A Study of ’rhe PoWers of Several Me’rh
of Multiple Compariso

ISRAEL EINOT and K. R. GABRIEL*

Powers of multiple comparisons procedures are studied for fixed
maximal experimentwise levels. Analytical considerations show Tukey-
Scheffé methods to have least power, Duncan’s to be intermediate,
Ryan's most powerful. (Newman-Keuls tests could preserve experi-
mentwise levels only if modified radically and impractically.) Extensive
Morite-Carlo trials show these power differences to be small, especially
for range statistics. We therefore generally recommend the Tukey
technique for its elegant simplicity and existent confidence bounds—
its power is little below that of any other method. Simulation was for
3, 4 and 5 treatments: the conclusions might need modification for
more treatments.

1. THEORY
1.1 Introductory Remarks®

The purpose of this article is to compare some current
multiple comparisons procedures (Mcps) in terms of
power, when the probability of making no Type I error
at all is kept above a common lower bound. The dis-
cussion is restricted to the one-way normal ANOvVA set-up
and deals with well-known Mcps which provide decisions
of rejection or retention of hypotheses of homogeneity
for all subsets of treatments. _

All known Mcps ensure the coherence [10, p. 229] of
‘their decisions in the sense that they cannot consider a
set of treatments as possibly homogeneous if any subset
of it has been declared heterogeneous. Most McPs ensure
this coherence simply by proceeding in a stepwise
manner from sets to their subsets and automatically de-
claring homogeneity for each subset of a homogeneous set.
(Section 1.6.) Simultaneous test procedures (STPs) are
structured in such a manner that the stepwise sequence
of testing is not necessary.

Most mcps cannot avoid dissonances [10, p. 2317 such
as declaring a set heterogeneous without doing so for any

one of its proper subsets. Because of the possibility of

such errors one should not speak of “‘accepting’”’ homo-
geneity hypotheses; but merely of retaining them. This is
a general feature of all statistical tests, not only of mces.

A reasonable yardstick for the likelihood of false
declarations of heterogeneity, i.e., of making Type I
errors, is the probability of making any such errors at all,
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on all subsets. When all true treatments are equal, this;
called the experimentwise level of the McP and has foyy
much acceptance as a stringent but clear-cut criterion for
the proneness of Mcps to Type I errors. We denote it by
Because of the mcps’ coherence (whenever there is a5
rejection there must be one on the total set), this ley
is readily seen to be equal to the Type I error probabxht
of the decision on the total set of all means.

We take exception to the universal relevance of th
experimentwise level as a criterion for judging the falg
rejection probability of an mcr. We do so because meps’
may have false rejection probabilities which are well:
above their o’s [29; 24, p. 30]. Of the mcps discussed
here, only those based on the Newman-Keuls allocation of
levels suffer from this flaw (see Section 1.7). We have
chosen to formulate this study of mcps in terms of a:
constant experimentwise level and, therefore, must con.
sider the Newman-Keuls procedures invalid unless modx
fied appropriately (see Section 1.8). _

We have preferred this course to formulating our com:
parisons in terms of an unfamiliar measure of maxi
probability of false rejection.

Probabilities of false rejection, or levels, can also
formulated for different subsets (see Section 1.3). Un
fortunately, different authors have presented their MCPs
in terms of levels for different sizes of subsets. Thus, for
example, Scheffé [267] has stressed the experimentwise
level—i.e., the level for the test of all means—whereas
critical values for Duncan’s method are usually tabulated
in terms of the pairwise comparison error rate [14, 15]
Clearly, the different methods are not comparable when
each one is studied with a probability of say, five perce
of the kind of Type I errors discussed in its origin
presentation. Obviously, the Scheffé method at the fiv
percent experimentwise level will yield many few
significant results than Duncan’s method at the ﬁve~
percent level for each pairwise comparison.

