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Abstract

Discrete classification problems abound in pattern recognition and data mining applications. One of the most common
discrete rules is the discrete histogram rule. This paper presents exact formulas for the computation of bias, variance, and
RMS of the resubstitution and leave-one-out error estimators, for the discrete histogram rule. We also describe an algorithm to
compute the exact probability distribution of resubstitution and leave-one-out, as well as their deviations from the true error rate.
Using a parametric Zipf model, we compute the exact performance of resubstitution and leave-one-out, for varying expected
true error, number of samples, and classifier complexity (number of bins). We compare this to approximate performance
measures-computed by Monte-Carlo sampling—of 10-repeated 4-fold cross-validation and the 0.632 bootstrap error estimator.
Our results show that resubstitution is low-biased but much less variable than leave-one-out, and is effectively the superior error
estimator between the two, provided classifier complexity is low. In addition, our results indicate that the overall performance
of resubstitution, as measured by the RMS, can be substantially better than the 10-repeated 4-fold cross-validation estimator,
and even comparable to the 0.632 bootstrap estimator, provided that classifier complexity is low and the expected error rates
are moderate. In addition to the results discussed in the paper, we provide an extensive set of plots that can be accessed on
companion website, at the URtttp://ee.tamu.edu/ ~edward/exact _discrete
© 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction a purely discrete probleiis] (even though this certainly in-
troduces a loss of information). Discrete classification also
Discrete classification, also called categorical classifica- applies to the case of fixed-partition classification in Eu-
tion, or multinomial discriminatioril—4] is very important clidean spacégl]—however, this is of less widespread in-
in several applications, particularly in biology, economics, terest than purely categorical problems.
psychology and social scieng®]. In the field of Data min- In practical real-world problems, especially in the small-
ing, discrete classification algorithms and applications are sample settings prevalent in many applications, a funda-
particularly prevalent—in fact, Data mining practitioners of- mental issue is how to estimate the error of a classifier,
ten advocate discretizing continuous attributes to achieve since the underlying probability structure (here referred to
as theprobability mode), and therefore the true error of

* Corresponding author. Tel.: +1979 862 8896; the designed classifier, is unknown. There are many error
fax: +1979 845 6259. estimation techniques in use, but the performance analysis
E-mail addresse-dougherty@tamu.ed{E. Dougherty). of these techniques has been based on ad hoc methods or
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approximate asymptotic performance bounds, which are of- small and large errors. In practice, we know that sound ex-
ten useless in small-sample settings. We show in this pa- perimental design and effective feature selection algorithms
per that it is possible to write simple “closed-formula” ex-  will ensure that errors are moderate to small. As a result, the
pressions for performance measures, such as bias, varianceesults and recommendations madg9htend to be overly
and RMS, of non-randomized error estimators (e.g., resub- pessimistic (as pointed out [d1]).
stitution and leave-one-out); furthermore, we present an al-  Even though our work applies specifically to discrete clas-
gorithm to calculate the exact probability distribution of sification (a relevant and worthy problem in itself), we hope
non-randomized error estimators, with the help of high- that our results can also illuminate issues related to error
performance computers (the use of computers for exact cal- estimation for classification in general. Hughes’ work is an
culation has in fact been considered in several areas of statis-example of this kind of extension—his 1968 paf#rused
tics; e.g. se¢6-10)). discrete classifiers to demonstrate rigorously the “peaking”
Using a parametric Zipf model, we compute the exact ofthe mean accuracy, whereby performance at firstimproves
performance of resubstitution and leave-one-out, for vary- as the number of variables increase, and then eventually
ing expected true error, number of samples, and classifier deteriorates (for a fixed number of training samples). But
complexity (number of bins). We compare this to approx- this is a phenomenon that affects all classifiers, including
imate performance measures—computed by Monte-Carlo continuous-variable ones. In fact, the peaking phenomenon
sampling—of more complex, randomized error estimators, is referred to by some authors as the “Hughes phenomenon”
namely, 10-repeated 4-fold cross-validation and the 0.632 [12].
bootstrap error estimator. The exact performance results
prove that resubstitution is low-biased but much less variable
than leave-one-out, and is effectively the superior error es- 2 Discrete classification
timator provided classifier complexity is low. Comparisons
with the Monte-Carlo performance measures of the random-  Formally, in the discrete classification problem there are
ized error estimators indicate that the 0.632 bootstrap error p predictor variablesxy, ..., X, such that eaclX; takes
estimator generally displays the best performance. Surpris- on a finite numbew; of values, and a binary target vari-
ingly, the overall performance of resubstitution, as measured ableY c {07 1} (We adopt in this paper the usual notation’
by the RMS, can be substantially better than 10-repeated hereby capital letters denote random variables and small
4-fold cross-validation, and even comparable to the 0.632 |etters denote deterministic realizations of those variables).
bootstrap estimator, provided that classifier complexity is The predictors often correspond to nominal attributes (i.e.,
low and the expected error rates are moderate (conditions yalues without explicit numerical meaning or ordering, such
often found in practice). COnSidering that resubstitution is as yes/noy gender’ marita| statUS, and SO On)’ (e} that there is
a very inexpensive error estimator computationally, as com- |ittle hope in the use of traditional numerical discrimination
pared to cross-validation, and particularly bootstrap esti- procedures. The predictors as a group take on values in a fi-
mators, this provides an argument for avoiding complex nite space ob=[]"_;5; possible states. A bijection can be
resampling-based error estimators in favor of resubstitution established between this finite state-space and the sequence
in applications where a very large number of error estimates ofintegers 1..., b. Therefore, we may assume a single pre-
have to be computed and classifier complexity is low—for  dictor variableX taking on values in the sét < {1, ..., b}.
instance, feature selection for gene regulation (Kim et al., The valueb can be viewed as the number of “bins” into
Shmulevich et al.). In addition to the results discussed in which the data is categorized—it provides a direct measure
the paper, we provide an extensive set of plots that can be of the complexityof the classification rulgl].
accessed on a companion website, at the Wh:// The complete probability structure of the discrete classifi-

eetamu.edu/ ~edward/exact _discrete . cation problem is specified by>2- 2 real numbers: the class
We mention here the work of G.F. Hughes, who calcu- prior probabilitiescg = P(Y = 0) andcq = P(Y = 1), and

lated exact results on distribution-free mean performance of the class-conditional probabilitieg; = P(X =i | ¥ = 0)
discrete classifier,10]. Hughes did not consider the error  andy; = P(X =i | Y =1), fori=1,...,b.

