
Pattern Recognition 38 (2005) 1799–1814
www.elsevier.com/locate/patcog

Exact performance of error estimators for discrete classifiers

Ulisses Braga-Netoa, Edward Doughertyb,c,d,∗
aVirology and Experimental Therapy Laboratory, Aggeu Magalhães Research Center, CPqAM/FIOCRUZ, Recife, PE 50.670-420, Brazil

bDepartment of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA
cDivision of Computational Biology, Translational Genomics Research Institute, Phoenix, AZ 85004, USA

dDepartment of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

Received 6 August 2004; accepted 25 February 2005

Abstract

Discrete classification problems abound in pattern recognition and data mining applications. One of the most common
discrete rules is the discrete histogram rule. This paper presents exact formulas for the computation of bias, variance, and
RMS of the resubstitution and leave-one-out error estimators, for the discrete histogram rule. We also describe an algorithm to
compute the exact probability distribution of resubstitution and leave-one-out, as well as their deviations from the true error rate.
Using a parametric Zipf model, we compute the exact performance of resubstitution and leave-one-out, for varying expected
true error, number of samples, and classifier complexity (number of bins). We compare this to approximate performance
measures-computed by Monte-Carlo sampling—of 10-repeated 4-fold cross-validation and the 0.632 bootstrap error estimator.
Our results show that resubstitution is low-biased but much less variable than leave-one-out, and is effectively the superior error
estimator between the two, provided classifier complexity is low. In addition, our results indicate that the overall performance
of resubstitution, as measured by the RMS, can be substantially better than the 10-repeated 4-fold cross-validation estimator,
and even comparable to the 0.632 bootstrap estimator, provided that classifier complexity is low and the expected error rates
are moderate. In addition to the results discussed in the paper, we provide an extensive set of plots that can be accessed on a
companion website, at the URLhttp://ee.tamu.edu/ ∼edward/exact _discrete .
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords:Error estimation; Discrete classification; Histogram rule; Resubstitution; Leave-one-out; Cross-validation; Bootstrap

1. Introduction

Discrete classification, also called categorical classifica-
tion, or multinomial discrimination[1–4] is very important
in several applications, particularly in biology, economics,
psychology and social science[3]. In the field of Data min-
ing, discrete classification algorithms and applications are
particularly prevalent—in fact, Data mining practitioners of-
ten advocate discretizing continuous attributes to achieve

∗ Corresponding author. Tel.: +1 979 862 8896;
fax: +1 979 845 6259.

E-mail address:e-dougherty@tamu.edu(E. Dougherty).

0031-3203/$30.00� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2005.02.013

a purely discrete problem[5] (even though this certainly in-
troduces a loss of information). Discrete classification also
applies to the case of fixed-partition classification in Eu-
clidean space[1]—however, this is of less widespread in-
terest than purely categorical problems.

In practical real-world problems, especially in the small-
sample settings prevalent in many applications, a funda-
mental issue is how to estimate the error of a classifier,
since the underlying probability structure (here referred to
as theprobability model), and therefore the true error of
the designed classifier, is unknown. There are many error
estimation techniques in use, but the performance analysis
of these techniques has been based on ad hoc methods or

http://www.elsevier.com/locate/patcog
http://ee.tamu.edu/edward/exactdiscrete
mailto:e-dougherty@tamu.edu

1800 U. Braga-Neto, E. Dougherty / Pattern Recognition 38 (2005) 1799–1814

approximate asymptotic performance bounds, which are of-
ten useless in small-sample settings. We show in this pa-
per that it is possible to write simple “closed-formula” ex-
pressions for performance measures, such as bias, variance
and RMS, of non-randomized error estimators (e.g., resub-
stitution and leave-one-out); furthermore, we present an al-
gorithm to calculate the exact probability distribution of
non-randomized error estimators, with the help of high-
performance computers (the use of computers for exact cal-
culation has in fact been considered in several areas of statis-
tics; e.g. see[6–10]).

Using a parametric Zipf model, we compute the exact
performance of resubstitution and leave-one-out, for vary-
ing expected true error, number of samples, and classifier
complexity (number of bins). We compare this to approx-
imate performance measures—computed by Monte-Carlo
sampling—of more complex, randomized error estimators,
namely, 10-repeated 4-fold cross-validation and the 0.632
bootstrap error estimator. The exact performance results
prove that resubstitution is low-biased but much less variable
than leave-one-out, and is effectively the superior error es-
timator provided classifier complexity is low. Comparisons
with the Monte-Carlo performance measures of the random-
ized error estimators indicate that the 0.632 bootstrap error
estimator generally displays the best performance. Surpris-
ingly, the overall performance of resubstitution, as measured
by the RMS, can be substantially better than 10-repeated
4-fold cross-validation, and even comparable to the 0.632
bootstrap estimator, provided that classifier complexity is
low and the expected error rates are moderate (conditions
often found in practice). Considering that resubstitution is
a very inexpensive error estimator computationally, as com-
pared to cross-validation, and particularly bootstrap esti-
mators, this provides an argument for avoiding complex
resampling-based error estimators in favor of resubstitution
in applications where a very large number of error estimates
have to be computed and classifier complexity is low—for
instance, feature selection for gene regulation (Kim et al.,
Shmulevich et al.). In addition to the results discussed in
the paper, we provide an extensive set of plots that can be
accessed on a companion website, at the URLhttp://
ee.tamu.edu/ ∼edward/exact _discrete .

We mention here the work of G.F. Hughes, who calcu-
lated exact results on distribution-free mean performance of
discrete classifiers[9,10]. Hughes did not consider the error
estimation problem, being concerned only with the true er-
ror of the designed classifiers. Hughes gives an expression
for the mean expected true error over the probability model
space, assuming equally likely models. Such a mean perfor-
mance measure is distribution-free, being dependent only
on sample sizen and complexityb, and allows the author
to study classification performance as a function of these
parameters. However, the usefulness of such a measure in a
practical setting is questionable. By assuming equally likely
models and computing the mean over all possible probabil-
ity models, one is giving equal importance to models with

small and large errors. In practice, we know that sound ex-
perimental design and effective feature selection algorithms
will ensure that errors are moderate to small. As a result, the
results and recommendations made in[9] tend to be overly
pessimistic (as pointed out in[11]).

Even though our work applies specifically to discrete clas-
sification (a relevant and worthy problem in itself), we hope
that our results can also illuminate issues related to error
estimation for classification in general. Hughes’ work is an
example of this kind of extension—his 1968 paper[9] used
discrete classifiers to demonstrate rigorously the “peaking”
of the mean accuracy, whereby performance at first improves
as the number of variables increase, and then eventually
deteriorates (for a fixed number of training samples). But
this is a phenomenon that affects all classifiers, including
continuous-variable ones. In fact, the peaking phenomenon
is referred to by some authors as the “Hughes phenomenon”
[12].

2. Discrete classification

Formally, in the discrete classification problem there are
p predictor variablesX1, . . . , Xp, such that eachXi takes
on a finite numberbi of values, and a binary target vari-
ableY ∈ {0,1} (we adopt in this paper the usual notation,
whereby capital letters denote random variables and small
letters denote deterministic realizations of those variables).
The predictors often correspond to nominal attributes (i.e.,
values without explicit numerical meaning or ordering, such
as yes/no, gender, marital status, and so on), so that there is
little hope in the use of traditional numerical discrimination
procedures. The predictors as a group take on values in a fi-
nite space ofb=∏p

i=1bi possible states. A bijection can be
established between this finite state-space and the sequence
of integers 1, . . . , b. Therefore, we may assume a single pre-
dictor variableX taking on values in the setX ∈ {1, . . . , b}.
The valueb can be viewed as the number of “bins” into
which the data is categorized—it provides a direct measure
of the complexityof the classification rule[1].