Strangely enough, comparative studies of mulislPle
comparisons methods have ignored this point and ha
compared all methods by fixing each at the Type I err
probability at which it was published. Whether §
studies compare only significance levels [3] or levels &
powers [2, 4, 23], they are misleading in that mos8

© Journal of the American Statistical Associ
September 1975, Volume 70, Numb
. Applications Sec!

574




ultiple Comparisons

usions are simple consequences of the cholces
rror probabilites, rather than of the techniques
Monte Carlo study was needed to realize the
Gnferiority of the Scheffé, Tukey and Newman-
edures for detecting real differences’’ [4,p.73].
Sconstruction arose simply because these MCPS
ot experimentwise a = 0.05 and compared with
éther procedures using a five-percent probability
rejection in pairwise comparisons. Similar con-
would be inferred from Harter’s approximate [13]
ot [14] power calculations, again setting different

equal v
1d hag ;}; Jevels at five percent.

iteri mport of this discussion and Monte Carlo results
mote it I 2) is to allow comparison of mces, all of which
there ig: o same experimentwise level a. The McPs are

o compared on the statistics used, on the alloca-
the experimentwise level to subsets of differing
d on the procedures for actually arriving at the
on all subsets.

t); thlS
' probaj

ng the
eneral Formulation of MCPs

cause

’ A arify ideas and concepts, we begin with a formula-
s dise mops sufficiently general to include all those dis-
llocati here. The following data are assumed to be

ble: independent normally distributed means
i, based on samples from k populations. These
have variances g2/ny, - -+, 02/m, for known sample
, -+, N, respectively, and unknown ¢2. An esti-
of ¢ is available such that n.s2/o? is chi-square
degrees of freedom and is independent of the
An mcp provides tests of the equality of all the
ans in each set P of p(= 2, - -, k) of the k treat-
The test of homogeneity of set P—hypothesis

Tp = T, i € P; ) (L.1)

ymmetrically on the p means of set P and on the
e estimate s?. (Symmetry here means that re-
g of the means #;, 1 € P will not affect the value

ribution under wp depends on set P only through
mber p of treatments in P. ‘

the mcps under discussion compare the statistics
.all sets P of size p(= 2, -+-, k) with the same
| value {,. An mcP thus requires the definition of
eritical values {2, -+, & for the comparison of k

hypothesis of homogeneity of set P is rejected if
¢» as well as T'r > ¢, for allsets Rof r(=p + 1,
' treatments which contain P. In other words, wp
cted if and only if

Tz > VR(PS RS K),

‘K is the total set of all k treatments. Conversely,
etained if Tr < ¢ for at least one set B containing
luding P itself and the total set K.

he actual checking of the events Tr > ¢- for all B
ning the set P is carried out in a stepwise manner

(1.2)

statistic.) Statistic 7' is required to be such that -
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(see Section 1.6). This cross checking is essential to-the
coherence of the decisions on different subsets. ‘

1.3 Levels and Powers _
Nominal significance level v, is defined as
» = Pwl,(TP > ¢)

for any set P of size p(= 2, - - -, k). This is the probability
that the statistic T'» for a homogeneous set P of size p
will exceed critical value {,. Since the distribution of Tp
has been noted to be the same for all such sets of given
size p, the probability in (1.3) also depends only on p.
This is indicated by the notation v.

Nominal level v, is seen to be, for any given p, a
monotonically decreasing function of critical value {p.
Except for points of discontinuity, {7 uniquely determines
v, and vice versa. An MCP with given statistics T of
(1.1) may, therefore, be defined equally well by the set
of eritical values ¢, - -, {& or by the corresponding set
of nominal levels vz, -+, V-

The levels v, are called nominal because in Mcps
hypothesis wp is not necessarily rejected when event
Tp > ¢, of (1.3) occurs (except with sTps; see (1.14)).
As noted previously, wp will be retained despite Tr > {»
if, for some R containing P, Tr < ¢ Hence, the true
levels usually fall short of the nominal levels v,. The
exception is for p =k, where Ty > ¢ is clearly the
sufficient condition for rejecting wx. Hence, v« also is the
true level of the k treatments comparison and is equal to
the experimentwise level, that is

1.3)

(1.4)

Ye T @ .

