prediction error

ˆPE m ?, k .Ž .ˆŽ .
Define the predictive loss PL as

ˆ UPL s PE m ?, k y PE m ?, k .Ž .Ž . Ž .ˆ ˆŽ .
This predictive loss is what we study in this article.

1.3. Regularization procedures. The context for our study of predictive
loss is the sequence of predictors constructed from a regularization procedure.
If we attempt to construct a predictor by defining a large class of functions UU

Ž . 5 5 2and defining m ? to be the minimizer in UU of y y m , then overfitting willˆ
usually result. The currently used methods for compromising between over-
fitting and underfitting are similar to the strategy used in the simple exam-
ple of subsection 1.2, and are referred to as regularization procedures.

DEFINITION 1.1. A regularization procedure consists of defining a se-
quence of subspaces UU ; UU indexed by a real parameter s G 0 such thats

s F sX « UU ; UU X .s s

Ž . 5 5 2 � Ž .4Let m ?, s be the function in UU minimizing y y m . Then m ?, s is calledˆ ˆs
the sequence of regularized predictors.
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Regularization procedures are ubiquitous in prediction methods. Here are
some examples:

Linear regression. Regularization by subset selection:

UU s all linear functions with at most k nonzero coefficients.k

Regularization by ridge:

5 5UU s all linear functions bx such that b F s.s

Ž .Regression trees CART .

UU s all binary trees formed by univariate splits with at most kk

terminal nodes.

Ž .Multivariate splines MARS .

UU s all functions that are sums of at most k products of linear splines.k

Neural nets. Regularization by limiting the hidden layer:

UU s all functions expressible by k or fewer units in the hidden layer.k

Regularization by weight decay:

UU s all functions such that the norm of the weights is bounded by s.s

� Ž .4Given a regularized sequence of predictors m ?, s , the standard proce-ˆ
dure is to try to choose the most accurate in the sequence by forming$

Ž Ž ..estimates PE of the ‘‘true’’ prediction error PE m ?, s . Defineˆ
PE s s PE m ?, s ,Ž . Ž .Ž .ˆ
$ $
PE s s PE m ?, sŽ . Ž .Ž .ˆ

and

sU s arg min PE s ,Ž .
s

$
s s arg min PE s .Ž .ˆ

s

The primary question we study is

How much do we lose by not having a crystal ball? That is, how big is the
predictive loss

PL s PE s y PE sU ?Ž . Ž .ˆ

1.4. Predictive loss, instability and stabilization. Obviously, the size of
the predictive loss is related to how the prediction error is estimated. Poorer
estimates will give larger PL. But what we are interested in is: given the best
possible current methods of PE estimation, how is the predictive loss con-
nected to the structure of the regularization procedure?
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For instance, in linear regression there are two archetypical regularization
procedures}subset selection and ridge. Both generate sequences of regular-
ized predictors and we can try to select the best one in each sequence using
cross-validation estimates of PE. It turns out that the PL for subset regres-
sion is considerably larger than the PL for ridge regression.

The difference between the two regularization procedures that is reflected
in the PL is their relative instability.

Heuristic definition. A regularization procedure is unstable if a small
change in the data LL can make large changes in the regularized sequence
� Ž .4m ?, s, LL .ˆ

Ž .In general see Section 7 :

Subset selection is unstable:
Changing just one data case in LL can cause a large change

Ž .in the minimizer of RSS m over UU .k

Ridge is stable:
Ž .Change LL slightly and the minimizer of RSS m over UU iss

close to the original minimizer.
Many current regularizations are unstable. The list includes CART, MARS
and neural nets. Besides ridge, the only other well-known stable method is
k-nearest-neighbor regression.

Ž .The more unstable the procedure, the noisier PE s is, and the larger the
predictive loss whatever method of PE estimation is used. With unstable
procedures, we are less able to locate the best model, and the size of the
predictive loss may be a substantial fraction of the prediction error.

Ž .Figures 1 and 2 give illustrations of this. Figure 1 consists of PE k plots
for three runs of subset selection on 30-dimensional simulated data where the
subsets are selected by forward stepwise addition. Figure 2 gives the plots of

FIG. 1. PE vs. number of variables for subset selection.
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FIG. 2. PE vs. number of variables for ridge.

Ž .PE k for ridge regression on the same data where k is the equivalent
Ž .dimensionality. See Section 5 for details on how the data was generated.

Ž .The noisy behavior of the PE k values for subset selection makes estimating
the minimum point more difficult than for the smooth ridge values.

There are other consequences of instability. One is that the estimates of
Ž .the prediction error for the selected predictor m ?, s have large negative bias.ˆ ˆ

Another is that ‘‘infinitesimal’’ methods for estimating PE do not work very
Ž .well. An example of the latter is the discovery in Breiman and Spector 1992

that leave-one-out cross-validation is less accurate than leave-many-out in
selecting the best subset dimension.

1.5. Stabilization. Given that instability has undesirable consequences,
what can be done? Unstable procedures can be stabilized! Consider all data

X Ž X. Ž .sets LL such that d LL , LL F d in some unspecified metric d. Define

m ?, s s Av X m ?, s, LL X .Ž . Ž .ˆ ˆST dŽ LL , LL .F d

� Ž .4Then the averaged predictors m ?, s are a more stable sequence withˆST
lower predictive loss and less biased PE estimates.

The implementation of this idea that worked the best among several
Ž . Ž 2 . � 4alternatives see subsection 6.1 is this: generate iid N 0, a noise « andn

let

LL X s y q « , x , n s 1, . . . , N .� 4Ž .n n n

That is, LL is altered into LL X by simply adding noise to each response value
X � Ž X.4y . Using LL , construct the regularized sequence m ?, s, LL . Now repeatn

� 4many times, generating new noise « each time, and definen

m ?, s s Av X m ?, s, LL X .Ž . Ž .ˆ ˆST LL
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2. Organization of the article. Instead of trying to give rigorous defi-
nitions of instability, we proceed by example. Linear regression is used as a
paradigm. Four different regularization methods with various degrees of
instability are studied. The most unstable is subset selection; the most stable
is ridge. The predictive losses for these four methods can be compared
analytically in the X tX s I situation and through simulations in more
realistic settings. Since PE definitions and estimates differ depending on
whether X is considered random or controlled, both situations are studied.
The article is organized as follows:

Section 3 gives definitions of prediction error for data with random X and
with controlled X. The test set, cross-validation and little bootstrap methods
for estimating PE are detailed. The four regression methods are defined.

Section 4. Analytic results are gotten in the X tX s I case for PE estimated
either by test set or by little bootstrap. These illustrate the effects of instabil-
ity as the number of variable increases. The results of stabilization are made
clear.

Section 5. Simulation results are given for the case of controlled X using
more complex X X X designs with PE estimated either by test set or by little
bootstrap. These again illustrate instability effects and the results of stabi-
lization.

Section 6 gives results of a simulation study in the case of random X
where PE is estimated either by test set or by cross-validation. Some perplex-
ing aspects of stabilization are described.

Section 7. We look more closely at cross-validation estimates to see why
leave-one-out cross-validation behaves poorly in selection from an unstable
sequence.

Section 8 compares the performance of the stabilized subset predictors to
the other prediction methods on a spectrum of simulated data.

Section 9 contains concluding remarks. We summarize the various threads
in the preceding sections and give some future research directions.

Appendix gives details of the X tX s I computations, little bootstrap proof
and the tiny bootstrap formula.