estimation problem, being concerned only with the true er-  gjnce we have the identities

ror of the designed classifiers. Hughes gives an expression

for the mean expected true error over the probability model ¢y =1 — ¢, (1)
space, assuming equally likely models. Such a mean perfor-

mance measure is distribution-free, being dependent only b—1

on sample sizeén and complexityb, and allows the author  p,=1— Z Di» 2
to study classification performance as a function of these i=1

parameters. However, the usefulness of such a measure in a

practical setting is questionable. By assuming equally likely b-1

models and computing the mean over all possible probabil- 45 = 1- Z qi» (3)
ity models, one is giving equal importance to models with i=1
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the problem is in fact determined by(2b — 1)-dimensional
vector

T=(C0. PLo -+ Pb-1.41. - qp—1) € RP™L. (4)
Furthermore, we have the constraints:
0<co<1, (5)
b—1
Y pi<l and p;20, i=1....b-1, (6)
i=1
b—1
> gi<l and ¢;>0, i=1....b-1 (7)
i=1

Hence,cq € I (the unit closed interval) ang;, g; € Sp_1
(the (b—1)-dimensional simplex), and the probability vector
= that defines the discrete classification problem is a member
of the setll =1 x Sp_1 x Sp—1 C R®~1 We call IT
the probability model spaceand eachr € IT a probability
model Note that the probability model space is a relatively
small subset of a finite-dimensional space.

For a given a probability model, thexror rate of a dis-
crete classifierg : {1,...,b} — {0, 1} is the probability
of misclassificationz = P(Y # g(X)) = E(JY — g(X)]).
Clearly,

b
6=y P(X=i,Y=1-g()
i=1

Il
-MU‘

Il
N

PX=ilY =1-g@)P¥Y =1-g(i)

M+

[picolg(iy=1 + gic1lg(i)=0l- (8)

Il
N

From this, it is clear that the optimal minimum-error Bayes
classifier is given by

1 if pico<gic1

8BAYES() = {0 otherwise i=1,...,b, 9)
with corresponding optimal error rate
b
¢BAYES = »_ min{p;co, gic1}- (10)
i=1

3. The histogram rule

This histogram ruld1,2,9]is by no means the only dis-
crete classification rule in use, but it is certainly the most
intuitive for categorical problems (another noteworthy ex-
ample of a discrete rule is the “maximum-mean-accuracy”
rule, used in10]—there is also a myriad of discrete rules
used in Data mining5]). The histogram rule corresponds
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to the “plug-in” rule for approximating the Bayes classifier,
as we discuss below. In this paper, we will assume the his-
togram rule, but the methods described here are general and
can be applied in principle to any discrete classification rule.
Let S, = {(X1, Y1), ..., (X, Yy)} be an ii.d. sample
taken from the probability model distributiof, that is,
Sy ~ F. Let us define the random variables:
Ui=#X;=i|Y;=0}, i=1...

.b, (11)

Vi=#{X;=i|Y;=1}, i=1...,b. (12)
If we assume symmetric classification rules, i.e., rules for
which the order of the samples does not matter (which is the
case of the histogram rule and virtually all useful rules), then
the sample is completely determined by the random vari-
ablesU={Uq,...,Up},V={V1,..., Vp}. LetNg=3 ", U;
and N1 =), V;. Note thatNg + N1 = n, the total num-
ber of samples. Two possibilities present themselves. One
may assume tha¥p and N1 are random variables, where
Nop is drawn from a binomial distribution with parameters
(n, cg) and N1 = n — Np. This corresponds to fll sam-
pling setting, wherein the samples are taken from the mix-
ture of populations, and one knows a priori only the total
number of samples, but not the number of samples that be-
long to each class (e.g., until the samples are labeled by an
expert). Another possibility is to fix the valueg =ng and
N1 =n1=n — ng during experimental design, and to sam-
ple the populations separately. This is the setting assumed,
for example, if9]. We assume that the valuesmgf andny
are chosen to reflect the a priori probabilitigsand ¢, of
each classug = [con] andnq = [c1n] = n — ng, where[x]
denotes the nearest integendtdrhis is referred to astrat-
ified sampling Both full sampling and stratified sampling
are relevant from a practical perspective, and both will be
considered in this paper.

The classifier designed by the histogram rule given the
samples,, is given by

1 if v >u;

0 otherwise’ i=1...

g)=ly,>y; ={ . b. (13)

For this reason, the histogram rule is also known as the
“majority” rule.

The maximum-likelihood (ML) estimates for the model
parametersyg, ¢c1 and{p;}, {g;} are

~ no
0= —">:
n

fori=1,...,b.

~ U
and p; = —,
no

-~

ni
c1=—
n

(14)

Plugging these back in the expression for the Bayes classi-
fier in (9) leads to the histogram classifier in (13). In other
words, the histogram rule is the plug-in rule for discrete
classification.
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n—I
4. True error rate _ n k | no n—ng
- Z<k,l,n0—k,n—no—l>piqicoLl

L . =k
From (8), it is clear that the true error of the designed "o

histogram classifier is given b

9 given by x (1= )"0k (@~ gy)"ro~, (18)

b
SZZ[COPi ly,~y; +c1qi Iy, > v, 1. (15) fork,1=0,...,n, such thak +/ <n.

i=1 The variance of the true error can be computed by finding
2 .