For any subset P the frue level—that is, the probability
of rejecting homogeneity hypothesis wp if true—clearly
depends in part on the configuration of the true means of
treatments outside P and of their relations to the common
mean of the treatments in P (again, except for stes). It
is evident that the true level will be maximal if the means
outside P greatly differ from those in P, as this makes it
virtually certain that Tz > ¢ whenever R O P and thus
makes the decision wp depend exclusively on whether
Tp > ¢p. The true level is thus seen to be at most equal
to the nominal level. (They are equal for sTPs.)

Just as an McP has a collection of levels, one for each
subset, so it has a corresponding collection of powers
against each alternative configuration of the true treat-
ment means. As for the true levels, so also the power on
any set P depends not only on the differences among the
true means of the treatments in P but also on those of
treatments outside P. Writing { for the configuration of
all k& true treatment means, one may write the power as

Po(P) = Pa(Nrcrex(Tr > §0) - (1.5)

It is evident from (1.5) that these powers are inversely
dependent on the set of critical values ¢, - - *- {x, just as
the nominal levels v, (1.3). In fact, this makes the powers
depend directly on the set of nominal levels vz, * -y 7




1.4 Statistics and Allocation of Levels

Relations (1.3) and (1.5) between critical values ¢,
nominal levels ¥ and powers § depend on the statistics
T, that is, on the & — 1 funections T,(p = 2, ---, k) of
the p means and the variance estimate. The probabilities
in (1.3) and (1.5) assume different values when different
statistics are used. Meps may differ because they use
different nominal levels with the same statistics, or be-
cause they use different statistics at the same nominal
levels, or because of both. Comparative studies of differ-
ent methods can be meaningful only if it is quite clear
how the different mcps differ. It is therefore necessary to
turn to an enumeration of the different statistics con-
sidered in this study and then to the different ways of
allocating nominal levels.

Two statistics are most commonly used in multiple
comparisons when the usual normal analysis of variance
conditions can be assumed to hold. The first is the Stu-
dentized range

Tp® = max {(§: — go)[min (n;, n)JH}/s . (1.6)
i,e€p : .
For equal sample sizes
N =MNg=---=nN=n, S5ay , 1.7
this becomes the well-known
Tp) = (1.8)

(max §; — min F)v/n/s ,
i€p P

which is often denoted by q(p, n.). The more general
form (1.6) has been brought to our attention by R.G.

Miller and has since been published [27]. The second

statistic is the Studentized sum of squares or augmented F
ratio

Te® = (X ng — (5 ngd?/ T nd/st (19)
. iEp iEp Sy 2 . :

which is equal to (p-— 1) times.the F(,_y,, ratio.
It is well known that under (1.7)

Tp® = 2{TpW}? (1.10)

but this does not mean that the decisions on parts are the
same in range McPs as in sum of squares Mcps—for these
decisions depend also on what has been decided on larger
sets, where Tp® is not a function of Tp®.

It is- well known that under wp the distribution of
T5® and of Tp® each depend only on p and =, and not
on the actual homogeneous set P.-This is as required in
Section 1.2. Statistic T»®, under (1.7), has the Stu-
dentized range distribution of p normal and n. error
degrees of freedom. If (1.7) does not hold, the corre-
sponding augmented Studentized range distribution
produces very slightly conservative tests [27]. For
Tp®, one requires p — 1 times the percentage points of
the F distribution with p — 1 and ». degrees of freedom.

The following allocations of nominal levels of signifi-
cance will be compared in the present study assuming a
given experimentwise level . The Newman [217] and

when p =2,
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o _Kéﬁls [17] allocation is

v =alp =2, -

(superseripts - will be used to indicate a,'
method); Duncan [7, 8] has argued for
levels” which become

v, =1— (1 —a)®D/tD (p‘= 2,k

when adjusted so as to ensure experimentwi
Ryan’s idea of ‘“‘adjusted significance levels” E
be used in the form

Y2 =1 — (1 —a)rl* . ‘
Tukey [28] and Scheffé [26] have advocated.
v,STE = P, (T, > g—? (p =2, ,k)

where { = {: and is defined by
@ =P, (Tx >7) .