The complete probability structure of the discrete classifi-
cation problem is specified by 2b+2 real numbers: the class
prior probabilitiesc0 = P(Y = 0) andc1 = P(Y = 1), and
the class-conditional probabilities:pi = P(X = i | Y = 0)
andqi = P(X = i | Y = 1), for i = 1, . . . , b.

Since we have the identities

c1 = 1 − c0, (1)

pb = 1 −
b−1∑
i=1

pi , (2)

qb = 1 −
b−1∑
i=1

qi , (3)

http://ee.tamu.edu/edward/exactdiscrete
http://ee.tamu.edu/edward/exactdiscrete

U. Braga-Neto, E. Dougherty / Pattern Recognition 38 (2005) 1799–1814 1801

the problem is in fact determined by a(2b−1)-dimensional
vector

� = (c0, p1, . . . , pb−1, q1, . . . , qb−1) ∈ R2b−1. (4)

Furthermore, we have the constraints:

0�c0�1, (5)

b−1∑
i=1

pi�1 and pi�0, i = 1, . . . , b − 1, (6)

b−1∑
i=1

qi�1 and qi�0, i = 1, . . . , b − 1. (7)

Hence,c0 ∈ I (the unit closed interval) andpi, qi ∈ Sb−1
(the(b−1)-dimensional simplex), and the probability vector
� that defines the discrete classification problem is a member
of the set� = I × Sb−1 × Sb−1 ⊂ R2b−1. We call �
the probability model space, and each� ∈ � a probability
model. Note that the probability model space is a relatively
small subset of a finite-dimensional space.

For a given a probability model, theerror rate of a dis-
crete classifierg : {1, . . . , b} → {0,1} is the probability
of misclassification:� = P(Y �= g(X)) = E(|Y − g(X)|).
Clearly,

� =
b∑
i=1

P(X = i, Y = 1 − g(i))

=
b∑
i=1

P(X = i|Y = 1 − g(i))P (Y = 1 − g(i))

=
b∑
i=1

[pic0Ig(i)=1 + qic1Ig(i)=0]. (8)

From this, it is clear that the optimal minimum-error Bayes
classifier is given by

gBAYES(i)=
{

1 if pic0<qic1
0 otherwise

, i = 1, . . . , b, (9)

with corresponding optimal error rate

�BAYES =
b∑
i=1

min{pic0, qic1}. (10)

3. The histogram rule

This histogram rule[1,2,9] is by no means the only dis-
crete classification rule in use, but it is certainly the most
intuitive for categorical problems (another noteworthy ex-
ample of a discrete rule is the “maximum-mean-accuracy”
rule, used in[10]—there is also a myriad of discrete rules
used in Data mining[5]). The histogram rule corresponds

to the “plug-in” rule for approximating the Bayes classifier,
as we discuss below. In this paper, we will assume the his-
togram rule, but the methods described here are general and
can be applied in principle to any discrete classification rule.

Let Sn = {(X1, Y1), . . . , (Xn, Yn)} be an i.i.d. sample
taken from the probability model distributionF�, that is,
Sn ∼ Fn� . Let us define the random variables:

Ui = #{Xj = i | Yj = 0}, i = 1, . . . , b, (11)

Vi = #{Xj = i | Yj = 1}, i = 1, . . . , b. (12)

If we assume symmetric classification rules, i.e., rules for
which the order of the samples does not matter (which is the
case of the histogram rule and virtually all useful rules), then
the sample is completely determined by the random vari-
ablesU={U1, . . . , Ub}, V={V1, . . . , Vb}. LetN0 =∑

iUi
andN1 = ∑

iVi . Note thatN0 + N1 = n, the total num-
ber of samples. Two possibilities present themselves. One
may assume thatN0 andN1 are random variables, where
N0 is drawn from a binomial distribution with parameters
(n, c0) andN1 = n − N0. This corresponds to afull sam-
pling setting, wherein the samples are taken from the mix-
ture of populations, and one knows a priori only the total
number of samples, but not the number of samples that be-
long to each class (e.g., until the samples are labeled by an
expert). Another possibility is to fix the valuesN0 =n0 and
N1 = n1 = n− n0 during experimental design, and to sam-
ple the populations separately. This is the setting assumed,
for example, in[9]. We assume that the values ofn0 andn1
are chosen to reflect the a priori probabilitiesc0 andc1 of
each class:n0 = [c0n] andn1 = [c1n] = n− n0, where[x]
denotes the nearest integer tox. This is referred to asstrat-
ified sampling. Both full sampling and stratified sampling
are relevant from a practical perspective, and both will be
considered in this paper.

The classifier designed by the histogram rule given the
sampleSn is given by

g(i)= Ivi>ui =
{

1 if vi >ui
0 otherwise

, i = 1, . . . , b. (13)

For this reason, the histogram rule is also known as the
“majority” rule.

The maximum-likelihood (ML) estimates for the model
parametersc0, c1 and{pi}, {qi} are

ĉ0 = n0

n
, ĉ1 = n1

n
and p̂i = ui

n0
, q̂i = vi

n0
for i = 1, . . . , b. (14)

Plugging these back in the expression for the Bayes classi-
fier in (9) leads to the histogram classifier in (13). In other
words, the histogram rule is the plug-in rule for discrete
classification.

1802 U. Braga-Neto, E. Dougherty / Pattern Recognition 38 (2005) 1799–1814

4. True error rate

From (8), it is clear that the true error of the designed
histogram classifier is given by

� =
b∑
i=1

[c0pi IVi>Ui + c1qi IUi�Vi]. (15)

Being a function of the random sample, the true error� is a
random variable. The meanE[�] has an important meaning
in the context of classification rules: it gives the expected
true error over the random sample; hence, it does not depend
on the sample and is an intrinsic performance measure of
the histogram rule. The mean true errorE[�] measures the
difficulty of classification, if one uses the histogram rule,
given a probability model, the sample sizen, and complexity
b. The expected error can be calculated exactly using the
following expression:

E[�] =
b∑
i=1

[c0pi E[IVi>Ui] + c1qi E[IUi�Vi]]

=
b∑
i=1

[c0piP (Vi >Ui)+ c1qiP (Ui�Vi)]

=
b∑
i=1

n∑
k,l=0
k+l�n

�ik,l[c0pi Il>k + c1qi Ik� l], (16)

where�i
k,l

is the “first-order” joint probability distribution
P(Ui=k, Vi=l). In the stratified sampling case,Ui is clearly
independent ofVi , and both are binomially distributed with
parameters(n0, pi) and(n1, qi), respectively, so that

�i(strat)
k,l

= P(Ui = k)P (Vi = l)
=

(
n0
k

)
pki (1 − pi)n0−k

(
n1
l

)
qli (1 − qi)n1−l ,

(17)

for k = 0, . . . , n0 andl = 0, . . . , n1, with �i(strat)
k,l

= 0, oth-
erwise. In the full sampling case, we condition onN0, and
use the fact that, givenN0 = n0, Ui andVi are condition-
ally independent and binomially distributed with parameters
(n0, pi) and(n− n0, qi). Hence,

�i(full)
k,l

=
n∑

n0=0

P(Ui = k, Vi = l|N0 = n0) P (N0 = n0)

=
n∑

n0=0

P(Ui = k|N0 = n0)P (Vi = l|N0 = n0)

× P(N0 = n0)

=
n−l∑
n0=k

(
n0
k

)
pki (1 − pi)n0−k

(
n− n0
l

)

× qli (1 − qi)n−n0−l
(
n

n0

)
c
n0
0 c

n−n0
1

=
n−l∑
n0=k

(
n

k, l, n0 − k, n− n0 − l
)
pki q

l
i c
n0
0 c

n−n0
1

× (1 − pi)n0−k(1 − qi)n−n0−l , (18)

for k, l = 0, . . . , n, such thatk + l�n.
The variance of the true error can be computed by finding

the second momentE[�2]. This can be calculated exactly as
follows:

E[�2] =
b∑
i=1

{
c20p

2
i E[IVi>Ui] + c21q2

i E
[
IUi�Vi

]}

+
b∑

i,j=1
i �=j

{
c20pipj E

[
IVi>Ui IVj>Uj

]

+ c0c1
(
piqjE

[
IVi>Ui IUj �Vj

]
+ pj qiE

[
IUi�Vi IVj>Uj

])
+c21qiqj E

[
IUi�Vi IUj �Vj

]}
=

b∑
i=1

{
c20p

2
i P (Vi >Ui)+ c21q2

i P (Ui�Vi)
}

+
b∑

i,j=1
i �=j

{
c20pipj P (Vi >Ui, Vj >Uj)

+ c0c1[piqjP (Vi >Ui, Uj �Vj)

+ pj qiP (Ui�Vi, Vj >Uj)]

+c21qiqj P (Ui�Vi, Uj �Vj)
}

=
b∑
i=1

n∑
k,l=0
k+l�n

�ik,l

[
c20p

2
i Il>k + c21q2

i Ik� l
]

+
b∑

i,j=1
i �=j

n∑
k,l,r,s=0

k+l+r+s�n

�i,j
k,l,r,s

{
c20pipj Il>kIs>r

+ c0c1[piqj Il>kIr� s + pj qiIk� l Is>r]

+ c21qiqj Ik� l Ir� s
}

, (19)

where �i
k,l

is as defined previously, and�i,j
k,l,r,s

is the
“second-order” joint probability distributionP(Ui=k, Vi=
l, Uj = r, Vj = s). In the stratified sampling case,Ui,Uj

U. Braga-Neto, E. Dougherty / Pattern Recognition 38 (2005) 1799–1814 1803

are independent, as a group, ofVi, Vj , and each group is
trinomially distributed with parameters(n0, pi , pj) and
(n1, qi , qj), respectively, so that

�i,j (strat)
k,l,r,s

= P(Ui = k, Uj = r)P (Vi = l, Vj = s)
=

(
n0

k, r, n0−r−k
)
pki p

r
j (1−pi−pj)n0−r−k

×
(

n1
l, s, n1−s−l

)
qli q

s
j (1−qi−qj)n1−s−l ,

(20)

for k, r=0, . . . , n0 such thatk+r�n0, andl, s=0, . . . , n1

such thatl + s�n1, with �i,j (strat)
k,l,r,s

= 0, otherwise. In the
full sampling case, we condition onN0, and use the fact
that, givenN0 = n0, Ui,Uj are conditionally independent,
as a group, ofVi, Vj , and each group is trinomially dis-
tributed with parameters(n0, pi , pj) and (n − n0, qi , qj),
respectively, so that we may write

�i,j (full)
k,l,r,s

=
n∑

n0=0

P(Ui = k, Vi=l, Uj=r, Vj=s|N0=n0)

× P(N0 = n0)

=
n∑

n0=0

P(Ui = k, Uj = r|N0 = n0)

× P(Vi = l, Vj = s|N0 = n0)P (N0 = n0)

=
n−s−l∑
n0=k+r

(
n0

k, r, n0−r−k
)

× pki prj (1−pi−pj)n0−r−k

×
(

n− n0
l, s, n− n0−s−l

)
× qli qsj (1−qi−qj)n−n0−s−l

×
(
n

n0

)
c
n0
0 c

n−n0
1

=
n−s−l∑
n0=k+r

(
n

k, l, r, s, n0−r−k, n−n0−s−l
)

× pki qli prj qsj cn0
0 c

n−n0
1

× (1−pi−pj)n0−r−k(1−qi−qj)n−n0−s−l ,
(21)

for k, l, s, r = 0, . . . , n, such thatk + l + r + s�n.
The variance of the true error can be computed by using

(16) and (19) and the simple expression Var[�] = E[�2] −
E[�]2.

The formulas given above provide a fast way to compute
the expected value, second moment, and variance of the
true error. Other statistical summaries, such as skewness,
kurtosis, tail probabilities (in fact,anystatistical summary),
of the true error can be found, in a more computationally
expensive way, from the probability distributionP� of �. Due
to the fact that, in discrete classification, the total number of

sample configurations is finite, it is possible to calculateP�
by computer—for moderate sample sizen and complexity
b—as we describe next.

First, recall that the random sample is specified by the
random vectorsU andV, defined as before, so we write
�=�(U,V). The random vectorsU andV are discrete, and so
the random variable� is also discrete. Let theconfiguration
spaceDn be the (finite) set of all possible distinct values that
can be taken on by the pair(U,V). The discrete probability
distributionP� is given by

P�(a)=
∑

(u,v)∈Dn
I{�(u,v)=a}P(U = u,V = v). (22)

In the stratified sampling case,U is independent ofV,
and both are multinomially distributed with parameters
(n0, p1, . . . , pb) and(n1, q1, . . . , qb), respectively, so that

P (strat)(U = u,V = v)=
(

n0
u1, . . . , ub

) b∏
i=1

p
ui
i

×
(

n1
v1, . . . , vb

) b∏
i=1

q
vi
i

. (23)

To visualize the full sampling case, imagine that each bin
is split in two halves, one for the first class, and another for
the second class. The probability of a sample falling in bin
i of the first class is justP(X = i, Y = 0) = c0pi . Analo-
gously, the probability of a sample falling in bini of the
second class isP(X = i, Y = 1) = c1qi . The pair(U,V)
is thus jointly multinomially distributed with parameters
(n, c0p1, . . . , c0pb, c1q1, . . . , c1qb). Thus we can write

P (full)(U = u,V = v)

=
(

n

u1, . . . , ub, v1, . . . , vb

)
c

∑
iui

0 c

∑
i vi

1

b∏
i=1

p
ui
i
q
vi
i

.

(24)

Now, let us defineCm as the set of possible configura-
tions thatm objects can take over the bins. An algorithm to
generateCm is described in the Appendix. It is clear that,
in the case of stratified sampling, the configuration space is

given byD(strat)
n =Cn0 ×Cn1, whereas in the full sampling

case, we have thatD(full)
n = ⋃n

n0=0[Cn0 × Cn−n0].
The probability distributionP� in (22) can be calculated

by computer by using the following simple algorithm.
Algorithm PDF: FindDn, as described above. For each

pair (u, v) ∈ Dn, calculate its probabilityP(U = u,V =
v) and the corresponding error�(u, v)—if this error value
has not been encountered before, create a new entry in the
probability distribution vector and initialize it withP(U =
u,V = v), otherwise simply addP(U = u,V = v) to the
existing entry for�(u, v).

1804 U. Braga-Neto, E. Dougherty / Pattern Recognition 38 (2005) 1799–1814

5. Error estimators

In practice, the underlying probability model is unknown,
and the true error� has to be estimated from the sample data
using anerror estimator�̂. An error estimator may be a de-
terministic function of the sample dataSn, in which case it is
a non-randomized error estimator. Such an error estimator
is random only through the random sample. Among popu-
lar non-randomized error estimators, we have resubstitution
and leave-one-out. By contrast,randomized error estimators
have “internal” random factors that affect their outcome.
Popular randomized error estimators include (random-fold)
cross-validation and all bootstrap error estimators.

Theinternal varianceof an error estimator is the variance
due only to its internal random factors,Vint = Var(�̂|Sn).
This variance is zero for non-randomized error estimators.
The full variance Var(�̂) of the error estimator, on the other
hand, also takes into account the uncertainty introduced by
the random sample data. See[13] for a detailed discussion
of issues regarding randomized and non-randomized error
estimators, internal and full variance, etc.