Being a function of the random sample, the true esrisra the sec.ond momerK[¢<]. This can be calculated exactly as
random variable. The meaki[¢] has an important meaning ~ ollows:
in the context of classification rules: it gives the expected b
true error over the ra'ndom.sar.nplle; hence, it does not dependE[gz] = Z [cgp,-z Elly,~y;]+ c%qiz E [IU,. > %]}
on the sample and is an intrinsic performance measure of i1

the histogram rule. The mean true eriofc] measures the

difficulty of classification, if one uses the histogram rule,

given a probability model, the sample sizeand complexity +
b. The expected error can be calculated exactly using the iJ
following expression: !

2
[CoPin E[I\/,->U,»IVJ->U,«]
1

u‘Pﬂw

~

+coc1 (Piqu [Iv,->U,- Iy; > V_/']

-

Elel = ) [copi Elly;>u;1+ c1gi Elly, > v; 1]
i=1
b + PjgiE [IU,->V,-1V,->U,-]>
=Y lcopi P(V; > Up) + ¢1q; P(U; 2 V)]
o +c3aia; E [1u,>vilu; > v, ||
n
i b
= % leopi ik + c19i Ik =11, (16)
,.221 kJZIO =" {Bp? Pvi= U + P PWi =V
k+l<n i=1
whereail is the “first-order” joint probability distribution b
P(U;=k, V;=I). Inthe stratified sampling casg; is clearly + Z {C(Z)Pi pj P(V;>U;, Vj>U))
independent o¥/;, and both are binomially distributed with ij=1
parametersng, p;) and(nq, g;), respectively, so that i#j

45" = PW; =) P(V; =)
= (”ko) pFa—ppm* (”}) gl — g™,
(17)

fork=0,...,ngandl =0,...,nq, with a;‘c(?trao =0, oth-
erwise. In the full sampling case, we condition &9, and
use the fact that, giveg = ng, U; andV; are condition-

ally independent and binomially distributed with parameters

(ng, p;) and(n — ng, ¢;). Hence,

n

> P(U; =k, V; =1|Ng =ng) P(Ng=no)
no=0

n

> P(U; =k|No =ng) P(V; =1|No = no)

i(full)
.l

+cocalpig; P(Vi > U;, Uj 2 Vj)
+pjqi P(U; 2V;, V;>Uj)l
+cdaiq; PU;> Vi, U= V)

b n

XD % [C(%Pizlbk +C%qi21k>l]

i=1 k,[=0
k+l<n

b n
. )
+ Z Z /";c,jz,r,s {Copil’j I~ i Is>r

i,j=1 k,1l,r,s=0
i#j k+l+r+s<n

no=0 +coc1lpiqilisklr>5s + Pjqili > 11s>r]
x P(Ng=ng)
n—l o\ e {n—no + c24iq; 1k>11r>s} , (19)
=Z(k>p,~(l—pi)”° < ; ) N
no=k where “5;,1 is as defined previously, anﬂ;{”fl’r‘s is the
% gl (1 — gm0~ ( n ) (10,110 “second-order” joint probability.distributiolﬂ(U,- =k, V=
i ng) 01 [,Uj =r,Vj =s). In the stratified sampling cas&;, U;
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are independent, as a group, Wf, V;, and each group is
trinomially distributed with parametergng, p;, p;) and
(n1. g, q;), respectively, so that

Bi ,j(strap

L = P =k, Uj=r)P(V; =1, Vj=5)

n —r—
0 )P,’»‘pﬁ(l—pi—pj)”o ok

- (k, r, ng—r—=k

ni I s . \n1—s—I
X (1’ s, nl—s—l)qiqj(l qi QJ) ,
(20)

fork,r=0, ..., ngsuchthak+r <ng,andl,s=0,...,n1
such that! 4 s <n1, with ,g;{”ll’(itsfao =0, otherwise. In the
full sampling case, we condition oNp, and use the fact
that, givenNg = ng, U;, U; are conditionally independent,
as a group, ofV;, V;, and each group is trinomially dis-
tributed with parameterég, p;, p;) and(n — no, g;, 4;),
respectively, so that we may write

n

[ (full
B = 3" P =k, Vi=1, Uj=r, V;=s|No=no)
no=0
x P(Ng = nop)

n

> P(U;j =k.U; =r|Ng=no)
no=0
x P(V; =1, Vj=s|Ng=ng)P(No=no)

n—s—I
> o
k, r, ng—r—k

no=k+r
x pypi(A—pi—p;)"0 7k

n—ng
X (l, S, n —no—s—l)

x g5 (1=g; —q;)" "0

n no n—no
X cn C
() ets

n—s—I

no=k+r

x pia;Piaseg’e] "

X (L= pi=p)"0~ T H Amgi—q )" O,
(21)

n
(k, L, r, s, no—r—~k, n—no—s—l)

fork,l,s,r=0,...,n,suchthatt +1+r 4+ s<n.

The variance of the true error can be computed by using
(16) and (19) and the simple expression [¥he E[¢2] —
E[¢]2.

The formulas given above provide a fast way to compute
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sample configurations is finite, it is possible to calculBje
by computer—for moderate sample size@nd complexity
b—as we describe next.

First, recall that the random sample is specified by the
random vectordJ andV, defined as before, so we write
¢=¢(U, V). The random vectond andV are discrete, and so
the random variable is also discrete. Let theonfiguration
spaceD,, be the (finite) set of all possible distinct values that
can be taken on by the paid, V). The discrete probability
distribution P;; is given by

Py(a) = Z liguvy=a) PU =1,V =V).
(u,v)eD,

(22)

In the stratified sampling casé) is independent oV,
and both are multinomially distributed with parameters
(ng, p1, ..., pp) and(n1,q1, ..., qp), respectively, so that

b
P(StraD(U:u,V:v): (Ml no ub) lel'”
e i1

b
ni v;
X . 23
(vl,...,vb)i:l_[lql (23)

To visualize the full sampling case, imagine that each bin
is split in two halves, one for the first class, and another for
the second class. The probability of a sample falling in bin
i of the first class is jusP(X =i, Y = 0) = ¢gp;. Analo-
gously, the probability of a sample falling in binof the
second class i®(X =i,Y = 1) = c1¢;. The pair(U, V)
is thus jointly multinomially distributed with parameters
(n, cop1, --->COPb» €191, - - - » €1gp)- ThUS We can write

pUDU=uv=v

b
( )l
ULy ooy Up, V], ..., Up

i=1

uj Vi

Pi 4;