The last allocation is based on use of a unique
value ¢ for all statistics 7' and the resulting metho
be referred to as stes [10, 117]. '

The unique critical value { for an sTP can be eval
from (1.15) by use of the distribution of Tk un
[1, 9]. For any other method M, which uses the
statistics T, &M is evaluated as in (1.15) but the
maining critical values (M (p =2, ---, k — 1) a
(1.3), taken as upper 1007, percentage points-o
distribution of Tp under wp. It has been shown (;
Sec. 97) that

<M i o p<r,

so that the critical values increase with the size o
to be tested.

1.5 Comparison of Levels, Critical Values and Powers

It is'readily confirmed that

a>1—(1—a)y*>1
— (1 — a) @ DI=D

(p=2)"';k_1) (

with equalities for p = k. It then follows that

7@NK>7PR>7i'D (p=217k_1)1 (

and again for p = k these are obviously equal to a. '
It also follows that

HVE < g‘p.k <HP<&H (=2 k=1, (119)

and for p = k the critical value for all methods is equ
to ¢.

As noted in Section 1.3, power comparisons are related
directly to comparisons of nominal levels and inversely
to comparisons of critical values. It therefore follows thaty
for any one statistic T and any configuration Q of the

2 Ryan himself chose the very slightly more conservative

vp = ap/k

as it is easier for computation.
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ﬁﬂR(P) > PP (P)

> FaSTR(P) , VP . (1.20)

. words, whatever the configuration of popula-
whatever statistic is used, the power of the
y one subset P is always largest with the
Keuls allocation. Next largest is the power
a’s allocation followed by that with Duncan’s.
ys have least power. In particular, such is the
the true levels of significance.

onelusions result from comparing all allocations
ame experimentwise level. Earlier studies have
“Duncan method at vz = 0.05, the Newman-Keuls
hod. at 7vp = 005 (p =2, ---,k) and the sTP at
5:05. Unsurprisingly, this has resulted in large
nd powers for Duncan’s method, moderate ones
ewman-Keuls method and low ones for the sTp.
sulting Duncan, Newman-Keuls, stP order of
was an obvious consequence of the differential
s of levels and had nothing to do with the intrinsic
o5 of the different statistics and allocations. Harter’s
] comparative conclusions and Balaam’s [2],
vich and Hardyck’s [23] and Carmer and
n’s [4] Monte Carlo studies all rediscover this
Their conclusions and recommendations differ
upon whether they are more concerned with in-
power or with protection against false rejection.
different requirements of these various authors
ave been attained with any one of the McPs by
g different levels according to each author’s
iees. The more power-concerned analysts could
t the experimentwise level at a higher value than
ore concerned with avoiding false rejections. The
f Mcp was not really relevant to these different
sments. For example, they all could have used an
he former taking, say, « = 0.25 and the latter
5. This would have given everybody the sort of
.and powers he desires, without any need for differ-
s. It is strange that the issue of choice of suitable

ow!

tical problem of deciding on a good procedure for
ple comparisons. Could it be that the reason for not
¢ this simple course is that it does not seem scientifi-
spectable to work explicitly with a level of 0.25?