Of great interest in the analysis of performance of an error
estimator̂� are itsbias,

Bias[�̂] = E[�̂] − E[�], (25)

the deviation variance,

Vard[�̂] = Var[�̂ − �]
= E[(�̂ − �)2] − E[(�̂ − �)]2
= E[�2] − 2E[��̂] + E[�̂2] − Bias[�̂]2, (26)

and theroot mean-square error,

RMS[�̂] =
√
E[(�̂ − �)2]

=
√

Vard[�̂] + Bias[�̂]2

=
√
E[�2] − 2E[��̂] + E[�̂2]. (27)

Note that all three measures require only the first and second
moments of� and �̂, and the correlation between� and �̂.

The bias of an error estimator measures whether, on av-
erage, it overestimates the true error, or underestimates it.
The deviation variance measures the spread of the deviation
distribution. Low bias is not good enough if the deviation
variance is large. This means that on average the error esti-
mator is close to the true error, but that in fact the estimate
for any particular sample set is likely to be far away from
the true error. The RMS combines the two complementary
measures of bias and deviation variance into a single figure
of merit that provides an error measure for estimating the
classifier error by the estimator.

In the next few subsections, we discuss a number of well-
known non-randomized and randomized error estimators.

5.1. Resubstitution

The simplest and fastest way to estimate the error of a
classifierg is to compute its error directly on the sample
data itself:

�̂r = 1

n

n∑
i=1

|yi − g(xi)|.

(28)

This resubstitution estimator[14] is clearly a non-
randomized error estimator. It is very fast; however, it
can be shown that Bias[�̂r]<0 for the histogram rule[1].
The largerb is, the more optimistic is resubstitution, since
complex classifiers tend to overfit the data, especially with
small samples[15]. Nevertheless, provided that classifier
complexity is not too high, resubstitution can be surpris-
ingly accurate relative to more complex error estimation
schemes, as we will show in Section 7.

5.2. Cross-validation

Cross-validation removes the optimism from resubstitu-
tion by employing test points not used in classifier design
[16]. In k-fold cross-validation, the data setSn is partitioned
into k foldsSi , for i = 1, . . . , k (for simplicity, we assume
thatk dividesn). A classifiergi is designed on the sample set
Sn\Si , and it is tested onSi , for i = 1, . . . , k. The estimate
is the overall proportion of error committed on all folds:

�̂cvk = 1

n

k∑
i=1

n/k∑
j=1

|yij − gi(xij)|, (29)

where(xi
j
, yi
j
) is a sample in theith fold. The process may

be repeated: a number ofr cross-validation estimates are
computed using different partitions of the data into folds,
and the results are averaged, producing ther-repeated k-
fold cross validationestimator̂�cvkr . Clearly, botĥ�cvk and
�̂cvkr are randomized error estimators.

Let �n denote the error of a classifier designed on a sam-
ple of sizen. A k-fold cross-validation estimator is unbiased
as an estimator ofE[�n−n/k], which makes it slightly pes-
simistic (high-biased) as an estimator ofE[�n]. The most
well-known cross-validation method, usually attributed to
[17], is the leave-one-out estimator, where a single obser-
vation is left out each time:

�̂l = 1

n

n∑
i=1

|yi − gi(xi)|, (30)

This corresponds ton-fold cross-validation and is a non-
randomized estimator. The leave-one-out estimator is un-
biased as an estimator ofE[�n−1]. The main drawback of
cross-validation estimators are their large deviation variance
[1,18]. They can also be quite slow to compute when the
number of folds or samples is large.

U. Braga-Neto, E. Dougherty / Pattern Recognition 38 (2005) 1799–1814 1805

5.3. Bootstrap

The bootstrap error estimation technique[19,20] is based
on the notion of a “bootstrap sample”S∗

n , which consists of
n equally likely draws with replacement from the original
dataSn. Hence, some of the samples will appear multiple
times, whereas others will not appear at all. The actual pro-
portion of times a data point(xi , yi) appears inS∗

n can be
written asP ∗

i
= 1/n

∑n
j=1I(x∗

j ,y
∗
j)=(xi ,yi). For the compu-

tation of the basicbootstrap zero estimator[20], a number
of bootstrap samplesS∗t

n , for t = 1, . . . , T are drawn—a
value ofT between 25 and 200 being recommended in[20].
A classifiergt is designed on the bootstrap sampleS∗t

n , and
it is tested onSn\S∗t

n , for t = 1, . . . , T . The estimate is the
overall proportion of error committed on all bootstrap sam-
ples:

�̂0 =
∑T
t=1

∑n
i=1|yi − gt (xi)| IP ∗t

i =0∑T
t=1

∑n
i=1IP ∗t

i =0

. (31)

The bootstrap zero estimator works like cross-validation:
the classifier is designed on the bootstrap sample and tested
on the original data points that are left out. It tends to be
high-biased as an estimator ofE[�n], since the amount of
samples available for designing the classifier is on average
only (1 − e−1)n ≈ 0.632n. The .632 bootstrap estimator
[20],

�̂b632= (1 − 0.632) �̂r + 0.632�̂0, (32)

tries to correct this bias by doing a weighted average of
the bootstrap zero and resubstitution estimators. This has
been perhaps the most popular bootstrap estimator in data
mining [5]. It has low variance, but can be extremely slow
to compute. In addition, it can fail when resubstitution is
too low-biased[18].

6. Exact performance of non-randomized error
estimators

As remarked in connection with Eqs. (25)–(27), in order
to compute the bias, deviance variation, and RMS of an er-
ror estimator, one needs the first and second moments of the
true error,E[�] andE[�2]; the first and second moments of
the error estimatorE[�̂] andE[�̂2]; and the correlation be-
tween true error and error estimator,E[��̂]. Exact formulas
for computingE[�] andE[�2] were given in Section 4. In
this section, we give exact formulas for the computation of
E[�̂],E[�̂2], andE[��̂], for two widely used non-randomized
error estimators: resubstitution and leave-one-out. This al-
lows one to compute exact values for bias, deviance varia-
tion, and RMS for these error estimators, for a given number
of samples, number of bins, and probability model.

6.1. Resubstitution

From (13) and (28), it follows that the resubstitution error
estimator can be written as

�̂r = 1

n

b∑
i=1

min{Ui, Vi} = 1

n

b∑
i=1

[Ui IVi>Ui + Vi IUi�Vi].

(33)

Given the training sample (i.e., the sample values ofUi, Vi ,
for i=1, . . . , b), the resubstitution estimate is deterministic;
therefore, it is a non-randomized error estimator. An inter-
esting fact about resubstitution, as can be easily verified, is
that plugging the ML estimates of the model parameters in
(14) into the expression for the Bayes error in (8) leads to
(33). In other words, resubstitution is the “plug-in” estima-
tor of the Bayes error for the histogram rule.

The expected resubstitution error over the sample can be
calculated exactly using the following expression:

E[�̂r] = 1

n

b∑
i=1

[E[UiIVi>Ui] + E[ViIUi�Vi]]

= 1

n

b∑
i=1

n∑
k,l=1
k+l�n

�ik,l[k Il>k + l Ik� l], (34)

where�i
k,l

can be calculated with expressions (17) and (18),
in the stratified and full sampling cases, respectively.

From (33), it follows that the second momentE[�̂2
r] can

be written as

E[�̂2
r] = 1

n2

b∑
i=1

{
E[U2

i IVi>Ui] + E[V 2
i IUi�Vi]

}

+ 1

n2

b∑
i,j=1
i �=j

{
E[UiUj IVi>Ui IVj>Uj]

+ E[UiVj IVi>Ui IUj �Vj]
+ E[UjViIUi�Vi IVj>Uj]
+E[ViVj IUi�Vi IUj �Vj]

}
= 1

n2

b∑
i=1

n∑
k,l=1
k+l�n

�ik,l[k2 Il>k + l2 Ik� l]

+ 1

n2

b∑
i,j=1
i �=j

n∑
k,l,r,s=1

k+l+r+s�n
× �i,j

k,l,r,s
[kr Il>kIs>r + ks Il>kIr� s

+ rl Ik� l Is>r + ls Ik� l Ir� s], (35)

where�i,j
k,l,r,s

can be calculated with expressions (20) and
(21), in the stratified and full sampling cases, respectively.