Although our main emphasis is on the effects of instability on predictive
loss, some other new ground is covered. The two garotte regression methods
and stabilization promise greater predictive accuracy than either subset
selection on one extreme or ridge on the other. The limitations of ridge

w Ž .xregression are seen. The little bootstrap Breiman 1992 and its infinitesi-
w Ž .xmal version, the tiny bootstrap Breiman 1995 , are extended and strength-

ened as PE estimation methods.
The effects of instability first came up in connection with the study of one

wof the garotte methods compared to subset selection and ridge Breiman
Ž .x1995 . The simulations showed that, although subset selection often had a
crystal ball model with lower PE than the best ridge model, it lost out
because of higher predictive loss. The effort to understand this phenomenon
better resulted in the present work.
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3. Definitions.

3.1. PE definitions. Two definitions of prediction error are common and
� 4useful. Sometimes, the values of x are fixed in a controlled experiment. Ifn

Ž .the responses y are assumed iid selected from a distribution Y x ,n n

2
PE m s E Y x y m x .Ž . Ž . Ž .Ž .Ý n n

n

Ž . U Ž . U U Ž . 2 5 U 5 2If Y x s m x q « , with E« s 0, then PE m s Ns q m y m . Wen n n n
U 5 U 5 2refer to m as the ‘‘true’’ model and to m y m as the model error.

In the situation of random X, the data is assumed iid from Y, X. If the
sample size is N, then the prediction error is

2PE m s N ? E Y y m X .Ž . Ž .Ž .
The N multiplier is used to get the PE measure for random X on the same

U Ž . Ž < .scale as for controlled X. Defining m x s E Y X s x , then
2U2PE m s Ns q N ? E m X y m X ,Ž . Ž . Ž .Ž .

2 Ž Ž < ..2where s s E Y y E Y X . The model error is defined as the second term.

3.2. PE estimates.

3.2.1. Test sets. The simplest way to estimate PE is use of a test set. In
�Ž X X . X4the random X case this is data y , x , n s 1, . . . , N iid from the samen n

distribution as LL and independent of LL . Then

N$ 2X XPE m s y y m x .Ž . Ž .Ž .ÝX n nN n

In the controlled X situation, test sets are generated by replicating the
� 4experiment K times using the same set x of x-values. Let the replicatedn

outcomes at x be yX , . . . , yX . Thenn 1, n K , n

1$ 2XPE m s y y m x .Ž . Ž .Ž .Ý k , n nK k , n

In practice, large test sets are usually not available and other PE estimation
methods are used.

3.2.2. Cross-validation. In the random X situation, cross-validation
reuses the data to get a PE estimate. Let TT ; LL contain N cases andCV

5 5 2LL s LL y TT. Suppose that m is the minimizer of y y m under the con-ˆCV
ŽyTT . 5 5 2straint m g UU . Construct m to be the minimizer of y y m over theˆs s $

Ž . Žcases in LL under the constraint m g UU . Put PE TT s Ý y yCV s Ž y , x .g TT nn nŽyTT .Ž ..2m x . Do this for sets TT , TT , . . . , TT and defineˆ s n 1 2 K

N$ $
PE s s PE TT .Ž . Ž .Ý kK ? NCV k
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� 4The selection of the TT is usually structured so that they cover LL more ork
less evenly. In leave-one-out cross-validation, there are K s N left out sets

Ž .TT , each one consisting of the single case y , x . Another selection isk k k
leave-many-out. Here the sizes of the TT are fixed}usually some fraction ofk
N}and the TT selected at random. Another version of leave-many-out struc-k

� 4 Ž . � 4tures the TT selection so that each y , x appears in exactly L of the TT .k n n k
This is an extension of the V-fold cross-validation used in CART.

3.2.3. Little bootstrap. In the controlled X context, cross-validation is not
appropriate. Write

5 U U 5 2RSS m s m q « y mŽ .
5 U 5 2 U U 5 U 5 2s « q 2 « , m y m q m y m .Ž .

Then
2 5 U 5 2 U UPE m s RSS m q Ns y « y 2 « , m y m .Ž . Ž . Ž .

2 5 U 5 2 Ž U U . Ž .The term Ns y « y 2 « , m has mean 0. If m s m ?, s is the mini-ˆ
5 5 2 Ž . Ž .mizer of y y m , m g UU , with RSS s denoting RSS m , then m is depen-ˆ ˆs

� U4 Ž U .dent on the « and « , m does not usually have mean 0.ˆn
Ž . Ž U .What we would like to do is to find an estimate B s of E « , m and putˆ

$
PE s s RSS s q 2 B s .Ž . Ž . Ž .

Ž . Ž U U . � U4 Ž 2 .Write m ?, s s m ?, m q « , s . Suppose the « are iid N 0, s . Take t ) 0ˆ ˆ n
� 4 Ž 2 2 . � X 4 � 4and generate « as iid N 0, t s . Define new y as y q « , recalculaten n n n

XŽ . � X 4m ?, s using the data y , x and consider the expressionˆ n n

1
X3.1 B s s E « , m ,Ž . Ž . Ž .ˆt «2t

� 4where E denotes expectation over the « only. Then we have the following« n
result.

2'THEOREM 3.1. Suppose there is a UU , such that m g UU m mr 1 q t gs st

UU . Thens t

mU

EB s s e , s ,Ž .t tž /2'1 q t
where

e mU , s s E «U , m .Ž . Ž .ˆ
The proof is given in the Appendix, Section A2. One version was proved in

Ž .Breiman 1992 .
2 2'For subset selection, s s s. For ridge, s s sr 1 q t . In practice, s ist t

2 Ž . � 4estimated from the full-variable OLS as s s RSSr N y M . The « areˆ n
Ž 2 2 .generated from N 0, s t using a random number generator, s taken suchˆ 0

5 5 2that the corresponding s s s, and m is the minimizer in UU of y q « y m .˜t s0
Ž . 2 ŽThen « , m rt is computed. This is repeated a number of times usually 25 is˜
. Ž .enough and the results averaged to give B s .t 0
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w xFor unstable sequences, values of t in the range 0.6, 1.0 seem to work
best. The theorem states that for small t, B is an almost unbiased estimatet

Ž U .of E « , m . But we will see that for unstable sequences, as t ª 0, theˆ
variance of B ª `. If the limit B as t ª 0 exists in some nice way, this limitt t

Ž .is called the tiny bootstrap, denoted by TB s , and is an unbiased estimate of
Ž U . Ž .E « , m . For moderately unstable sequences, TB s may exist, but be soˆ

Ž .noisy that more accurate estimates of PE s are gotten by using B witht$
Ž . Ž . Ž .t ) 0. For nicely stable procedures, using PE s s RSS s q 2TB s gives

accurate estimates.

Ž3.2.4. Others. The literature and popular usage contain other and sim-
.pler methods for PE estimation. For instance, in subset selection, if UUk

consists of all regressions with k or fewer nonzero coefficients, then the CP
estimate

$
2PE k s RSS k q 2s kŽ . Ž . ˆ

is often used in the controlled X case. For random X, the corresponding
estimate is

2k$
PE k s RSS k 1 y .Ž . Ž . ž /N

None of these Akaike-type PE estimates work very well in model selection
where the sample size is moderate compared to the number of variables. See

Ž . Ž .Breiman 1992 and Breiman and Spector 1992 .

3.3. Four linear regression methods.

3.3.1. Best subsets or stepwise. Here UU is the set of all linear m s bx,k
5 5 2where b has at most k nonvanishing coordinates. Minimizing y y m over

UU is called the best subsets method, and may be computationally expensive.k
In our simulations, the suboptimal stepwise forward addition of variables is
used.