(24)

Now, let us defineC,, as the set of possible configura-
tions thatm objects can take over the bins. An algorithm to
generateCy, is described in the Appendix. It is clear that,
in the case of stratified sampling, the configuration space is

given by D" = ¢, x C,,;, whereas in the full sampling
case, we have thap{"" — n—0lCng X Cn—no)-

The probability distributionP; in (22) can be calculated
by computer by using the following simple algorithm.
Algorithm PDE Find D,,, as described above. For each

the expected value, second moment, and variance of thepair (u,v) € D,, calculate its probabilityP(U =u,V =
true error. Other statistical summaries, such as skewness,v) and the corresponding errefu, v)—if this error value

kurtosis, tail probabilities (in facgny statistical summary),

of the true error can be found, in a more computationally
expensive way, from the probability distributidh of . Due

to the fact that, in discrete classification, the total number of

has not been encountered before, create a new entry in the
probability distribution vector and initialize it wit® (U =

u,V =v), otherwise simply add?(U = u,V =v) to the
existing entry fore(u, v).
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5. Error estimators 5.1. Resubstitution

In practice, the underlying probability model is unknown, The simplest and fastest way to estimate the error of a
and the true error has to be estimated from the sample data classifierg is to compute its error directly on the sample
using anerror estimatoré. An error estimator may be a de-  data itself:
terministic function of the sample dasa, in which case itis n
anon-randomized error estimatoBuch an error estimator ~ ; _ 1 Z lyi — g(x).
is random only through the random sample. Among popu- n
lar non-randomized error estimators, we have resubstitution (28)
and leave-one-out. By contrasindomized error estimators
have “internal” random factors that affect their outcome. ThiS resubstitution estimator[14] is clearly a non-
Popular randomized error estimators include (random-fold) andomized error estimator. It is very fast; however, it

cross-validation and all bootstrap error estimators. can be shown that Bigs ] <0 for the histogram rulgl].
Theinternal varianceof an error estimator is the variance "€ largerb is, the more optimistic is resubstitution, since
due only to its internal random factor¥jn; = Var(g|Sy). complex classifiers tend to overfit the data, especially with

This variance is zero for non-randomized error estimators. Small sampleq15]. Nevertheless, provided that classifier
The full variance Vag?) of the error estimator, on the other ~ complexity is not too high, resubstitution can be surpris-
hand, also takes into account the uncertainty introduced by iNgly accurate relative to more complex error estimation
the random sample data. SE8] for a detailed discussion ~ Schemes, as we will show in Section 7.
of issues regarding randomized and non-randomized error
estimators, internal and full variance, etc. 5.2. Cross-validation

Of great interest in the analysis of performance of an error

estimator: are itsbias, Cross-validation removes the optimism from resubstitu-

tion by employing test points not used in classifier design
[16]. In k-fold cross-validationthe data ses,, is partitioned
into k folds S;, fori =1, ..., k (for simplicity, we assume
thatk dividesn). A classifierg; is designed on the sample set
S»\S;, and it is tested o§;, fori =1, ..., k. The estimate

is the overall proportion of error committed on all folds:

Biagé] = E[£] — Ele], (25)
the deviation variance

Varg[é] = Var[¢ — ¢]

— EIG - 2] - E[G - o)12 N L.
= E[¢%] — 2E[¢8] + E[#?] — Biag2]?, (6  fewk = 20 b &G, )
i=1j=1

and theroot mean-square error P . .
q © where(x’, y') is a sample in théh fold. The process may

J I ;
be repeateé: a number ofcross-validation estimates are

RMS[&] =/ E[(¢ — 2] computed using different partitions of the data into folds,
- — and the results are averaged, producing thepeated k-
=y Varg[¢] + Biagé] fold cross validatiorestimator.,,. Clearly, bothé.,; and

£cvkr @re randomized error estimators.

Let ¢, denote the error of a classifier designed on a sam-
) ) ple of sizen. A k-fold cross-validation estimator is unbiased
Note that all three measures require only the first and second 55 an estimator OF (2, ], which makes it slightly pes-
moments of; andé, and the correlation betweerand?. simistic (high-biased) as an estimator Bfe,]. The most

The bias of an error estimator measures whether, on av- yejl-known cross-validation method, usually attributed to
erage, it overestimates the true error, or underestimates it.[17], is theleave-one-out estimatowhere a single obser-
The deviation variance measures the spread of the deviationyation is left out each time:

distribution. Low bias is not good enough if the deviation

variance is large. This means that on average the error esti-, 1 .

mator is close to the true error, but that in fact the estimate 4= n Z i = gi ol (30)

for any particular sample set is likely to be far away from i=1

the true error. The RMS combines the two complementary This corresponds to-fold cross-validation and is a non-

measures of bias and deviation variance into a single figure randomized estimator. The leave-one-out estimator is un-

of merit that provides an error measure for estimating the biased as an estimator @f¢,_1]. The main drawback of

classifier error by the estimator. cross-validation estimators are their large deviation variance
In the next few subsections, we discuss a number of well- [1,18]. They can also be quite slow to compute when the

known non-randomized and randomized error estimators. number of folds or samples is large.

= \/ E[¢2] — 2E[&8] + E[#2]. (27)
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5.3. Bootstrap

The bootstrap error estimation technid@8,20]is based
on the notion of a “bootstrap sampl§};, which consists of
n equally likely draws with replacement from the original
datas,. Hence, some of the samples will appear multiple

times, whereas others will not appear at all. The actual pro- o

portion of times a data pointx;, y;) appears inS;s can be
written aspP* =1/n Z?:ll(x;-‘,yj):(xi,yi)' For the compu-
tation of the basidootstrap zero estimatd20], a number

of bootstrap samples}’, for t =1,..., T are drawn—a
value of T between 25 and 200 being recommendef20].