1806 U. Braga-Neto, E. Dougherty / Pattern Recognition 38 (2005) 1799–1814

The expression for the correlation between the true error
and the resubstitution estimator can be derived as follows:

E[��̂r] = 1

n

b∑
i=1

{
c0pi E[UiIVi>Ui] + c1qi E[ViIUi�Vi]

}

+ 1

n

b∑
i,j=1
i �=j

{
c0pi(E[Uj IVi>Ui IVj>Uj]

+ E[Vj IVi>Ui IUj �Vj])
+ c1qi(E[Uj IUi�Vi IVj>Uj]

+E[Vj IUi�Vi IUj �Vj])
}

= 1

n

b∑
i=1

n∑
k,l=1
k+l�n

�ik,l[c0pikI l>k + c1qi lI k� l]

+ 1

n

b∑
i,j=1
i �=j

n∑
k,l=0
r,s=1

k+l+r+s�n

�i,j
k,l,r,s

× {c0pi(r Il>kIs>r + s Il>kIr� s)
+ c1qi(r Ik� l Is>r + s Ik� l Ir� s)}. (36)

One can also compute the PDF of the resubstitution esti-
mator, for a given model, by applying algorithmPDF (see
Section 4), witĥ�r (u, v) in place of�(u, v).

Of more interest is the PDF of the deviation�̂r − �. The
mean and variance of the deviation PDF give the bias and
deviation variance of the error estimator. Other statistics,
such as skewness, kurtosis, etc. can be easily computed.
The deviation PDFs of several error estimator have been
approximated in[18] by Monte-Carlo sampling, in a study
involving continuous classification rules. In the present dis-
crete classification setting, the deviation PDF is discrete and
can be computed exactly by applying algorithmPDF, with
�̂r (u, v)− �(u, v) in place of�(u, v).

6.2. Leave-one-out

In the case of discrete histogram classification, the leave-
one-out error estimator can be written as

�̂l = 1

n

b∑
i=1

[Ui IVi�Ui + Vi IUi�Vi−1]. (37)

It can be easily seen that this is a non-randomized er-
ror estimator. It is interesting to note that equation (37)
for leave-one-out is similar to the expression (33) for
resubstitution—however, the behaviour of the two estima-
tors is completely different, as we will in Section 7.

The expected leave-one-out error over the sample can be
calculated exactly using the following expression:

E[�̂l] = 1

n

b∑
i=1

[E[UiIVi�Ui] + E[ViIUi�Vi−1]]

= 1

n

b∑
i=1

n∑
k,l=1
k+l�n

�ik,l[k Il�k + l Ik� l−1], (38)

where the coefficients�i
k,l

are computed with expressions
(17) and (18), in the stratified and full sampling cases, re-
spectively.

From (37), it follows that the second momentE[�̂2
l] can

be written as

E[�̂2
l] = 1

n2

b∑
i=1

{
E[U2

i IVi�Ui]+2E[UiViIUi�Vi�Ui+1]

+E[V 2
i IUi�Vi−1]

}
+ 1

n2

b∑
i,j=1
i �=j

{
E[UiUj IVi�Ui IVj �Uj]

+ E[UiVj IVi�Ui IUj �Vj−1]
+ E[UjViIUi�Vi−1IVj �Uj]
+ E[ViVj IUi�Vi−1IUj �Vj−1]

}
= 1

n2

b∑
i=1

n∑
k=0
l=1

k+l�n

�ik,l[k2 Il�k + 2klI k� l�k+1

+ l2 Ik� l−1]

+ 1

n2

b∑
i,j=1
i �=j

n∑
k,r=0
l,s=1

k+l+r+s�n

�i,j
k,l,r,s

× [kr Il�kIs� r + ks Il�kIr� s−1

+ rl Ik� l−1Is� r + ls Ik� l−1Ir� s−1], (39)

where the coefficients�i,j
k,l,r,s

are calculated via expressions
(20) and (21), in the stratified and full sampling cases, re-
spectively.

Next, we derive the correlation between the true error and
the leave-one-out estimator:

E[��̂l] = 1

n

b∑
i=1

{
c0pi(E[UiIVi>Ui] + E[ViIVi=Ui+1])

+c1qi(E[UiIUi=Vi] + E[ViIUi�Vi])
}

+ 1

n

b∑
i,j=1
i �=j

{
c0pi(E[Uj IVi>Ui IVj �Uj]

+ E[Vj IVi>Ui IUj �Vj−1])

U. Braga-Neto, E. Dougherty / Pattern Recognition 38 (2005) 1799–1814 1807

+ c1qi(E[Uj IUi�Vi IVj �Uj]
+E[Vj IUi�Vi IUj �Vj−1])

}
= 1

n

b∑
i=1

n∑
k=0
l=1

k+l�n

�ik,l[c0pi(kI l>k + lI l=k+1)

+ c1qi(kIk=l + lI k� l)]

+ 1

n

b∑
i,j=1
i �=j

n∑
k,l,r=0
s=1

k+l+r+s�n

�i,j
k,l,r,s

× {
c0pi(r Il>kIs� r + s Il>kIr� s−1)

+ c1qi(r Ik� l Is� r + s Ik� l Ir� s−1)
}

. (40)

As in the case of resubstitution, one can also compute
the PDF of the leave-one-out estimator, for a given model,
by applying algorithmPDF(see Section 4), witĥ�l (u, v) in
place of�(u, v). Similarly, one can compute the PDF of the
deviation�̂l− � by substitutinĝ�l (u, v)− �(u, v) for �(u, v).

7. Parametric model

In this section, we display exactly computed performance
measures for resubstitution and leave-one-out, under vary-
ing expected true error, number of samples, and number of
bins. We use a parametric Zipf model, where the parame-
ter controls the difficulty of classification. In each case, we
also plot the approximate performance measures for cross-
validation and bootstrap-based error estimators, computed
by Monte-Carlo sampling.

We observed that results for the stratified and full sam-
pling cases display the same general trends, so we will focus
here on the stratified sampling case (the difference between
the two types of sampling is most noticeable in the bias of
the error estimators, and the difference becomes significant
only for moderate to high errors). An extensive set of plots
for both stratified and full sampling can be found on the
companion website.

For simplicity, we assume throughout equally likely
classes, i.e.,c0 = c1 = 0.5. We consider only even number
of samplesn, so that there is the same numbern/2 of
samples in each class.

The Zipf distribution is a well-known power-law discrete
distribution, encountered in many applications. It was orig-
inally introduced by G.K. Zipf to model the frequency of
words in common text[21]. The class-conditional probabil-
ities under the parametric Zipf model are given by:

pi = K

i�
, (41)

qi = pb−i+1 (42)

for i = 1, . . . , b. Here�>0, and the normalizing constant
K is given by

K =
 b∑
i=1

(
1

i�

)−1

. (43)

It is clear that, as� → 0, the distributions tend to be-
come uniform—which represents maximum confusion be-
tween the classes—whereas, as� → ∞, the distributions
become concentrated in single (distinct) bins—which corre-
sponds to maximum discrimination between the classes. In
fact, the expected true error of the histogram rule decreases
monotonically with�.

As remarked previously, for moderaten and b, we can
compute the probability distribution function of the true er-
ror, by applying algorithmPDFdescribed in Section 4.Fig.
1 displays the PDFs so computed, for a few values of the
parameter� (ranging from easy to hard classification), in
the casen= 20 andb= 4. These plots indicate that the true
error is small for large�, moderate near� = 1, and near
0.5 for small�. Varying the parameter� therefore traverses
the probability model space continuously from easy to dif-
ficult models. This is needed because we want to study the
performance of error estimators under varying difficulty of
classification.