, p. 4727)

pwise Procedures for Carrying Out Multiple
omparisons and Some Advantages of STPs

er tests of (1.2) may be carried out in a stepwise
nv ; the adjective “sequential”’ [12] is more apt but
WS ady used in a different context in statistics. Instead
of ing at the statistics for all sets 2 containing the set

o tested, a procedure which involves a great deal
etition, one begins with the total set and proceeds
10 those smaller sets which are not contained in any
red set. (1) The first step is to test the total set K:

as been so often confused with the technical

(a) If Tx < ¢, vk is retained and with it wp for all other
sets P—hence, no further testing is required and one
stops after the first step; (b) if Tx > {i, wx is rejected and
one proceeds. (2) The second step consists of testing all
subsets P of p = k — 1 populations: (a) if Tp < e, P
and all its subsets are retained; (b) if Tp > {&-1, P is re-
jected. If all sets P of size p = k — 2 are contained in
retained sets one stops after the second step. (3) Other-
wise, testing continues step after step so long as there
remain any untested sets which are not contained in re-
tained sets. :

sTPs are the only Mcps which ensure coherence without
requiring stepwise testing [9, Sec. 97. This is because
both the range and the sum of squares statistics satisfy
the monotonicity property

Tp<Tr if PZR. (1.21)
As a result, for any critical value {,
Te > ¢ (1.22)

implies Tz > ¢, YR(P € R € K) so that the rejection
criterion (1.2) simply becomes (1.22). In other words,
if Tp > ¢, it is impossible for any set B containing P to
be retained. Hence, event (1.22) is a sufficient basis for
a rejection decision on P and there is no need to refer
back to the statistics T'z for larger sets. An STP thus
allows all subsets of K to be tested simultaneously with-
out reference to one another and without any stepwise
procedure. The only reason one may want to proceed
stepwise is that this may obviate the need to compute the
statistics for sets contained in larger retained sets. These
subsets must necessarily have statistics smaller than ¢
and would be retained anyway.

STPs are the only Mcps whose decisions extend beyond
hypotheses on subset homogeneity and further allows
decisions on all contrasts in the means including simul-
taneous confidence statements (Tukey and Scheffé
bounds). Such decisions and bounds are not possible for
the other mcps, presumably because their decision on a
particular set P depends in part on the configuration of
the populations not belonging to the set. We find this
dependence to be an intuitively undesirable feature of all
such Mcps but our feelings may not be shared by others
(e.g., Tukey [30]), and especially not by Bayesians.

1.7 Maximal Type | Error Probabilities of MCPs

At this stage, we want to check the maximal probability
of any Type I error of each one of the McPs. 1t is sufficient
to consider false rejection on maximal homogeneous sets,
j.e., sets not contained in any homogeneous set. This is
because any other homogeneous set P must be a proper
subset of some maximal homogeneous set R, and co-
herence ensures that whenever wp is (falsely) rejected s0
is also wr.

As noted in Section 1.3, the probability of false rejee-
tion of wp reaches its maximum value, the nominal level
vp, when all true treatment means outside P are widely
separated from those of P. Consider, then, a configuration
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“of the treatments with ¢ widely separated homogeneous

~sets of true means Py, Py, - - -, P,. For 'both~P<L)’--a;r_1d“’T(2>,
the statisties Tp,, T'p,, - -+, Tp, are ratios whose numera-
tors are independent of each other and of the denomina-
tor, s or s% respectively, common to all of the ratios.
Kimball’s “improved Bonferroni inequality” [18] there-
fore ensures that

q B q
Po(U (Tp: > $2)) <1 —IT (1 — va) . (1.23)
=1 i=1
In the case of known &%, the statistics are actually inde-
pendent and (1.23) becomes an equality.
Under the Newman-Keuls allocation of levels (1.10)
for known o®—and, approximately, for large error d.f.
n—the equality in (1.23) becomes

PVE(Type Lerror) =1 — (1 — a)7 . (1.24)
Clearly, for any ¢ > 1
PY¥E(Type I error) > « . (1.25)
Under the Ryan allocation (1.12), (1.23) becomes
R q
PE (TypeIerror) <1 — JJ (1 — a)»il®
el
3 o
=1-—-(@1- a)"‘p‘/k
=1—-(0-a)
= a (1.26)

because > 7-; p: = k, the number of populations in all

. the ¢ homogeneous subsets being the total number k.
4 fortiori, under the Duncan allocation and the stp
which have lower y’s—(1.18), (1.20)—the Type I error
probability never exceeds a.