A classifierg; is designed on the bootstrap samgjé, and

it is tested onS,\ S}, fort =1,..., T. The estimate is the
overall proportion of error committed on all bootstrap sam-
ples:

ZtT—lz"l—lb’z 8r(x)l Ip*t 0
Zt 121—11})*’—0

&0 = (CHY)

The bootstrap zero estimator works like cross-validation:

the classifier is designed on the bootstrap sample and tested

on the original data points that are left out. It tends to be
high-biased as an estimator &fs,], since the amount of
samples available for designing the classifier is on average
only (1 — e bHn ~ 0.6321. The .632 bootstrap estimator
[20],

~

&pe32= (1 —0.632 & + 0.632%q, (32)

tries to correct this bias by doing a weighted average of
the bootstrap zero and resubstitution estimators. This has
been perhaps the most popular bootstrap estimator in data
mining [5]. It has low variance, but can be extremely slow
to compute. In addition, it can fail when resubstitution is
too low-biased18].

6. Exact performance of non-randomized error
estimators

As remarked in connection with Egs. (25)—(27), in order
to compute the bias, deviance variation, and RMS of an er-
ror estimator, one needs the first and second moments of the
true error,E[¢] and E[¢2]; the first and second moments of
the error estimatoE[¢] and E[éz]; and the correlation be-
tween true error and error estimatdéifez]. Exact formulas
for computing E[¢] and E[£2] were given in Section 4. In
this section, we give exact formulas for the computation of
E[g], E[?zz], andkE [¢¢], for two widely used non-randomized
error estimators: resubstitution and leave-one-out. This al-
lows one to compute exact values for bias, deviance varia-
tion, and RMS for these error estimators, for a given number
of samples, number of bins, and probability model.
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6.1. Resubstitution

From (13) and (28), it follows that the resubstitution error
estimator can be written as

b
. 1 .
== 3" min(u;, vi)
n?
i=1

1
= Z[Ui ly,>u; +Vily, > v;]1
(33)

Given the training sample (i.e., the sample value&ofV;,
fori=1,...,b), the resubstitution estimate is deterministic;
therefore, it is a non-randomized error estimator. An inter-
esting fact about resubstitution, as can be easily verified, is
that plugging the ML estimates of the model parameters in
(14) into the expression for the Bayes error in (8) leads to
(33). In other words, resubstitution is the “plug-in” estima-
tor of the Bayes error for the histogram rule.

The expected resubstitution error over the sample can be
calculated exactly using the following expression:

b
. 1
Elerl=- E (E[Uily,>y 1+ EVily, > v 1]
i=1

1 b n )
:ZZ Yo lklink + 1),

i=1 k=1
k+I1<n

(34)

whereoc;;_l can be calculated with expressions (17) and (18),

in the stratified and full sampling cases, respectively.
From (33), it follows that the second momaﬁtéf] can

be written as

1

A2
Elz 2

Z{ [UZ1y,>u;1 + EIVE Iy, >v]}
i=1
1

n2

i’l

b

> {E[Uin]V[>U;I\/_,->U_,~]
i,j=1

i#]j

+ EWUVily >y du; > v;]

+ EWU;Vily, > v lv;>u;]

+E[V,-Vj1U,.>VI.1U.>V.]}
b

22 Z o K2 I + 12 T 1)

i=1 k=1
k+l<n

b

+
n

n

2

k,lr,s=1
k+l+r+s<n

1

2
ij=1
i#]

x ﬁ;c’,]l,r,s[kr Tisils>r + ks s 0y >

+}’l Ik}lls>r +lS Ik}l’r}sL

+
n
(35)

where/};;’é , can be calculated with expressions (20) and
(21), in the ‘stratified and full sampling cases, respectively.
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The expression for the correlation between the true error
and the resubstitution estimator can be derived as follows:

b

. 1
Eletrl == {copi EWUilv>u;1 + cag; EWVily, > v, 1}
i=1

102
+; Z {COpi(E[UjIVi>UiIVj>U.i]
i,j=1
i#j
+ ElVjly,>ulu; > v
+c1qi(ElUj Iy, > v, 1v;>u;)
+E[V/1U,->WIU]->VJD}

b n

nZ Z o leopikli=k + c1gil I >1]
i=1 ki=1
k+l<n

1

b n

DIEEDY

=1 k,1=0

1 r,s=1
I k+l+r+s<n

1
+ -
n

J
s

i
Bi

x {copi(r Isils=r + 5 Ijsik Iy > )

+e1qi(r Iz ds>r +5 Iz 11 >4)) (36)
One can also compute the PDF of the resubstitution esti-
mator, for a given model, by applying algorithRDF (see
Section 4), withé, (u, v) in place ofe(u, v).
Of more interest is the PDF of the deviatién— ¢. The
mean and variance of the deviation PDF give the bias and
deviation variance of the error estimator. Other statistics,

such as skewness, kurtosis, etc. can be easily computed.

The deviation PDFs of several error estimator have been
approximated iff18] by Monte-Carlo sampling, in a study
involving continuous classification rules. In the present dis-
crete classification setting, the deviation PDF is discrete and
can be computed exactly by applying algoritff®F, with

& (U, v) — ¢&(u, v) in place ofe(u, v).

6.2. Leave-one-out

In the case of discrete histogram classification, the leave-
one-out error estimator can be written as

b
R 1
= Z[Ui ly,>u; +Vily, > v;-1l.
i=1

37

It can be easily seen that this is a non-randomized er-
ror estimator. It is interesting to note that equation (37)
for leave-one-out is similar to the expression (33) for
resubstitution—however, the behaviour of the two estima-
tors is completely different, as we will in Section 7.
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The expected leave-one-out error over the sample can be
calculated exactly using the following expression:

1Y
E[g]= =Y [ElUily,>u,] + ElVily, > v,—1]]
ni:l
b n
,Z Y okl k+ 1], (38)
i=1 k=1

k+Il<n

where the coefficientszj;’ ; are computed with expressions
(17) and (18), in the stratified and full sampling cases, re-
spectively.