5 5 23.3.2. Ridge. Ridge regression minimizes y y bx under the con-
5 5straint b F s. Usually, the x-coordinates are prenormalized, since ridge is

not scale invariant.

ˆ� 43.3.3. Nonnegative garotte. Let b be the full-model OLS coefficients.m
Ž .Take the c , . . . , c to be the nonnegative minimizers of1 M

2

ˆ3.2 y y c b xŽ . Ý Ýn m m m nž /
m

ˆŽ . wunder the constraint Ýc F s. Then let m x, s s Ý c b x Breimanˆm m m m m
Ž .x1995 .
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ˆ� 43.3.4. Garotte. Let b be the full-model OLS coefficients and takem
Ž . Ž . 5 5c , . . . , c to minimize 3.1 under the constraint c F s.1 M

These methods cover an instability range, with subset selection the most
unstable to the very stable ridge procedure.

4. The X t X s I case. The case X tX s I is simple enough to provide
some analytic insights into the instability problem. Assume that

y s bU x q «U ,
U ˆ U� 4 Ž . Ž .where the « are iid N 0, 1 . The OLS coefficients are b s x , y s b qn m m m

� 4 Ž .Z , where the Z are iid N 0, 1 .m m
� 4The best subset of k variables consists of those variables x correspond-m

ˆ< <ing to the k largest values of b . Thus, the family of best subset regressionsm
is given by coefficients of the form

ˆ̂ ˆ ˆ< <4.1 b l s I b G l b .Ž . Ž . Ž .m m m

The ridge coefficients are of the form

b̂mˆ̂4.2 b l s .Ž . Ž .m 1 q l

The nn-garotte coefficients are
q2lˆ̂ ˆ4.3 b l s 1 y bŽ . Ž .m m2ž /b̂m

ˆ̂and the garotte b are

ˆ2bmˆ̂ ˆ4.4 b l s b .Ž . Ž .m m2 2b̂ q lm

ˆThus, all methods perform a shrinkage on the OLS b and are of the form
ˆ̂ ˆŽ . Ž .b l s u b , l . The best subset u is discontinuous. The nn-garotte u ism m
continuous but has discontinuous first partial derivatives. The u ’s for garotte

Ž`. ˆand ridge are C in l, b.
ˆ̂Ž . Ž .The PE m for m s b l x is

2
U ˆ̂PE l s N q b y b lŽ . Ž .

and we put
2

U ˆ̂M E l s b y b l .Ž . Ž .
� U4To simplify further, take M large and the b iid from a distributionm

U ˆŽ . � 4P db . Then the b are also iid andm

2U ˆM E l s b y u b , lŽ . Ž .Ý ž /m m
m

ˆ̂Ž . Ž .is a sum of iid terms. The best crystal ball model in the family m ?, l s b l x
Ž .corresponds to the l that minimizes M E l .
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U ˆ 2Ž . Ž Ž ..Set A l s E b y u b, l so that
'4.5 M E l s M ? A l q M W l .Ž . Ž . Ž . Ž .

Ž . Ž . � Ž .4The MA l term is the dominant deterministic part of M E l . The W l is a
Ž .zero-mean, approximately Gaussian stochastic process with O 1 variance.

Ž .Efforts to locate the minimum of M E l will depend on the smoothness of
Ž . w Ž . Ž`. Ž . xW l . Note: A l is smooth and C in l for all u b, l used.

Ž .In the following subsections we get rates of growth for E PL as a function
of M for the four regression types under study. These rates depend on the PE
estimate used.

Estimating PE using a test set of the same size as LL gives
E PL s O 1 , ridgeŽ . Ž .

s O 1 garotteŽ .
s O 1 nn-garotteŽ .
s O M 1r3 subset selection.Ž .

Using little or tiny bootstrap estimates, we get
E PL s O 1 ridgeŽ . Ž .

s O 1 garotteŽ .
s O M 1r5 nn-garotteŽ .
s O M 3r7 subset selection.Ž .

The rate computations show that the results depend on the smoothness of
Ž .u b, l . It is illuminating that in this simple case the causes of predictive loss

show up so clearly. Along the way, we also derive rates of growth for the bias
and variance of the prediction error estimates for the fallible selections.

Ž .These rates also increase as u b, l becomes less smooth.

�Ž X . 44.1. Using a test set. The test set consists of y , x , n s 1, . . . , N withn n
� 4 X U Xthe same values of the x as in the original data. Then y s Ý b x q « ,n n m m m n n

X X U ˆ̂� 4 Ž . � 4 � 4 Ž .« iid N 0, 1 and the « are independent of the « . For estimates b l ofn n n
the b*, the test set PE estimate is

2$
X ˆ̂PE l s y y b l xŽ . Ž .Ý ž /n n

n

X 2 X U ˆ̂5 5s « q M E l q 2 « x , b y b lŽ . Ž .Ý ž /n n

X 2 U ˆ̂5 5s « q M E l q 2 Z b y b l ,Ž . Ž .Ý ž /m m m
m $ˆ̂� 4 Ž . � Ž .4 Ž .where the Z are iid N 0, 1 independent of the b l . Therefore, PE l canm

be written as
$ '4.6 PE l s V q M E l q M Z l ,Ž . Ž . Ž . Ž .

� Ž .4where Z l is an approximately Gaussian, mean-zero process, and V is a
fixed r.v. not depending on l.
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The model selected using the test set PE estimate corresponds to
$

l̂ s arg min PE l .Ž .
The crystal ball model corresponds to

lU s arg min PE l .Ž .
We want to estimate the expected size of the predictive loss

UˆE PL s E PE l y PE l .Ž . Ž .Ž .
U ˆ'Ž . Ž .Now l is the minimum of M ? A l q M W l and l is the minimizer of

'Ž . Ž Ž . Ž .. Ž . Ž . Ž .M ? A l q M W l q Z l . Let l s arg min A l . Then, if W l , Z l are0
Ž .differentiable at l , simple calculations see the Appendix give the result0

that, for M large,

4.7 E PL ; K ,Ž . Ž . 1

Ž U . � U4where K is a constant depending on the distribution P db of the b1 m
and u .

Furthermore, the bias is
$ˆ ˆ4.8 E PE l y PE l ; K ,Ž . Ž . Ž .Ž . 2

where K ) 0 also depends on P, u and the variance grows as2
$ˆ ˆ4.9 Var PE l y PE l ; 2 N q 4M E l .Ž . Ž .Ž . Ž .Ž . 0

Ž . � Ž .4 � Ž .4If u b, l is continuous and differentiable in l, then Z l , W l are
Ž . Ž . Ž .differentiable processes and 4.7 , 4.8 and 4.9 hold. That is, the expected

predictive loss and bias are bounded as M ª `.
� Ž .4 � Ž .4For subset regression u is not continuous. The W l , Z l processes are

approximately Brownian motions in a neighborhood of l . More complicated0
Ž .computations give see the Appendix

4.10 E PL ; M 1r3 ,Ž . Ž .
$

1r3ˆ ˆ4.11 E PE l y PE l ; M ,Ž . Ž . Ž .Ž .
Ž .with the same dominant variance terms as in 4.9 . Thus, there is a sharp

increase in predictive loss and bias for large M.