The possibility that (1.25) may hold renders the New-
ma_h—Keuls allocation unsatisfactory unless it is modified
to ensure that the false rejection probability be always
bounded by the experimentwise level.

18 Modificatiéhs of Newman-Keuls MCPs

The Newman-Keuls procedure, in its original form,
makes a retain-reject decision on every set of means. It
may be modified by adding decisions on all collections of
disjoint sets, i.e., all partitions, and ensuring coherence
through automatic retain’ decisions on all subsets that

“belong to ‘a retained partition. Thus, for k = 5, the
medified procedure would include a nominal e-level test
of the simultaneous equality of the first two means and
the last three means.. If this joint equality hypothesis is
retained, so are the separate w2 and w45 hypotheses.
If the joint hypothesis is réjected, each of wq.s and
w(3,4,5 is tested at nominal «. Clearly, this modification
reduces the chance of rejection and prevents the prob-
ability of false rejection from exceeding a.

Any choice of nominal & level tests for partitions will
determine a modified procedure of this type. Peritz [22]
has suggested rejection of the joint hypothesis that all

ournal of the ~Amet§can -“Svtutg'sticul'

subsets of a partition are homogeneous if anys
subjects is rejected at the nominal Ryan a
Thus, for & = 5, the joint hypothesis w(m)’n
rejected if either w1 5 is significant at 1 — -
@@,45 8t 1 — (1 — )*% If neither is signifiey
®a,2 and we,q,s are retained without furthey té
either is significant, wq,2 and w, 4,5 are each tes
(Another procedure for sum of squares statisti¢
formulated along the lines of the STP proposed.
its decisions were found to be very similar 4o
Peritz’s proposal.)

Peritz’s modified procedure is a mixture of Ryan
Newman-Keuls’s, leading to fewer rejections th
Newman-Keuls procedure, but somewhat mgy
Ryan’s mcp. Evidently the power must also b
than that of Ryan’s. In fact, it is clear that
(1.19) and (1.20) remain true for this modified f,
the Newman-Keuls technique. Unfortunately, the
checking of all subset and partition tests is exe
cumbersome. It is included in this study mainly to
how the Newman-Keuls procedure would perf
modified so as not to exceed the experimentwige

1.9 Interim Conclusions

In choosing between the different mcps, one must,
fore weigh the greater power of the modified Nev
Keuls, Ryan and Duncan methods against the adva.i
of STPs: greater computational simplicity (no ste
procedure is necessary), extension of decisions to 4
trasts (and not simply to subsets), availability
responding simultaneous confidence bounds and th
that the decision on any set P is not dependent
means outside P. The choice will depend on hoy
larger the power of. the stepwise mMcps actually is,
studied in Section 2.

2. THE MONTE CARLO STUDY
2.1 On Comparing MCPs

A primary problem in evaluating and compariig
is the choice of criteria. A single test is commonly
uated in terms of its power, and even that be
difficult when the alternative is composite. An Mt
cludes a large number of test decisions, each of W
power with respect to every alternative configuf:
Which one of them is to be used as a criterion? Mor
multiple comparisons may be regarded not simpl
collection of retain-reject decisions but also as meth
ordering, or at least partially ordering, the popul
under study. To evaluate the operating characterist
such ordering, one would need more intricate eor
than those of mere power. For the simiplest case.
wise decisions, one already has to add probabil
errors of Type III, i.e., reversing the true order of
(However, these have been found [2, 15 and 23] gen
to be quite small compared to Type II error probabill

3 A slightly different modification by Welsch [31] has come to ouf &
recently.
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¥ is limited to the criterion of power, but con-
+ for the tests of all subsets of populations.
wample, for k = 5 means, we consider powers
tal set, for each of five sets of four treatments,
three and 10 sets of two. There is some problem
ing this large collection of power probabilities,
rned out to be easier than we had expected
2.4).