From (37), it follows that the second momeﬁ[élz] can
be written as

b
. 1
Eif1= = 3 |EWP Iy, > 0,42 EWVily, <v, <v,+1)
i=1

+E[Vi21Ui>Vi*1]}

b
1
+ 7z Z {E[UinI\/,>U,-1v,>Uj]
i,j=1
i#]

+EWVjly,>u 1y, > v;-1l
+ EW,;Vily, >v;-1lv; >v;]

+ E[‘/iVjIUi2‘/i—1IUjZV'—1]]
b
ZZ Z “kz[k s+ 2kl <<kl
i=1 k=0
=1
k+l<n
+12 L]
b

i,j=1
i#j

iJ
Z ﬁk,l,r,s
l, s_l
k+l+l +s<n
Xkrlizpls>r + ks >l >5-1
trilizi—1ly>r s k-1l >5-1], (39)
where the coefﬁuentﬁ are calculated via expressions
(20) and (21), in the stratn‘led and full sampling cases, re-
spectively.
Next, we derive the correlation between the true error and
the leave-one-out estimator:
b
N 1
Eletr) =~ 3 {copi(ElUily,>u,] + ELVilv,=u;+1)
i=1
+c19i (EWUjly,=v,1 + E[Vi Iy, > v, D}
1 b
+ - Z {COPi(E[UjIV,->U,- Iy, >u;]
i,j=1
i#]
+EVily>yly;>v;-1D
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+e1qi(ElU; Iy, > v, v, > ;]
+E[V/1U,->V,-1Uj>vj—1])}

b n
1 .
= Yo > i leopiklimk + Hi=py)
i=1 k=0
=1
k+l<n
+ c1giklg=; + > )]
1 b n o
L J
+ n Z Z ﬂk,l,r.x
hi=l k=0
i k+l—§fr_+s§n
S {COpi r Disidy>r + 5 gDy >5-1)
+e1qir lksilys, +s kil >5-1) . (40)

As in the case of resubstitution, one can also compute
the PDF of the leave-one-out estimator, for a given model,
by applying algorithnPDF (see Section 4), with; (u, v) in
place ofe(u, v). Similarly, one can compute the PDF of the
deviationg; — ¢ by substituting; (u, v) — &(u, v) for e(u, v).

7. Parametric model

In this section, we display exactly computed performance

measures for resubstitution and leave-one-out, under vary-

1807
fori=1,...,b. Herea > 0, and the normalizing constant
K'is given by

b g -1
k=|2(5) (43)
i=1

It is clear that, asx — 0, the distributions tend to be-
come uniform—uwhich represents maximum confusion be-
tween the classes—whereas,oas> oo, the distributions
become concentrated in single (distinct) bins—which corre-
sponds to maximum discrimination between the classes. In
fact, the expected true error of the histogram rule decreases
monotonically withe.

As remarked previously, for moderateand b, we can
compute the probability distribution function of the true er-
ror, by applying algorithnPDFdescribed in Section #ig.

1 displays the PDFs so computed, for a few values of the
parameter: (ranging from easy to hard classification), in
the case: = 20 andb = 4. These plots indicate that the true
error is small for largex, moderate neax = 1, and near
0.5 for smallx. Varying the parameter therefore traverses
the probability model space continuously from easy to dif-
ficult models. This is needed because we want to study the
performance of error estimators under varying difficulty of
classification.

Besides resubstitution and leave-one-out, we consider
10-repeated 4-fold cross-validation and the .632 bootstrap

ing expected true error, number of samples, and number of yjitionally, simple 4-fold cross-validation and théas-

bins. We use a parametric Zipf model, where the parame-

ter controls the difficulty of classification. In each case, we

also plot the approximate performance measures for cross-
validation and bootstrap-based error estimators, computed

by Monte-Carlo sampling.
We observed that results for the stratified and full sam-

pling cases display the same general trends, so we will focus
here on the stratified sampling case (the difference between

the two types of sampling is most noticeable in the bias of

the error estimators, and the difference becomes significant

only for moderate to high errors). An extensive set of plots
for both stratified and full sampling can be found on the
companion website.

For simplicity, we assume throughout equally likely
classes, i.e¢g = c1 = 0.5. We consider only even number
of samplesn, so that there is the same numbef2 of
samples in each class.

The Zipf distribution is a well-known power-law discrete
distribution, encountered in many applications. It was orig-
inally introduced by G.K. Zipf to model the frequency of
words in common texf21]. The class-conditional probabil-
ities under the parametric Zipf model are given by:

K
qi = Pb—i+1 (42)

corrected bootstragrror estimatof20] are included on the
website). For the 0.632 error estimat@r—= 100 bootstrap
samples are employed. Performance measures for resubsti-
tution and leave-one-out are exact; they are computed using
the analytical expressions developed in Section 6. For the
other error estimators, which are randomized, performance
measures are derived from a Monte-Carlo computation us-
ing 20,000 samples from each probability model (parameter
value).

First, consider the case= 40, and three representative
values for the complexityh = 4, 8, 16; in a setting where
each feature is binary, this would correspond to classifica-
tion using 2,3, and 4 features, respectively. For example, in
functional genomics applications, gene expression is often
binary (a promoter is either on or off). The cases considered
here correspond to prediction using 2,3 or 4 genes.

Fig. 2 displays the bias, deviance variation and RMS of
the error estimators considered here, as a function of the
expected true error computed for a number of distinct models
(i.e., distinct parameters) of the parametric Zipf model.
The parameters are selected such that the corresponding
expected true errors are equally spaced. Easy discrimination
is thus located on the left of the plots, whereas difficult
discrimination is located on the right.