4.2. Little and tiny bootstrap. Using little and tiny bootstrap to approxi-
Ž U .mate E « , m introduces another stochastic element into the PE estimate,ˆ

that is,
$ 2U U U U5 5PE l s « q 2 « , m q M E l q 2 B l y « , m ,Ž . Ž . Ž . Ž . Ž .Ž .ˆt

where
1

B l s E « , m ?, y q « , lŽ . Ž .Ž .ˆt « t2t



INSTABILITY IN MODEL SELECTION 2363

2' Ž .and l s l 1 q t for all except ridge, where l s l. Let tU s « , x . Thent t m m

1 ˆB l s E U u b q tU , l ,Ž . Ž .Ýt U m m m tt m

� 4 Ž .where the U are iid N 0, 1 .m
Whether B ª TB is equivalent to the existence oft

ˆ ˆu b q tu, l y u b , lŽ . Ž .t t
4.12 lim u f u du.Ž . Ž .H ttx0

ˆ ˆŽ . Ž .If u b, l is differentiable in b, then the 4.12 limit exists and equals
ˆ ˆ UŽ . Ž . Ž . Ž . Ž .u b, l . Then TB l s Ýu b , l and « , m y TB l is a mean-zero pro-ˆ1 1 m

Ž .cess. If u b, l is differentiable in l, then the process is differentiable near1
Ž . Ž . Ž . Ž .l and 4.6 , 4.7 and 4.8 hold. Thus, E PL and the bias are bounded for0

Ž .ridge and garotte. But an O M term is added to the variance.
Ž . Ž .A change occurs in nn-garotte. The limit in 4.12 exists but u b, l is1

Ž U . Ž .discontinuous. In this case, « , m y TB l is a zero-mean process, butˆ
Ž . 1r3resembles a Brownian motion near l . The resulting E PL is in the M0

Ž .range. Smaller values of E PL can be gotten by taking t to decrease as
y1r5 Ž . 1r5M . Then E PL ; M .

ˆŽ . Ž .For subset regression, the integral in 4.12 converges weakly in b to
ˆ ˆ ˆ ˆŽ Ž . Ž .. Ž .b d b y l y d b q l , where d is the Dirac delta. In fact, if P db has

Ž .mass in the vicinity of "l, then the expected square of the integral in 4.11
goes to ` as tx0. Thus, B ª TB is not possible. Taking t to go to 0 as My1r7

t
gives

E PL ; M 3r7 .Ž .
The bias in nn-garotte goes up like M 3r5 and in subset selection like M 5r7.

Ž . Ž 4r5.Also, nn-garotte adds both an O M and an O M term to the variance
Ž . Ž 8r7.and subset selection adds an O M and O M term.

4.3. Stabilization. Consider generating new data yX s y q d , where
Ž . 2 2 Ž .var d s t s . Form m ?, y q d , s and now repeat and average. This gives aˆ

new estimate sequence

4.13 m ?, y , s s E m ?, y q d , s ,Ž . Ž . Ž .ˆ ˆST d

which we call the stabilized sequence.
ˆ̂ ˆ ˆ ˆŽ . Ž . Ž . ŽFor b l s u b, l , the stabilized coefficients are u b, l s E u b qST V

. Ž 2 2 .V, l , where V g N 0, t s . Thus, stabilization smooths u . For u discontinu-
Ž .ous, u is nicely differentiable. The limit of the integral 4.12 isST

1 ˆ4.14 E Vu b q V , l .Ž . Ž .V2t

This is differentiable in l, so the tiny bootstrap works and gives bounded
Ž .E PL and bias.
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5. Simulation results for controlled X . To see how the results carry
over to more complex situations, we constructed a simulation that used a
variety of design matrices and coefficients. The sample size was 60 with 30

� 4variables. The x data was sampled from the covariance matrix G sn m k
< myk < w xr , where r was selected from a uniform 0, 1 distribution in each

repetition and the coefficients occurred in random clusters with random sizes.
� 4 U U UThe response values y were generated as y s b x q « with « iid

Ž . 2N 0, 1 . On the average, R , 0.83 and about 20 of the coefficients were
nonzero.

Two runs of 500 repetitions each were done. One used a PE estimate based
on a single replicate test set. The other used the little or tiny bootstrap. Five
procedures were compared. Four are the regression methods defined in
subsection 3.3. The fifth is stepwise forward stabilized by 40 repetitions of

Ž . � 4adding N 0, 1 noise to the y and averaging the results. In each repetitionn
of the simulation, PL, bias and some other characteristics were computed and
then averaged over all repetitions.

5.1. Test set results. Figure 3 is a bar graph showing the average crystal
ball M E’s and the average PL’s for the five procedures. The crystal ball M E’s
are in black, the PL’s in white. The total bar height is the M E for the models$
selected by the test set PE. Figure 4 shows two bars for each procedure. The
upper bar is the average bias as a percentage of the average PE. The lower$
bar is the average of the percentage error in PE as an estimate of PE.

5.2. The little and tiny bootstrap results. The little bootstrap with t s 0.6
was used for stepwise and nn-garotte, with 25 iterations averaged to get B .t
With ridge, garotte and stabilized stepwise, the tiny bootstrap was used. To
get the expressions for TB, we start with ridge.

Ridge turns the constrained minimization problem into the problem of
locating the stationary points of the Lagrangian

5 5 2 5 5 2y y bx q l b .

The solution is
y1t tˆ̂b l s X X q lI X y.Ž . Ž .

FIG. 3. Crystal ball M E and predictive loss-controlled X data}test set.
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FIG. 4. Percentage bias and error-controlled X data}test set.

w Ž .xAn easy computation Breiman 1995 yields

y12 t tTB l s s Tr X X q lI X X .Ž . Ž .ˆ ž /
Ž .For garotte, the restricted minimization over c , . . . , c is converted into1 M

Lagrangian form as

5 5 2 5 5 2y y m c q l c ,Ž .ˆ
ˆ ˆ X ˆŽ . Ž . Ž .where m c s Ý c b x . Let W m, k s b X X b and W s W q lI.ˆn m m m m n m m k k l

Ž .Then see the Appendix

TB l s s 2 M q Wy1 m , k W m, k 1 y cŽ . Ž . Ž . Ž .ˆ Ý l kž
m , k

yl Wy1 k , k 1 y c .Ž . Ž .Ý l k /
k

� 4With the stabilized stepwise procedures, if the d are the noise added in
stabilization, then

TB k s Av d , m ?, y q d , k .Ž . Ž .Ž .ˆd

Ž .Thus, TB k can be computed at the same time as the stabilized predictor is
computed.

The simulation results are summarized in Figures 5 and 6. Figure 5 uses
the Figure 3 format. Figure 6 uses the Figure 4 format.

FIG. 5. Crystal ball M E and predictive loss-controlled X data}little bootstrap.
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FIG. 6. Percentage bias and error-controlled X data}little bootstrap.

6. The random X simulation results. The random X case differs
from the controlled X case in two aspects: first, the definition of prediction
error; second, the methods for getting PE estimates. PE estimates can be
gotten using a test set. The other common method is cross-validation. Some-

Ž .what to our surprise, Breiman and Spector 1992 found that, for selecting
the best dimension in a stepwise procedure, leave-one-out did not work as
well as leave-many-out. We now understand this as a consequence of instabil-
ity. Thus, with the cross-validation run, we used leave-one-out for ridge and
garotte, and leave-many-out for the others. In leaving-many-out, 30 left-out
sets were constructed as follows: the data was randomly permuted. The first

Ž .left-out set was the first 1r6 of the data 10 cases . Then the second 1r6 was
left out and so on. This was repeated five times.