Besides resubstitution and leave-one-out, we consider
10-repeated 4-fold cross-validation and the .632 bootstrap
(additionally, simple 4-fold cross-validation and thebias-
corrected bootstraperror estimator[20] are included on the
website). For the 0.632 error estimator,T = 100 bootstrap
samples are employed. Performance measures for resubsti-
tution and leave-one-out are exact; they are computed using
the analytical expressions developed in Section 6. For the
other error estimators, which are randomized, performance
measures are derived from a Monte-Carlo computation us-
ing 20,000 samples from each probability model (parameter
value).

First, consider the casen = 40, and three representative
values for the complexity,b = 4,8,16; in a setting where
each feature is binary, this would correspond to classifica-
tion using 2,3, and 4 features, respectively. For example, in
functional genomics applications, gene expression is often
binary (a promoter is either on or off). The cases considered
here correspond to prediction using 2,3 or 4 genes.

Fig. 2 displays the bias, deviance variation and RMS of
the error estimators considered here, as a function of the
expected true error computed for a number of distinct models
(i.e., distinct parameters�) of the parametric Zipf model.
The parameters are selected such that the corresponding
expected true errors are equally spaced. Easy discrimination
is thus located on the left of the plots, whereas difficult
discrimination is located on the right.

Several expected facts become readily apparent. Resub-
stitution is low-biased, whereas cross-validation is slightly
high-biased, and the bias increases in each case with the

1808 U. Braga-Neto, E. Dougherty / Pattern Recognition 38 (2005) 1799–1814

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

� = 2.48
E[�] = 0.10

� = 1.32
E[�] = 0.25

� = 0.66
E[�] = 0.40

Fig. 1. Exact PDF of true error under the Zipf model, for a few values of the parameter�, in the casen= 20 andb = 4, with associated
expected error rates.

Bias Deviation RMS

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0 0.1 0.2 0.3 0.4 0.5
 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 0.1 0.2 0.3 0.4 0.5
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 0.1 0.2 0.3 0.4 0.5

-0.18
-0.16
-0.14
-0.12
-0.1

-0.08
-0.06
-0.04
-0.02

 0
 0.02
 0.04

 0 0.1 0.2 0.3 0.4 0.5
 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 0.1 0.2 0.3 0.4 0.5
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 0.1 0.2 0.3 0.4 0.5

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0 0.1 0.2 0.3 0.4 0.5
 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 0.1 0.2 0.3 0.4 0.5
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4 0.5

b
 4

=
b

 8
=

b
 1

6
=

Variance

Fig. 2. Bias, deviation variance, and RMS for several error estimators vs. expected true error, forn= 40 and varying classifier complexity.
Plot key:×= resubstitution,◦= leave-one-out,�= 10-repeated 4-fold cross-validation,+= 0.632 bootstrap. The curves for resubstitution
and leave-one-out are exact; the curves for the other error estimators are approximations based on Monte-Carlo computation.

difficulty of classification. Resubstitution has quite low vari-
ance, whereas cross-validation is highly variable. The boot-
strap error estimator is generally the best-performing esti-

mator, whereas leave-one-out is very variable, and often the
worst-performing error estimator. What may be perhaps a
bit surprising is that resubstitution is equivalent in overall

U. Braga-Neto, E. Dougherty / Pattern Recognition 38 (2005) 1799–1814 1809

Bias Deviation RMS

n
=

20
n

=
40

n
=

60

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 4 6 8 10 12 14 16
 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 4 6 8 10 12 14 16
 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 4 6 8 10 12 14 16

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 4 6 8 10 12 14 16
 0.002

 0.0025
 0.003

 0.0035
 0.004

 0.0045
 0.005

 0.0055
 0.006

 0.0065
 0.007

 0.0075

 4 6 8 10 12 14 16
 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 4 6 8 10 12 14 16

-0.09
-0.08
-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

 0
 0.01
 0.02

 4 6 8 10 12 14 16
 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 4 6 8 10 12 14 16
 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 4 6 8 10 12 14 16

Variance

Fig. 3. Bias, deviation variance, and RMS for several error estimators vs. number of bins, forE[�] = 0.2 and varying number of samples.
Plot key:×= resubstitution,◦= leave-one-out,�= 10-repeated 4-fold cross-validation,+= 0.632 bootstrap. The curves for resubstitution
and leave-one-out are exact; the curves for the other error estimators are approximations based on Monte-Carlo computation.

performance (as measured by the RMS) to the bootstrap es-
timator, which is much more expensive to compute, for the
caseb=4 (low complexity). We will have more to say about
this in the next section.

In order to assess the performance of resubstitution and
the remaining error estimators with respect to complex-
ity, we display inFig. 3 performance measures as a func-
tion of the number of bins, forn = 20,40,60, and moder-
ate classification difficulty:E[�] = 0.2. The RMS column
shows that resubstitution is equivalent in performance to
the bootstrap estimator forb = 4, and is better than the
cross-validation error estimator for low enough complex-
ity. We can see that, as the number of samples increases
(which alleviates the bias problem of resubstitution), then
the classification complexity cut-off at which resubstitution
beats the cross-validation estimator increases. It is interest-
ing to note that leave-one-out is less biased than the other
more complex cross-validation estimator, across the whole
range of complexity displayed in the plot, and for all sam-
ple sizes. However, as the number of samples increases,

its deviation variance becomes the worst among all error
estimators.

To visualize the effect of sample size, we display inFig.
4 performance measures as a function ofn, for b= 4,8,16,
and again moderate classification difficulty:E[�] = 0.2. As
expected, as sample size increases, there is a decrease in
bias (in magnitude), deviance variation and RMS. We again
can see that resubstitution is the least variable error estima-
tor, whereas leave-one-out is the most variable one. On the
RMS column, we can see that resubstitution is equivalent
in performance to the bootstrap estimator forb = 4, but its
performance quickly degrades as the classifier complexity
increases.

Some of the observations made above about resubstitu-
tion and leave-one-out are confirmed by plotting the PDFs
of these error estimators, which are computed using the al-
gorithm PDF described in Section 4 (see remarks made in
Section 6 on how to adapt that algorithm for computing the
PDFs shown here). As argued previously, we are really in-
terested in the deviation PDFs, i.e., the PDFs of�̂− �, where

1810 U. Braga-Neto, E. Dougherty / Pattern Recognition 38 (2005) 1799–1814

Bias Deviation

b
=

4
b

=
8

b
=

16

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 20 25 30 35 40 45 50 55 60
 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 20 25 30 35 40 45 50 55 60
 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 20 25 30 35 40 45 50 55 60

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 20 25 30 35 40 45 50 55 60
 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 20 25 30 35 40 45 50 55 60
 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 20 25 30 35 40 45 50 55 60

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 20 25 30 35 40 45 50 55 60
 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 20 25 30 35 40 45 50 55 60
 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 20 25 30 35 40 45 50 55 60

Variance RMS

Fig. 4. Bias, deviation variance, and RMS for several error estimators vs. sample size, forE[�] = 0.2 and varying number of bins. Plot
key: ×= resubstitution,◦= leave-one-out,�= 10-repeated 4-fold cross-validation,+= 0.632 bootstrap. The curves for resubstitution and
leave-one-out are exact; the curves for the other error estimators are approximations based on a Monte-Carlo computation.

�̂ is the error estimator under consideration.Fig. 5 displays
the exact deviation PDFs of resubstitution and leave-one-
out, for a few values of the expected true error, in the case
n= 20 andb = 4 (the models here correspond to the same
choices of� in Fig. 1). Note that the PDFs for resubstitu-
tion are skewed to the left (low-bias), whereas the PDFs for
leave-one-out are approximately centered, but much more
spread out than the corresponding ones for resubstitution.
They are also quite skewed to the right, which is notewor-
thy. In particular, for moderate to hard classification, dis-
played in the middle and rightmost columns ofFig. 5, there
are likely outcomes with high positive deviation, close to
0.5. There are even some outcomes—admittedly, improba-
ble ones—that have positive deviation over 0.5!