Several expected facts become readily apparent. Resub-
stitution is low-biased, whereas cross-validation is slightly
high-biased, and the bias increases in each case with the
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Fig. 1. Exact PDF of true error under the Zipf model, for a few values of the parameierthe case: = 20 andb = 4, with associated
expected error rates.
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Fig. 2. Bias, deviation variance, and RMS for several error estimators vs. expected true eriag 40rand varying classifier complexity.
Plot key: x= resubstitutiono= leave-one-out 1= 10-repeated 4-fold cross-validatiost= 0.632 bootstrap. The curves for resubstitution
and leave-one-out are exact; the curves for the other error estimators are approximations based on Monte-Carlo computation.

difficulty of classification. Resubstitution has quite low vari- mator, whereas leave-one-out is very variable, and often the
ance, whereas cross-validation is highly variable. The boot- worst-performing error estimator. What may be perhaps a
strap error estimator is generally the best-performing esti- bit surprising is that resubstitution is equivalent in overall
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Fig. 3. Bias, deviation variance, and RMS for several error estimators vs. number of bifggfer 0.2 and varying number of samples.
Plot key: x= resubstitutiono= leave-one-outJ= 10-repeated 4-fold cross-validatioft= 0.632 bootstrap. The curves for resubstitution
and leave-one-out are exact; the curves for the other error estimators are approximations based on Monte-Carlo computation.

performance (as measured by the RMS) to the bootstrap es-its deviation variance becomes the worst among all error
timator, which is much more expensive to compute, for the estimators.
caseb =4 (low complexity). We will have more to say about To visualize the effect of sample size, we displayFig.
this in the next section. 4 performance measures as a functiomofor b =4, 8, 16,

In order to assess the performance of resubstitution and and again moderate classification difficuliyfc] = 0.2. As
the remaining error estimators with respect to complex- expected, as sample size increases, there is a decrease in
ity, we display inFig. 3 performance measures as a func- bias (in magnitude), deviance variation and RMS. We again
tion of the number of bins, for = 20, 40, 60, and moder- can see that resubstitution is the least variable error estima-
ate classification difficultyE[¢] = 0.2. The RMS column tor, whereas leave-one-out is the most variable one. On the
shows that resubstitution is equivalent in performance to RMS column, we can see that resubstitution is equivalent
the bootstrap estimator far = 4, and is better than the  in performance to the bootstrap estimator ot 4, but its
cross-validation error estimator for low enough complex- performance quickly degrades as the classifier complexity
ity. We can see that, as the number of samples increasesincreases.
(which alleviates the bias problem of resubstitution), then =~ Some of the observations made above about resubstitu-
the classification complexity cut-off at which resubstitution tion and leave-one-out are confirmed by plotting the PDFs
beats the cross-validation estimator increases. It is interest- of these error estimators, which are computed using the al-
ing to note that leave-one-out is less biased than the other gorithm PDF described in Section 4 (see remarks made in
more complex cross-validation estimator, across the whole Section 6 on how to adapt that algorithm for computing the
range of complexity displayed in the plot, and for all sam- PDFs shown here). As argued previously, we are really in-
ple sizes. However, as the number of samples increases,terested in the deviation PDFs, i.e., the PDF&-et, where
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Fig. 4. Bias, deviation variance, and RMS for several error estimators vs. sample siZg¢fes 0.2 and varying number of bins. Plot
key: x= resubstitutiono= leave-one-out[J= 10-repeated 4-fold cross-validatiost~= 0.632 bootstrap. The curves for resubstitution and
leave-one-out are exact; the curves for the other error estimators are approximations based on a Monte-Carlo computation.

¢ is the error estimator under consideratiéig. 5 displays trends. Owing to increasing low bias for an increasing num-
the exact deviation PDFs of resubstitution and leave-one- ber of bins, the RMS for resubstitution becomes prohibitive
out, for a few values of the expected true error, in the case for aroundb > 10; however, for low-complexity classifiers,
n =20 andb = 4 (the models here correspond to the same resubstitution becomes competitive with leave-one-out.
choices ofx in Fig. 1). Note that the PDFs for resubstitu- With 8 bins, resubstitution performs almost as well as
tion are skewed to the left (low-bias), whereas the PDFs for leave-one-out for sample size as lowas 20, does slightly
leave-one-out are approximately centered, but much more better than leave-one-out for = 40, and outperforms
spread out than the corresponding ones for resubstitution. leave-one-out forn = 60. Factoring in computation speed,
They are also quite skewed to the right, which is notewor- this means that for binomial discrimination, such as that
thy. In particular, for moderate to hard classification, dis- used with Boolean networks, resubstitution is preferable to
played in the middle and rightmost columnsFaf. 5, there leave-one-out when the transition functions for Boolean net-
are likely outcomes with high positive deviation, close to works possess 3 variables or less, which is usually the case
0.5. There are even some outcomes—admittedly, improba- for Boolean gene regulatory network®2,23] Moreover,
ble ones—that have positive deviation over 0.5! although we shall not go quantitatively into the matter here,
taking into account complexity considerations with= 40,
it is prudent not to use more than 3 variables for binomial
8. Discussion discrimination if one wants to be confident that the expected
design error (owing to overfitting) is not excesslig.
The results presented in the previous section provide a Whereas we have come to the preceding conclusions via
few definite conclusions and also evidence for some general exact representation of the RMS, it is interesting to note that
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Fig. 5. Exact deviation PDFs of resubstitution and leave-one-out, for a few values of the expected true error, insithe 2@sadb = 4.

similar, albeit less precise, conclusions can be gleaned from First, it possesses a prohibitively large deviation variance
previously established RMS bounds (Devroye et al., 1996), that gives rise to high RMS. Second, its PDF is skewed to

for resubstitution, the right and with significant probability the error estimator
produces high outliers. The latter behavior is critical when
R 6b i ility i i i i ivari-
RMS[2, 1<,/ —, (44) predictability is being used to discover potential multivari
n ate regulatory behavid@4]. In such situations, one wishes
and for leave-one-out, to avoid false negatives because these will be erroneously
excluded from further bio-chemical analysis (as opposed to
461 6 false positives, which will be thrown out upon wet-bench
RMS[E] < + : (45) analysis)
Jrn+1) YSIS).