Otherwise, the simulation has the same structure as in the controlled X
case, that is, 60 cases, 30 variables, some covariance and coefficients and so

Ž .forth. In the test set run, a test set of the same size 60 as the learning set
was used. The results are summarized in Figures 7 and 8 using that same
display format as in the controlled X figures. The output of the cross-valida-
tion run is shown in Figures 9 and 10. $

Ž . Ž .The symptoms of instability are that both PE s and PE s are noisy and$
Ž . Ž .that PE s does not track PE s accurately. In subset selection and stabiliza-$

tion PE and PE were computed for k s 1, . . . , 30, where k is the dimensional-$
ity. In the ridge and garotte regressions, PE and PE were also computed at
integer values k s 1, . . . , 30, where k is the dimensionality equivalent to the

FIG. 7. Crystal ball M E and predictive loss-random X data}test set.
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FIG. 8. Percentage bias and error-random X data}test set.

ˆ< < Ž .s parameter value. The values of T s D y D , where D s PE k q 1 yk k k k$ $ˆŽ . Ž . Ž .PE k and D s PE k q 1 y PE k , were averaged over the 500 repetitionsk
of the cross-validation simulation.

These are plotted vs. k in Figure 11. The crucial parts of these curves are
Ž .at the values of k of which PE k is a minimum. The average value of the

minimizing k is about 5 for subset selection, stabilization and nn-garotte; 9
for garotte; and 18 for ridge.

6.1. Stabilization. The stabilization story for random X is somewhat
perplexing. Our first idea was to perturb the data by a mechanism similar to
that used in cross-validation. That is, leave out a set TT of cases. Run the

Ž .procedure on the remaining LL y TT cases, getting m ?, s, LL y TT . Then repeatˆ
this K times, leaving out the subsets TT , . . . , TT , and define1 K

1
m ?, s s m ?, s, LL y TT .Ž . Ž .ˆ ˆÝST kK k

We implemented this using 10 cases in each TT , K s 30, with the randomK
selection of the TT structured so that each case occurred in exactly 5 of theK
TT . The optimal value of s is selected using cross-validation. Another collec-K

� X4tion of sets TT , j s 1, . . . , J, is defined. Setj

1 XXm ?, s, LL y TT s m ?, s, LL y TT y TT ,ˆ ˆŽ . Ž .ÝST j k jK
$ 2X XPE TT s y y m x , s, LL y TTˆŽ . Ž .Ž .Ýj n ST n j

XŽ .y , x gTTn j

FIG. 9. Crystal ball M E and predictive loss-random X data}cross-validation.
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FIG. 10. Percentage bias and error-random X data}cross-validation.

FIG. 11. Tracking deviations.
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and
N$ $ XPE s s PE TT ,Ž . Ž .Ý jÝ Nj j j

< X < � X4 X �Ž .4where N s TT . Two definitions of the TT were used. One was TT s y , x ;j j j j j j
� X4 � 4that is, leave-one-out cross-validation was applied. In the second, TT s TT ,j k

so leave-ten-out cross-validation was used.
In applying stabilization to subset selection, the leave-ten-out estimate did

Ž . Ž .better. It gave Av PL of 7.1. Subset selection itself had Av PL s 10.5, so
Ž .stabilization did give a 32% reduction in average PL. However, since Av PL

for the two garottes and ridge were 4.3, 3.1 and 3.6, we questioned whether
the results could be improved.

Two avenues seemed open. One was to increase the amount of averaging in
the stabilization. We went from 30 sets to averaging over 60 sets. The same
sets were used for averaging and cross-validation PE estimates. The results

Ž .improved a little, with Av PL s 6.7.
The other possibility was to change the method of stabilization. One

candidate was the method used in the controlled X situation, that is,
generate new y-values as yX s y q « X, rerun the procedure using the new
y-values, repeat 50 times and average. This was combined with the use of

Ž .leave-ten-out cross-validation to do PE estimation. In this case, Av PL
dropped to 4.9.

Thus, perturbing the y-values and averaging does better at stabilization
than perturbing by leaving out some portion of the data and averaging. This
also suggests that we do not know yet what the best stabilization method is.
Our intuition is that some method which perturbs both the y- and x-values
will probably do better than a perturbation of the y-values only.

7. Leave-one-out vs. leave-many-out. Recall that in cross-validation a
set TT of N cases is left out, and mŽyTT . is defined as the minimizer in UU ofˆCV s
5 5 2y y m for the data LL y TT. Then repeating this for sets TT , . . . , TT ,1 K

N$ 2ŽyTT .kPE s s y y m x .Ž . Ž .ˆŽ .Ý Ý n nK ? NCV k Ž .y , x gTTn n k

$
Ž .The relevant question is: what is PE s an estimate for? In particular, let m̂$25 5 Ž . Ž .be the minimizer of y y m in UU . How is PE s connected to PE m ?ˆs $

ŽyTT . Ž .If N is small and the procedure stable, then m , m and PE sˆ ˆCV
Ž .resembles a test set estimate of PE m . But if the procedure is unstable, then,ˆ

even for N small, mŽyTT . may be considerably different from m. The m, mŽyTT .ˆ ˆ ˆ ˆCV
Ž .are chosen to be minimum RSS predictors in UU . Then, usually, RSS m ,ˆs

Ž ŽyTT .. Ž . Ž ŽyTT ..RSS m , but PE m may differ considerably from PE m .ˆ ˆ ˆ
Figure 12 illustrates the last point. In the data generated in the first

repetition of the cross-validation simulation, one case at a time was left out
and the forward stepwise procedure applied to get a six-variable predictor.
This gave 60 predictors. The RSS and M E were computed for each one. Fig-
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Ž .FIG. 12. RSS vs. M E subset selection k s 6 in 60 leave-one-out models.

ure 12 is a plot of RSS vs. M E. The spread in M E is about 10 times that in
RSS. Figure 13 is a similar plot for the same data using the garotte method.
Here the M E spread is about equal to the RSS spread. The cross-validation$

ŽyTT .Ž . Ž .PE s is estimating some average of the values of PE m . For an unstableˆ
Ž .procedure, there is no guarantee that this average is close to PE m .ˆ

Ž .In Breiman and Spector 1992 , simulation results showed that leave-one-
out cross-validation was inferior to 10-fold cross-validation in subset selec-
tion. The simulation structure here is different, but the results are similar.
When leave-one-out cross-validation is used on the same data as leave-ten-out
cross-validation, the average prediction loss increases from 10.5 to 11.6. The
average downward bias goes from 6.5 to 19.2.

Ž .FIG. 13. RSS vs. M E garotte equiv. k s 6 in 60 leave-one-out models.
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FIG. 14. Differences in successive PE estimates.

The large downward bias is an indicator of the problem. Figure 14 com-
ˆ< <pares the average differences D for leave-one-out and leave-ten-out. Figure

15 compares the average values of the tracking differences T. The average
dimension of the minimum PE subset is k , 5, and this is in the vicinity$
where the leave-one-out PE estimate is noisier and tracks more poorly than
the leave-ten-out estimate.

ˆWe also computed the following value: in each repetition, let k s$
Ž .arg min PE k . Then the hole size in that repetition is defined as

$ $ $
1 ˆ ˆ ˆPE k y 1 q PE k q 1 y PE k .Ž . Ž . Ž .Ž .2

FIG. 15. Tracking deviations.
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The average hole size in leave-one-out is 18.1 compared to 6.7 in leave-ten-out.$
Ž .Thus, in leave-one-out PE s , the minimums occur at a place where there are

deep local downward excursions. $
Ž .The root of the problem is that while the leave-one-out estimate PE k has

lower bias for fixed k, it is degraded by its higher variance. This is illustrated
more concretely by the fact that the variance of the little bootstrap estimate
in subset selection went to ` as t decreased to 0.