8. Discussion

The results presented in the previous section provide a
few definite conclusions and also evidence for some general

trends. Owing to increasing low bias for an increasing num-
ber of bins, the RMS for resubstitution becomes prohibitive
for aroundb>10; however, for low-complexity classifiers,
resubstitution becomes competitive with leave-one-out.
With 8 bins, resubstitution performs almost as well as
leave-one-out for sample size as low asn=20, does slightly
better than leave-one-out forn = 40, and outperforms
leave-one-out forn = 60. Factoring in computation speed,
this means that for binomial discrimination, such as that
used with Boolean networks, resubstitution is preferable to
leave-one-out when the transition functions for Boolean net-
works possess 3 variables or less, which is usually the case
for Boolean gene regulatory networks[22,23]. Moreover,
although we shall not go quantitatively into the matter here,
taking into account complexity considerations withn= 40,
it is prudent not to use more than 3 variables for binomial
discrimination if one wants to be confident that the expected
design error (owing to overfitting) is not excessive[1].

Whereas we have come to the preceding conclusions via
exact representation of the RMS, it is interesting to note that

U. Braga-Neto, E. Dougherty / Pattern Recognition 38 (2005) 1799–1814 1811

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

0.25

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Resubstitution PDFs

Leave-one-out PDFs

E[�] = 0.10

E[�] = 0.10

E[�] = 0.25

E[�] = 0.25

E[�] = 0.40

E[�] = 0.40

Fig. 5. Exact deviation PDFs of resubstitution and leave-one-out, for a few values of the expected true error, in the casen= 20 andb= 4.

similar, albeit less precise, conclusions can be gleaned from
previously established RMS bounds (Devroye et al., 1996),
for resubstitution,

RMS[�̂r]�
√

6b

n
, (44)

and for leave-one-out,

RMS[�̂l]�
√

1 + 6e−1

n
+ 6√

�(n+ 1)
. (45)

The strong point of these bounds is that they are
distribution-free. Hence, it is not surprising that they are
quite loose and not helpful for small samples. For instance,
for n = 100, the leave-one-out bound exceeds 0.435. The
bounds contain asymptotic information. For instance, the
resubstitution bound goes to 0 much faster than the leave-
one-out bound asn → ∞, indicating that resubstitution is
better than leave-one-out for large samples. Although the
bounds are not practically useful for small samples, they
do have the property that the leave-one-out bound exceeds
the resubstitution bound for a sufficiently small number of
bins, even in the case of small samples. Thus, the relation
between the RMS bounds agrees with the relations we have
discovered via exact representation of the RMS.

Generally, there are two basic problems with leave-one-
out that negatively affect application for small samples.

First, it possesses a prohibitively large deviation variance
that gives rise to high RMS. Second, its PDF is skewed to
the right and with significant probability the error estimator
produces high outliers. The latter behavior is critical when
predictability is being used to discover potential multivari-
ate regulatory behavior[24]. In such situations, one wishes
to avoid false negatives because these will be erroneously
excluded from further bio-chemical analysis (as opposed to
false positives, which will be thrown out upon wet-bench
analysis).

Regarding the relationship between leave-one-out and
the 10-repeated 4-fold cross-validation estimator, we note
that, as the sample size increases, the deviation variance of
leave-one-out decreases slower. This results in a correspond-
ing slower decrease in RMS. The overall performance of
10-repeated 4-fold cross-validation is superior; however, in
some cases the difference is so small that it cannot justify
the high computational cost of this error estimator.

The 0.632 bootstrap error estimator is affected by the low-
bias of resubstitution when complexity is high, since it incor-
porates the resubstitution estimate in their computation. The
0.632 bootstrap estimator is clearly superior to 10-repeated
4-fold cross-validation, but it is also the most computation-
ally costly error estimator considered in this study.

Perhaps the most remarkable observation is that, for very
low complexity classifiers (aroundb=4), resubstitution be-
comes as accurate as the 0.632 bootstrap error estimator,

1812 U. Braga-Neto, E. Dougherty / Pattern Recognition 38 (2005) 1799–1814

despite the fact that resubstitution is typically much faster
to compute (in some cases considered in[18], hundreds of
times faster). In fact, we observe that for small sample sizes
(n<30), resubstitution can actually be more accurate than
the 0.632 bootstrap estimator, for low to moderate true er-
rors. The restriction to moderate true errors is not conse-
quential because in real-world applications that employ ro-
bust feature selection algorithms, it is highly unlikely that
true errors of over 0.3 will be encountered.

9. Conclusion

The main contribution made in this paper is an analytical
formulation of performance measures of the resubstitution
and leave-one-out error estimators for the discrete histogram
rule. We also describe an algorithm to compute the PDFs of
these estimators, or their deviation with respect to the true
error. The algorithm is computationally intensive, but nev-
ertheless effective for moderate sample size and classifier
complexity. We have compared the performance of resub-
stitution and leave-one-out cross-validation against approx-
imate performance measures of cross-validation and boot-
strap error estimators, and the results indicate at least one
perhaps surprising fact: resubstitution, a very simple, inex-
pensive, and sometimes neglected error estimator, can be
the best option, even over the bootstrap error estimator, for
very-low-complexity classifiers, such as those used in gene
prediction. We believe that too scant attention has been paid
to non-asymptotic analytical studies of error estimators in
the literature, and we hope that this paper will provide mo-
tivation for further study.

Appendix

For a given 0�m�n, the algorithm to find all configu-
rations inCm (for either class) is described next. Letdi is
the number of samples in bini, for i = 0, . . . , b − 1. We
will interpret a bin configuration vector[db−1 . . . d1 d0]
as a b-digit number t represented in base(m+ 1). To
represent a valid bin configuration,t must satisfy: (1)
m� t�m ∗ (m + 1)b−1, since these limits correspond
to the “minimum” and “maximum” configuration vectors
[0 . . . 0m] and[m0 . . . 0], respectively; (2) the sum of the
digits of t must bem.

An algorithm to find all bin configurations is therefore
to go through all numbers betweenm and (m + 1)b−1,
checking for each number whether the sum of its digits
in base(m + 1) is m. However, since one would have to
go through(m + 1)b−1 − m + 1 numbers, this algorithm
can be very expensive computationally whenm and b are
moderate to large. We can reduce the computationally load
significantly by exploiting the properties given in the next
two results.

Proposition 1. The total number of configurations inCm is
given by

|Cm| =
(
m+ b − 1
b − 1

)
(46)

Proof. First, let us consider the number of configurations
where no bin is empty. Each such configuration corresponds
uniquely to a choice ofb−1 spots among them−1 spaces be-
tween them samples, on which to erect “bin walls”. The to-
tal number of configurations where no bin is empty is there-
fore (m−1

b−1). Now each configuration inCm corresponds
uniquely to a configuration ofm+ b samples distributed in
b non-empty bins, by subtracting from the latter configura-
tion one sample from each bin. Therefore,|Cm|=(m+b−1

b−1),
as required. �

Proposition 2. The sum of the digits of a number t in base
(m+1) is a multiple of m if and only if t is a multiple of m.