w meaningful power comparisons, it was neces-
fix the experimentwise level o for all methods used
tudy. As noted earlier, this leaves two factors for
son: (a) the statistics used and (b) the allocation
inal significance levels to the tests of subsets of
t sizes.
has been restricted to normal populations of equal
The statistics used were therefore the range of
d the “between” sum of squares, both in Stu-
d form. The powers of these statistics had been
‘and compared before for overall tests [5]. Our
s to compare them for tests of subsets occurring
of an MCP.

ons of the nominal significance levels. This seemed
he prineipal factor confusing the choice between
n the whole, its effect is likely to be similar for
tatistics, so that the limitation to two statistics

jes Requiring Monte Carlo Studies

| difﬁcult to caleulate powers of McPs because the
ision on any set P depends (1.2) not only on the
tistic T'p for the set, but also on the statistics for all
ets containing P. The power thus depends on the
istribution of all these statistics and no one has
red work with this. Instead, one tries to estimate
by simulated random experiments—the Monte
inethod. Note that sTps are an exception to this
ty since their decisions on P are based exclusively
and powers can be evaluated from the noncentral
utions of the individual statistics involved.

general discussion of methods of multiple compari-
ection 1) has allowed us to narrow the issues need-
rification by Monte Carlo study. Our main analytic
sion (1.20) was that for any one statistic, and fixed
mentwise level, the powers would be (increasing)
order of the allocations of (i) the sTp, (ii) Duncan,
yan and (iv) Newman-Keuls, even when modified
gested by Peritz. The practical problem then is
» much these powers actually increase, for it was
that the sTP has various other advantages that one
presumably be willing to forego only for a sub-
1 gain in power. We also noted that the Newman-
allocation is unsatisfactory without modification
e of the possibility of very large probabilities of
alse rejection, and we therefore have included only
1odification.

inain issue for this study was the effect of different -
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2.3 Layout of onte Carlo Study

The number of normal treatment means studied was
k=3, 4, 5and samples of size 9 were drawn for each
treatment. Thirty-four configurations of true treatment
means. (or expectations) were studied (Table 1). These
include configurations py =--+= pp = 0 which provide
checks on the true levels of the mces. The variance was
arbitrarily set at unity.

=

1. Configurations of True Means [y, " "'+ in
Monte Carlo Study (Variance Always Unity)

No. of True means Noncentrality True
samples parameter range
k Py M2 M3 g s A2
o 0 O —_ - 0.0 0
0 % 1 —_— - 4.5 1
3 o 0 1 - - 6.0 1
0 % 12 — -10.125 1.5
0o 0 12 — - 13.5 1.5
o 1 2 - - 18.0. 2
0 0 2 —_ - 24.0 2
0 0 O 0 —_ 0.0 0
o o0 0 12 — 1.6875 0.5
0 0 % ¥ —_ 2.25 0.5
0 Y% Y2 1 — 4.5 1
: 0o 0 % i — 6.1875 1
4 0 0 O 1 — 6.75 1
0o 0 1 1 — 9.0 1
0 0 1 1 — 9.0 1
0o 0 172 12 — 20.25 1.5
0 % 12 2 — 225 - 2
c 0 .2 2 — 36.0 2
0o 0 O 0 0 0.0 0
0o 0 0O 0 Y2 1.8 0.5
0o 0 O V2 Ye 2.7 0.5
0 0 Y2 V2. Y 2.7 0.5
0 0 Y% ¥ 1 6.3 1
o 0 O V2 1 7.2 1
o 0 O 0 1 7.2 1
o 1 1 1 1 7.2 1
5 0 0 ¥ 1 1 9.0 1
o 0 1 1 1 10.8 1
0 0 % 1 1%2 15.3 1.5
o o0 1 1 1%2 '16.2 1.5
0 0 ¢ 1 112 18.0 1.5
o o0 1 1 2 25.2 2
¢ 0 O 1 2 . 28.8 2
0 0 O 2 2 43.2 2

NOTE: Some configurations are essentially equivalent to others—but 1,000 separate
replications of k samples were run separately for each one.