8. Comparing predictors. We were curious to see how stabilization of
subset selection would compare with the other prediction methods across a
spectrum of simulated data. It is fairly well known that if there are only a few
nonzero coefficients, then subset selection gives good prediction. With many
nonzero coefficients, ridge does better.

To compare methods, we generated five sets of simulated data that ranged
from a few nonzero coefficients to many nonzero coefficients. The X-distribu-
tion was mean-zero 30-variable multivariate normal with G s r < iyj <. In eachi j

w xrepetition, r was chosen from the uniform distribution on y1, 1 .
The nonzero coefficients were in three clusters of adjacent variables with

clusters centered at the 5th, 15th and 25th variables. For the variables
clustered around the 5th variable, the initial coefficient values were given by

2U < <b s h y j , j F h ,Ž .5q j

where h is a fixed integer governing the cluster width. The clusters at 15 and
25 had the same shape. All other coefficients were 0. The coefficients were

2 Ž .then multiplied by a common constant to give an R , 0.75 when N 0, 1
noise was added to Ýb U x to give y.m m

The h-values 1, 2, 3, 4, 5 were used. This gave 3, 9, 15, 21, 27 nonzero coef-
ficients. For h s 1 there were three stong, virtually independent variables. At
the other extreme, for h s 5 each cluster contained nine weak variables. This
simulation structure is almost identical to that used in Breiman and Spector
Ž .1992 . Two PE estimation methods were used. Sixfold cross-validation re-
peated five times was used in subset selection, subset selection stabilization
and nn-garotte. Leave-one-out cross-validation was used in garotte and ridge.

Figure 16 is a graph of the average M E’s vs. h for the various prediction
methods. Figure 17 is a graph of the average crystal ball M E’s vs. h, and
Figure 18 is a plot vs. h of the differences. The conclusions are clear and
interesting.

All methods except ridge have similar crystal ball M Es. Ridge has high
M E except when there are many small nonzero coefficients. This reflects its
inability to fit equations with a mixture of large and small underlying
coefficients. Predictive loss separates the methods. Subset regression’s predic-
tive loss is large. Stabilization and nn-garotte have lower and similar losses.
Lowest are garotte and ridge. In total M E, subset regression is a loser due to
its high predictive loss. Ridge loses due to its high crystal ball M E. The
garottes and stabilization do well.
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FIG. 16. Total M E for five methods.

FIG. 17. Crystal ball M E for five methods.
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FIG. 18. Predictive loss for five methods.

9. Concluding remarks. We have studied the effects of instability on
predictive loss and on the bias and error of PE estimates. Stabilization works,

Ž .but within limits. In our implementation altered y ’s it reduces the level of
instability sharply, but not to the level of garotte and ridge. This may be
because our stabilization method is not sufficiently optimized.

Stabilized predictors lack simplicity. For instance, stabilizing the six-varia-
ble subset predictor generally gives a predictor with many more than six
nonzero coefficients. Stabilization is computationally intensive and, in our
context, does no better than the garotte methods. Why use it then?

The answer lies outside of the domain of linear regression predictors.
When using nonlinear predictors there are usually no simple and effective
stable alternatives. There are no known stable versions of CART, MARS or
neural networks. Stabilizing these methods can give nonlinear predictors

Ž .with improved accuracy. In particular, Breiman 1996b, c shows that stabi-
lizing CART leads to dramatic improvements in accuracy.

In the interesting linear regression sideshow the garotte methods show up
as uniformly better than subset selection or ridge. Subset selection loses
because of its large predictive loss. Ridge loses because its best models cannot
fit the data as well as the other methods when there is a mix of large and
small coefficients. The best methods combine stability with a better range of
fits.
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While stable procedures have desirable properties, stabilization by averag-
ing is not a panacea. An area that needs exploration is the possibility of
stabilization of procedures by changing their structure instead of averaging.
For instance, the nn-garotte is a more stable alternative to subset selection
w Ž .xBreiman 1995 . An interesting research issue we are exploring is whether
there is a more stable single-tree version of CART.

w Ž .A possible alternative is the idea of stacking predictors Wolpert 1992
Ž .x � 4and Breiman 1996a . A stacking collection m of predictors are combinedˆk

to form a predictor

m s a m ,ˆÝ k k

� 4 Ž .where the a constrained to be nonnegative are determined by a lineark
� 4regression of the y-values on the m using the cross-validated values of theˆk

� 4m .ˆk

APPENDIX

t Ž .A1. Computations in the X X s I case. From 4.5 ,

'M E l s M ? A l q M W l .Ž . Ž . Ž .
Ž .Let l s arg min A l and D s l y l , using prime to indicate derivatives,0 0

Y2'M E l q D , M ? A l q M W l q M D A l r2Ž . Ž . Ž . Ž .0 0 0 0

'q M W l q D y W l .Ž . Ž .Ž .0 0

Ž . Ž . Ž . XŽ .If W l is differentiable at l , then W l q D y W l , DW l and0 0 0 0

2XW lŽ .0U 'M E l s min M E l , M ? A l q M W l y .Ž . Ž . Ž . Ž . Y0 0 2 A lŽ .0

w Ž .xTest set. Using a replicate test set gives see 4.6
$ 'PE l s V q M E l q M Z l ,Ž . Ž . Ž .

ˆ̂' Ž . Ž .where V is an r.v. not depending on l and M Z l s y2Ý Z b l . Putm m m$˜ ˆŽ .l s arg min PE l s l q D, where0

Y1 2ˆ 'D s arg min M D A l q M W l q D y W lŽ . Ž . Ž .� Ž .0 0 02
A.1Ž . 'q M Z l q D y Z l .Ž . Ž . 4Ž .0 0

If both W and Z are differentiable then,

W X l q ZX lŽ . Ž .Ž .0 0ˆA.2 D s yŽ . Y'M A lŽ .0
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and

Y X1 2ˆ ˆ ˆ' 'M E l s M ? A l q M W l q M D A l q D M W l ,Ž . Ž . Ž . Ž .Ž . 0 0 0 02

resulting in

2XEZ lŽ .0U 1ˆA.3 E M E l y M E l , ,Ž . Ž .Ž .Ž . Y2 A lŽ .0

Ž .which verifies our assertion that E PL is bounded in M.
Consider a process

1
Y l s X l ,Ž . Ž .Ý m'M m

� Ž .4 Ž .where the X l are iid mean 0. Then Y l is mean-square differentiable ifm
w Ž . Ž . x2lim E X l q D y X l rD exists as D ª 0. It is straightforward to verify

that all methods except subset regression are mean-square differentiable
Ž .which is enough to justify A.3 .