Regarding the relationship between leave-one-out and

The strong point of these bounds is that they are the 10-repeated 4-fold cross-validation estimator, we note
distribution-free. Hence, it is not surprising that they are that, as the sample size increases, the deviation variance of
quite loose and not helpful for small samples. For instance, leave-one-out decreases slower. This results in a correspond-
for n = 100, the leave-one-out bound exceeds 0.435. The ing slower decrease in RMS. The overall performance of
bounds contain asymptotic information. For instance, the 10-repeated 4-fold cross-validation is superior; however, in
resubstitution bound goes to 0 much faster than the leave- some cases the difference is so small that it cannot justify
one-out bound as — oo, indicating that resubstitution is  the high computational cost of this error estimator.
better than leave-one-out for large samples. Although the  The 0.632 bootstrap error estimator is affected by the low-
bounds are not practically useful for small samples, they bias of resubstitution when complexity is high, since itincor-
do have the property that the leave-one-out bound exceedsporates the resubstitution estimate in their computation. The
the resubstitution bound for a sufficiently small number of 0.632 bootstrap estimator is clearly superior to 10-repeated
bins, even in the case of small samples. Thus, the relation 4-fold cross-validation, but it is also the most computation-
between the RMS bounds agrees with the relations we have ally costly error estimator considered in this study.
discovered via exact representation of the RMS. Perhaps the most remarkable observation is that, for very

Generally, there are two basic problems with leave-one- low complexity classifiers (arourid=4), resubstitution be-
out that negatively affect application for small samples. comes as accurate as the 0.632 bootstrap error estimator,
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despite the fact that resubstitution is typically much faster Proposition 1. The total number of configurations @, is

to compute (in some cases consideredilid], hundreds of given by

times faster). In fact, we observe that for small sample sizes

(n < 30), resubstitution can actually be more accurate than m+b—1

the 0.632 bootstrap estimator, for low to moderate true er- 1Cm| = ( b_1 )

rors. The restriction to moderate true errors is not conse-

quential because in real-world applications that employ ro- prqof, First, let us consider the number of configurations

bust feature selection algorithms, it is highly unlikely that \\here no bin is empty. Each such configuration corresponds
uniquely to a choice di—1 spots among the —1 spaces be-
tween them samples, on which to erect “bin walls”. The to-
tal number of configurations where no bin is empty is there-

true errors of over 0.3 will be encountered.
fore (’g:ll). Now each configuration irC;,, corresponds
uniquely to a configuration of: + b samples distributed in
The main contribution made in this paper is an analytical b non-empty bins, by subtracting from the latter configura-
formulation of performance measures of the resubstitution tion one sample from each bin. Therefdr(ém|:(m,‘f_bfl),
and leave-one-out error estimators for the discrete histogram as required. [J
rule. We also describe an algorithm to compute the PDFs of
these estimators, or their deviation with respect to the true Proposition 2. The sum of the digits of a number t in base
error. The algorithm is computationally intensive, but nev- (m4-1) is a multiple of m if and only if t is a multiple of.m

(46)

9. Conclusion

ertheless effective for moderate sample size and classifier
complexity. We have compared the performance of resub- proof. The digits oft in base(m + 1) are given by
stitution and leave-one-out cross-validation against approx-

imate performance measures of cross-validation and boot- ; /

strap error estimators, and the results indicate at least oned; = Lilj —(m+1 {ﬁj (47)
perhaps surprising fact: resubstitution, a very simple, inex- (m+1) (m+1)

pensive, and sometimes neglected error estimator, can be

the best option, even over the bootstrap error estimator, for for i =0..... b —1, where[x] is the largest integer less or
very-low-complexity classifiers, such as those used in gene €dual than the real numbgr Direct summation leads to
prediction. We believe that too scant attention has been paid

to non-asymptotic analytical studies of error estimators in b—1 b—-1 ;
the literature, and we hope that this paper will provide mo- s := Z di=t—m Z Lilj . (48)
tivation for further study. i=0 ioLm+1

Appendix

For a given G<m <n, the algorithm to find all configu-
rations inCy, (for either class) is described next. Létis
the number of samples in bin fori =0,...,b — 1. We
will interpret a bin configuration vectofd,_1 ... d1dp]
as ab-digit numbert represented in basén + 1). To
represent a valid bin configuratiort, must satisfy: (1)
m<t<m * (m + 1)”—1, since these limits correspond
to the “minimum” and “maximum” configuration vectors
[0...0m] and[mO ... 0], respectively; (2) the sum of the
digits of t must bem.

An algorithm to find all bin configurations is therefore
to go through all numbers between and (m + 1)°~1,
checking for each number whether the sum of its digits
in base(m + 1) is m. However, since one would have to
go through(m + 1)~ — m + 1 numbers, this algorithm
can be very expensive computationally wharand b are

moderate to large. We can reduce the computationally load ne:

significantly by exploiting the properties given in the next
two results.

Therefores =1 —km ~ t —s=km, wherekis an integer. In
other wordsy — s is a multiple ofm, so thatsis a multiple
of mif and only iftis. O

Note that Proposition 2 specializes to a well-known arith-
metic fact in the case: = 9. As a corollary of Proposition
2, for the sum of the digits of a numbeiin base(m + 1)
to be equal tam, it is necessary thatbe a multiple ofm.
This means that onlyl/m) of numbers need to be checked
for valid configurations in our algorithm, which provides
considerable savings. Furthermore, the smallest and largest
configurations are known, so the search needs to be done
inside that interval. This can be done by initializing the
list of configurations with the smallest one, proceed with
the search and stop whén- 1 configurations have been
found, wherd is the total number of configurations, given by
Proposition 1. The algorithm, in pseudo-code, consists of the
following:

_(m+b-1
-("3717)
t: = m;
(ol 1;
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initialize list of configurations with
[0...0m],
repeat
find representation
in base (m + 1);
it Y0 ad; =m
add [dp_1 ... d1dp] to list of
configurations;
c. =c+1,
end if
t: =t+m;
until ¢ =nc-1
add [mO0 ... 0] to list of configurations

ldp_1 ... dpdp] of t

We remark that this is not the most efficient possible al-
gorithm to compute the list of configurations—for example,
it is possible to compute very efficiently the list of con-
figurations form = mq in recursive fashion, based on the
configuration lists foin =0, 1, ..., mg — 1. This of course
requires that all configuration lists fer=0, 1, ..., mg—1

have been previously computed and stored. In any event,
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