Proof. The digits oft in base(m+ 1) are given by

di =
⌊

t

(m+ 1)i

⌋
− (m+ 1)

⌊
t

(m+ 1)i+1

⌋
(47)

for i = 0, . . . , b− 1, where�x� is the largest integer less or
equal than the real numberx. Direct summation leads to

s :=
b−1∑
i=0

di = t −m
b−1∑
i=0

⌊
t

(m+ 1)i

⌋
. (48)

Therefore,s= t−km ≈ t−s=km, wherek is an integer. In
other words,t − s is a multiple ofm, so thats is a multiple
of m if and only if t is. �

Note that Proposition 2 specializes to a well-known arith-
metic fact in the casem= 9. As a corollary of Proposition
2, for the sum of the digits of a numbert in base(m+1)
to be equal tom, it is necessary thatt be a multiple ofm.
This means that only(1/m) of numbers need to be checked
for valid configurations in our algorithm, which provides
considerable savings. Furthermore, the smallest and largest
configurations are known, so the search needs to be done
inside that interval. This can be done by initializing the
list of configurations with the smallest one, proceed with
the search and stop whenl − 1 configurations have been
found, wherel is the total number of configurations, given by
Proposition 1. The algorithm, in pseudo-code, consists of the
following:

nc : =
(
m+ b − 1
b − 1

)
t : = m;
c : = 1;

U. Braga-Neto, E. Dougherty / Pattern Recognition 38 (2005) 1799–1814 1813

initialize list of configurations with
[0 . . . 0m];

repeat
find representation [db−1 . . . d1 d0] of t

in base (m+ 1);
if

∑b−1
i=0di =m
add [db−1 . . . d1 d0] to list of

configurations;
c : = c + 1;

end if
t : = t +m;

until c = nc-1
add [m0 . . . 0] to list of configurations .

We remark that this is not the most efficient possible al-
gorithm to compute the list of configurations—for example,
it is possible to compute very efficiently the list of con-
figurations form = m0 in recursive fashion, based on the
configuration lists form= 0,1, . . . , m0 − 1. This of course
requires that all configuration lists form= 0,1, . . . , m0 − 1
have been previously computed and stored. In any event,
considering that the configurations need to be computed
only once and then can be reused indefinitely, the algo-
rithm presented is simple and fast enough to serve our
purposes.

References

[1] L. Devroye, L. Gyorfi, G. Lugosi, A Probabilistic Theory of
Pattern Recognition, Springer, New York, 1996.

[2] N. Glick, Sample-based multinomial classification, Biometrics
29 (2) (1973) 241–256.

[3] M. Goldstein, W.R. Dillon, Discrete Discriminant Analysis,
Wiley, New York, 1978.

[4] M. Hills, Discrimination and allocation with discrete data,
Appl. Statist. 16 (3) (1967) 237–250.

[5] I.H. Witten, E. Frank, Data Mining, Academic Press, San
Diego CA, 2000.

[6] K.F. Hirji, C.R. Mehta, N.R. Patel, Computing distributions
for exact logistic regression, J. Am. Statist. Assoc. 82 (400)
(1987) 1110–1117.

[7] M.A. van de Wiel, A. Di Bucchianico, P. van der Laan,
Symbolic computation and exact distributions of nonpara-
metric test statistics, Statistician 48 (4) (1999) 507–516.

[8] J.H. Klotz, The wilcoxon, ties, and the computer, J. Am.
Statist. Assoc. 61 (315) (1966) 772–787.

[9] G.F. Hughes, On the mean accuracy of statistical pattern
recognizers, IEEE Trans. Inform. Theory 14 (1) (1968) 55–63.

[10] G.F. Hughes, Number of pattern classifier design samples
per class, IEEE Trans. Inform. Theory 15 (5) (1969)
615–618.

[11] L. Kanal, B. Chandrasekaran, On dimensionality and sample
size in statistical pattern classification, Pattern Recognition 3
(3) (1971) 225–234.

[12] A.K. Jain, B. Chandrasekaran, Dimensionality and sample
size considerations in pattern recognition practice, in:
P.R. Krishnaiah, L.N. Kanal (Eds.), Classification Pattern
Recognition and Reduction of Dimensionality, Handbook
of Statistics, vol. 2, North-Holland, Amsterdam, 1982, pp.
835–856, Chapter 39.

[13] U.M. Braga-Neto, E.R. Dougherty, Classification, in:
Genomic Signal Processing and Statistics, in: E. Dougherty,
I. Shmulevich, J. Chen, Z.J. Wang (Eds.), EURASIP Book
Series on Signal Processing and Communication, Hindawi
publishing corporation, 2005.

[14] C.A.B. Smith, Some examples of discrimination, Ann. of
Eugenics 18 (1947) 272–282.

[15] V.N. Vapnik, Statistical Learning Theory, Wiley, New York,
1998.

[16] R.O. Duda, P.E. Hart, D. Stork, Pattern Classification, second
ed., Wiley, New York, 2001.

[17] P.A. Lachenbruch, M.R. Mickey, Estimation of error rates in
discriminant analysis, Technometrics 10 (1968) 1–11.

[18] U.M. Braga-Neto, E.R. Dougherty, Is cross-validation valid
for microarray classification?, Bioinformatics 20 (3) (2004)
374–380.

[19] B. Efron, Bootstrap methods: another look at the jacknife,
Ann. Statist. 7 (1969) 1–26.

[20] B. Efron, Estimating the error rate of a prediction rule:
improvement on cross-validation, J. Am. Statist. Assoc. 78
(382) (1983) 316–331.

[21] G.K. Zipf, Psycho-Biology of Languages, Houghton-Mifflin,
Boston, 1935.

[22] S. Kauffman, The Origins of Order: Self-Organization and
Selection in Evolution, Oxford University Press, Oxford,
1993.

[23] I. Schmulevich, et al., Probabilistic Boolean networks: a
rule-based uncertainty model for gene-regulatory networks,
Bioinformatics 18 (2002) 261–274.

[24] S. Kim, et al., A general framework for the analysis of
multivariate gene interaction via expression arrays, Biomed.
Opt. 5 (4) (2000) 411–424.

About the Author—EDWARD DOUGHERTY is a professor in the Department of Electrical Engineering at Texas A&M University in
College Station. He holds a Ph.D. in mathematics from Rutgers University and an M.S. in Computer Science from Stevens Institute of
Technology. He is author of twelve books, editor of four others, and author of more than one hundred and sixty journal papers. He
is an SPIE fellow, is a recipient of the SPIE President’s Award, and has served as editor of the Journal of Electronic Imaging for six
years. Prof. Dougherty has contributed extensively to the statistical design of nonlinear operators for image processing and the consequent
application of pattern recognition theory to nonlinear image processing. His current research is focused in genomic signal processing, with
the central goals being to model genomic regulatory mechanisms for the purposes of therapy and to develop small-sample pattern-recognition
methods for expression-based diagnoses. He is Director of the Genomic Signal Processing Laboratory at Texas A&M University, Director
of the Division of Computational Biology at the Translational Genomics Research Institute, and Adjunct Professor in the Department of
Pathology of the University of Texas M. D. Anderson Cancer Center.

1814 U. Braga-Neto, E. Dougherty / Pattern Recognition 38 (2005) 1799–1814

About the Author—ULISSES BRAGA-NETO received the Baccalaureate degree in Electrical Engineering from the Universidade Federal
de Pernambuco (UFPE), Brazil, in 1992, the Master’s degree in Electrical Engineering from the Universidade Estadual de Campinas, Brazil,
in 1994, the M.S.E. degree in Electrical and Computer Engineering and the M.S.E. degree in Mathematical Sciences, both from The Johns
Hopkins University, in 1998, and the Ph.D. degree in Electrical and Computer Engineering, from The Johns Hopkins University, in 2001. He
was a Post-Doctoral Fellow at the University of Texas MD Anderson Cancer Center and a Visiting Scholar at Texas A&M University, from
2002 to 2004. He is currently a Researcher at the Aggeu Magalhães Research Center of the Osvaldo Cruz Foundation, Brazilian Ministry
of Health. His research interests include Computational Biology, Pattern Recognition, and Image Analysis.

	Exact performance of error estimators for discrete classifiers
	Introduction
	Discrete classification
	The histogram rule
	True error rate
	Error estimators
	Resubstitution
	Cross-validation
	Bootstrap

	Exact performance of non-randomized error estimators
	Resubstitution
	Leave-one-out

	Parametric model
	Discussion
	Conclusion
	References