ˆ U ˆ 2 U 2ˆ ˆ ˆ ˆ ˆŽ . Ž < < . Ž . Ž < < .ŽIn subset selection b l s I b G l b, so b y b s I b - l b y
2 2 ˆ U U. Ž .Z q Z , where b s b q Z; Z, b are independent and Z g N 0, 1 . Let

ˆ U 2 2Ž . Ž < < .Ž .X l s I b - l b y Z , som m m m

1 1
2W l s X l y EX l q Z y 1 .Ž . Ž . Ž .Ž . Ž .Ý Ým m m' 'M Mm m

Ž . Ž . Ž . Ž . Ž . Ž .Let H D s W l q D y W l and D D s X l q D y X l . Then0 0 0 0

EH D H D s ED D D D y ED D ED D .Ž . Ž . Ž . Ž . Ž . Ž .1 2 1 2 1 0

ˆ U 2 2Ž . Ž . Ž < < . Ž .The second term is O D D . Write X l s I b - l Y, Y s b y Z . For1 2
ˆŽ . Ž . Ž < < .D ) 0, X l q D y X l s YI l F b - l q D and, for D , D ) 0,0 0 0 0 1 2

2 ˆ ˆ< < < < <EH D H D , E Y b s l P l F b F l q min D , D .Ž . Ž . Ž .Ž . Ž .1 2 0 0 0 1 2

ˆ< <Denoting the density of b by f ,

2 ˆ< < <EH D H D , E Y b s l f l min D , D q O D D .Ž . Ž . Ž . Ž . Ž .Ž .1 2 0 0 1 2 1 2

Ž .If D , D - 0, the same result follows with min D , D replaced by1 2 1 2
Ž < < < < . Ž . Ž . Ž .min D , D . If D , D have opposite signs, then EH D H D s O D D .1 2 1 2 1 2 1 2

Thus,

H D , c l B D ,Ž . Ž . Ž .0 1

Ž .where B D is a two-sided Brownian motion.1
Ž .We can write M E l as

Y1 2 'M E l q D s V q M D A q M cB DŽ . Ž .0 12

s V q Q D ,Ž .
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where V is an r.v. not depending on D. Put D s a t, where a is determined by

Y1 2'b s Ma c s a MA .2

'Ž . Ž .Use the fact that, for fixed a , B t s B a t r a is a two-sided B-motion to1
get

2Q D s b t q B tŽ . Ž .
and

2min M E l , V q b min t q B t .Ž . Ž .
l t

� Ž .4 � Ž .4 Ž . Ž .The processes Z l , W l are independent, and, for G D s Z l q D y0
Ž .Z l , another straightforward computation gives0

2 < < < <E G D G D s 4l f l min D , DŽ . Ž . Ž . Ž .Ž .1 2 0 0 1 2

Ž . Ž . 2 Ž .if D , D have the same sign and O D D if not. Put d l s 4l f l . Then1 2 1 2 0 0 0
Ž . Ž . Ž . � Ž .4G D s d l B D , where B D is a two-sided B-motion independent of0 2 2

� Ž .4B D .1
Thus,

Y1 2ˆ 'D s arg min D MA q M cB D q dB D .Ž . Ž .Ž .1 22

Since

cB D q dB DŽ . Ž .1 2
B D sŽ .0 2 2'c q d

is also a two-sided B-motion, then

Y1 2ˆ 'D s arg min D MA q r M B D ,Ž .� 402

2 2'where r s c q d . Put D s g t, where g is determined by

Y1 2 'e s g MA s r Mg .2

So
2D̂ s g arg min t q B t .Ž .0

t

The resulting approximation is

Y1 2ˆ ˆ ˆ'M E l q D s V q M D A q c M B D .Ž .Ž .0 12

ˆ � Ž . Ž . 4Because D is measurable on cB D q dB D , y` - D - ` , another argu-1 2
ment gives

ˆE cB D cB D q dB D , y` - D - `� 4Ž . Ž .Ž .Ž .1 1 2

c2

ˆ ˆs cB D q dB D .Ž . Ž .Ž .1 22 2c q d
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ˆŽ . � Ž . Ž . 4The conditional expectation of M E l given cB D q dB D , y` - D - `1 2
is

21 c
Y2ˆ ˆ ˆ'M D A q M cB D q dB DŽ . Ž .Ž .1 22 22 c q d

2 21 d c 1
Y Y2 2ˆ ˆ ˆ ˆ's M D A q M D A q M cB D q dB D .Ž . Ž .Ž .1 22 2 2 2 ž2 2c q d c q d

2 Ž 2 2 . w 2 Ž .xThe last term equals ec yr c q d , where y s min t q B t - 0. Thus,0

1 d2 ec2
YU 2ˆ ˆA.4 E M E l y M E l , MA ED q y b Ey.Ž . Ž .Ž .Ž . 2 2 2 2ž /2 c q d c q d

Ž .To see how big A.4 is, note that
1r3 1r3 2r32cM 2rM 2

y1r3b s c , e s r , g s M .Y Y Yž / ž / ž /A A A

Ž 2 Ž ..ˆPut t s arg min t q B t . Then0

1r32
1r3 2 y2r3 2 2r3 4r3 < <ˆE PL s M d r Et q 1 y R c Ey ,Ž . Ž .Yž /A

2 2 2 2 Ž . 1r3where R s c rc q d . Thus, E PL ; M .

Errors in PE estimates using a test set. Here we look at the mean and$ ˆ ˆŽ . Ž .variance of PE l y PE l . This difference equals
2X ˆ' '5 5« y N q M Z l q M Z l q D y Z l .Ž . Ž .Ž .ž /0 0 0

Xˆ' Ž . Ž .In the differentiable case, the last term equals q M DZ l . From A.2 , we0
get

2XEZ l$ Ž .0ˆ ˆE PE l y PE l s y ,Ž . Ž .Ž . YA lŽ .0
$ ˆŽ . Ž .so that PE l has an O 1 downward bias.

5 X 5 2 2 Ž .To get the variance, note that « is x independent of Z l and thatN 0
2 U ˆ 2ˆŽ . Ž Ž .. Ž .M ? EZ l s 4Ý b y b l , 4M E l . Thus,0 m m m 0 0

$ ˆ ˆVar PE l y PE l ; 2 N q 4M E l .Ž .Ž . Ž .Ž . 0
$ ˆŽ .A more memorable version of this result is that the SE of PE l is the range

$ $ˆ ˆ' '2PE l to 4PE l .Ž . Ž .
In subset selection,

ˆ ˆ'M Z l q D y Z l , d l B D .Ž . Ž . Ž .Ž .ž /0 0 0 2

Ž .Using calculations similar to those in the E PL calculations gives
$

1r3ˆ ˜E PE l y PE l , yK MŽ . Ž .Ž . 3
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and
$

2r3ˆ ˆVar PE l y PE l , 2 N q 4M E l q K M .Ž .Ž . Ž .Ž . 0 4

Ž . Ž . Ž .Little bootstrap. For u b, l differentiable in b, B l ª TB l as t ª 0,t

ˆTB l s u b , lŽ . Ž .Ý 1 m
m

and
$
PE l s RSS l q 2TB lŽ . Ž . Ž .

U 2 U ˆ ˆ5 5s « q 2 Z b q M E l y 2 Z u b , l y u b , lŽ . Ž . Ž .Ý Ý ž /m m m m 1 m

's V q M E l q M Z l ,Ž . Ž .
Ž .where V is an r.v. not depending on l and Z l is a zero-mean, approxi-

Ž . Ž .mately Gaussian process. If both W l and Z l are differentiable, then, as in
the test set case,

2X1 EZ lŽ .0UˆE M E l y M E l s .Ž .Ž .Ž . Y2 A lŽ .0

Ž . 2For Z l to be differentiable, the existence of  urb l is necessary. This
is violated both by subset selection and nn-garotte, but holds for garotte and

Ž . Žridge. In the nn-garotte case, TB l is not differentiable in l. Now TB l q0
. Ž . Ž .D y TB l can be approximated by a Brownian motion, leading to E PL ;0
1r3 Ž .M . However, there is an alternative strategy leading to lower E PL , that

is, take t ) 0 going to 0 as M ª `.
Ž .For t ) 0, B l is smooth and differentiable in l. The problem is thatt

Ž . Ž U . Ž .EB l / E « , m . Trade off by taking t small enough so that EB l is notˆt t
Ž U . Ž .far from E « , m , but positive enough so that B l is nicely differentiable.ˆ t

Let

1
2'h b , l s EUu b q tU, l 1 q t , U g N 0, 1 ,Ž . Ž .Ž .t t

so

ˆB l s h b , l .Ž . Ž .Ýt t m
m

Put

2 ˆ ˆY l s y Z u b , l y h b , lŽ . Ž . Ž .Ý ž /t m m t m'M m

Ž . Ž . Ž .and Z l s Y l y EY l . Thent t t

$ ' 'PE l s V q M E l q M Z l q M EY l .Ž . Ž . Ž . Ž .t t
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Ž . Ž .Define h b, l s E Zu b q Z, l . A conditional expectation computationZ
gives

b
E h b q Z, l s h , lŽ .Z t 2ž /'1 q t

t 2
2s h b , l y b h b , l q o t .Ž . Ž . Ž .12

Therefore,
U U2 2'M EY l s yMt Eb h b , l q o tŽ . Ž . Ž .t 1

s yMt2D l q o t 2 .Ž . Ž .
In consequence,

Y X X X1 2 2ˆ 'D s arg min M D A l q Mt D D l q D M Z l q W l ,Ž . Ž . Ž . Ž .Ž .0 0 t 0 02

so
ZX l q W X l t 2DX lŽ . Ž . Ž .t 1 0 0

D̂ s y y ,YY' A lŽ .M A lŽ . 00

resulting in
1 2X X24A.5 E PL s E Z q Mt D .Ž . Ž . Ž .Y t2 A
Ž . Ž X .2Now t is selected to minimize A.5 . The dominant term in E Z ist

2 ˆA.6 4E h b , l .Ž . Ž .tl lsl0

2'Put a s l 1 q t . Then
2 22' ˆ ˆ 1 q t 1 b y a 1 b q aˆh b , l s exp y y exp y .Ž .t ž / ž /'l 2 t 2 t2p t � 0

Ž .For small t, A.6 is given by

2 1
f l .Ž .0' tp

Ž . y1r5 Ž . 1r5Then the minimizing t in A.5 is approximately M and E PL ; M .
Ž .In subset selection, the rates are different. Equation A.5 holds and we

ˆ 2ŽŽ . Ž ..need to evaluate E rl h b, l for small t. Direct integration leads tot
the expression

l2 f lŽ .0 0 y2q o t .Ž .3' tp

Ž . y1r7Minimizing A.5 leads to t ; M and

M E PL ; M 3r7 .Ž .
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w Ž .xIn simulations Breiman 1992 we found that in subset selection using
w xt g 0.6, 1.0 gave better results than smaller t-values. Now we can begin to

understand the reason.

Errors in PE estimates using little bootstrap. If the second mixed partial
Ž .derivative of u b, l exists, then the bias is

2X YyEZ l rA l .Ž . Ž .0 0$ ˆŽ . Ž .Ignoring the O 1 bias term, the variance of PE l equals
2U ˆ ˆ2 N q 4M E b Z y Zu b , l q u b , l .Ž . Ž .0 1 0

With some integration by parts, the expectation term equals
2U Uˆ ˆE b y u b , l q Eu b , l ,Ž . Ž .ž /0 1 0

giving the variance approximation
2 ˆ2 N q 4M E l q 4M Eu b , l .Ž . Ž .0 1 0 $

Ž .Thus, use of the tiny bootstrap adds an O M term to the PE variance as$
compared to the test set PE.

The situation differs for nn-garotte and subset selection. In both of these,$
2ˆ ˆ 'Ž Ž . Ž .. Ž . Ž .the dominant term in E PE l y PE l is M EY l , Mt D l . Thet 0 0

resulting bias in nn-garotte is approximately M 3r5 and in subset selection
5r7 Ž .approximately M . Besides an additional O M term in the variance of$

4r5ˆŽ . Ž .PE l , more computations show another additional O M term in nn-
Ž 8r7.garotte and an O M term in subset selection.

A2. Proof of Theorem 3.1. Using the identity

t 2
U U< � 4E « « q « , n s 1, . . . , N s « q «Ž .Ž .k n n k k21 q t

gives
1

U U UEB s s E « q « , m ?, m q « q « , s .Ž . Ž .Ž .ˆt 21 q t
U U Ž U U .Let d s « q « . Now m ?, m q d , s is the minimizer in UU ofˆ s

2U Um q d m2U U 25 5m q d y m s 1 q t y .Ž .
2 2' '1 q t 1 q t

U U2'Since d r 1 q t has the same distribution as « , denote it so. Now
2 2' 'm g UU m mr 1 q t g UU . Thus, m 1 q t is the minimizer in UU ofs s st t

U 2m
Uq « y m ,

2'1 q t
so

Um
U U U2'm ?, m q d , s s 1 q t m ?, q « , s .Ž .ˆ ˆ tž /2'1 q t
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Putting things together,

mU

UEB s s E « , m ?, , s ,Ž . ˆt tž /2ž /'1 q t

which is equivalent to the statement of the theorem.

A3. Tiny bootstrap formula for garotte. The garotte coefficients are
ˆ 2 ˆ5 5 � 4determined by minimizing y y Ý c b x , where the b are the full-m m m m m

� 4 2 2model OLS coefficients and the c are restricted by Ýc F s .m m
� 4 Ž 2 . X tTake « to be iid N 0, s , and put y s y q t« . Denote S s X X. Then n n n

ˆ y1 X X ˆ ˆ y1Ž . Ž . Ž .new OLS b t s S X y . Put Z s « , x , so b t s b q tS Z. The altered
� Ž .4c t minimizem

2
ˆy q t« y c t b t xŽ . Ž .Ý m m m

m

2 Ž . 2under Ýc t F s .m
The little bootstrap equals

1 ˆE Z c t b t ,Ž . Ž .Ý m m mt m

so

˙̂ ˆA.7 TB s s E Z b 0 c 0 q E Z b 0 c 0 ,Ž . Ž . Ž . Ž . Ž . Ž .˙Ý Ým m m m m m
m m

˙ y1ˆŽ . Ž .where ? above is drdt. Note that b 0 s S Z, so the first term in A.7 is
2 ˆ ˆŽ . Ž .s Ý c . Let W s b t S b t and use u m v to denote the vector withm m m k m m k k

Ž .components u v . Then the Lagrangian equation for determining c t ism m

ˆWc q lc s b t m Xy q tZ .Ž . Ž .
Differentiating gives

˙˙ ˙ ˆ ˆW q lI c q W q lI c s b m X y q Z m b .Ž . Ž .˙
˙After numerical experiments, we concluded that the l term was negligible.

Thus, putting t s 0 and letting W s W q lI,l

y1 ˙˙ ˆ ˆc s W yWc q Xy m b q Z m b .Ž .˙ l

˙ 2 2ˆ Ž .Using EZ b 0 s s d and EZ Z s s S givesm k m k m k m k

ˆE Z b c 0Ž .˙Ý m m mž /
m

s s 2 Wy1 l W 1 y c q Wy1 l W 1 y c .Ž . Ž . Ž . Ž .Ý Ým n m k m m m m k kž /
m, k m , k

y1Ž . y1 Ž .Finally, use Ý W l W s 1 y lW l to get the result stated in Sec-k m k m k m m
tion 3.
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