‘The configurations are, for each k, given by the order
of the true range and true sum of squares—'—noncentrality
parameter .

- k k
N = OLE wt — (X wd¥/k] - 21
i=1 i=1

Most of the configurations thus differ in the “yariance”
A2 of the means as well as in the internal arrangement.
Thus, e.g., for k¥ = 4 and true range 1, Table 1 shows
configurations from 0, %, 3, 1 with \? 451t00,0, 1,1
with A2 = 9. These would be the configurations with,
respectively, minimal and maximal overall power of the
sum of squares for roughly equal power of the range

(see [5]).
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2 Monte Carlo Estlmates of Power of Four Methods of Multlple Comparlsons at'o
UK =38,n=9, with True: Means M =(0,0,7) and Unit Variance
: Subset P
Method® (1,2,3) (1,2) (1,3)
F Q F Q F - Q
(.521)® (.0148) (.0189) (.318) (.360)
STP © 535 .525 .016 022 347 .384
Duncan 535 525 .027 .027 .396 .395
Ryan .535 525 .035 .035 423 414
Newman-Keuls 635 .525 .049 048 ..453 437
@ F = sum of squares statistics; Q = range statisti

b Values in parentheses are exact powers.

One thousand replications of the k samples of size 9 were
simulated for each configuration. (A description of the
method of generating these samples can be obtained from
the authors.) For each sample, the statistics T and
Tr® were computed and compared with the critical
values ¢, for each mcp M as calculated (1.3) from
nominal levels vy, based on experimentwise a = 0.05.
The test decisions for each McP were sequenced in a step-
wise manner—as in Subsection 1.6—so0 as to simulate the
MCPS. .

For each set P, the number of replications was counted
in which wp was rejected. The proportion of such re-
jections was printed out for each mcp and each set of
every one of the 34 configurations. These were our Monte
Carlo estimates of the true powers. Examples of all the
power estimates for two of the configurations are shown
in Tables 2 and 3. '

2.4 Summarization of the Monte Carlo Results

To evaluate the large collection of power estimates—
for each subset of each configuration, for each method of

3. Monte Carlo Estimates of Powers of Methods of Multiple -Comparisons at a = 0.05 for k = - 4,
n =9, with True Means m= (0,0,1.5,1.5) and Unit Variance

allocation and both statistics—it was useful
centrate on comparing powers of each stepwise yg
that of the corresponding stp. Thus, for each stat
plot of each stepwise McP power against the STP
was made for all sets of a given size p(= 2, :
all configurations of a givensize k(= 3,4, 5). For ex:
Figure A shows the plot of Ryan’s McP’s power 5
that of the sTp, both using range statistics. The poin
the plot are for all sets of p = 3 treatments fro
figurations of k¥ = 5. Similarly, Figure B shows t
responding plot for the sum of squares statistics,
together nine such plots (p = , k; k=3,
were made for each one of the two statistics.
On all plots, the points were found to cluste
fairly narrow band. Much of this scatter must hav
random, considering that each of the coordinates had
standard error of (x(1 — 7)/1000)* < (3 X 3/1
= 0.016, where = is the true power. However, det;
study. of the cases where stepwise power was larg
tively to sTp power showed these to belong to sets:
which A\p? was appreciably smaller than the overall:n
centrality parameter Ax% Evidently, when there w

Method® F Q F Q _ F Q F Q F Q
A Subset P
(1,2,3,4) (1,2,3) - (1,2,4) (1,34) (2,3,4)
(.965) (.806) (.806) (.806) (.806)

sTP 956 917 794 814 789 .799 812 822 783 .800
Duncan 956 917 . 851  .829 830 812 857  .835 821 813
Ryan 856 917 864 834 842 820 868 .840 842 822
Newman-Keuls 956 917 893  .863 866 847 890 864 871 839
Peritze .956 917 —_— — — —_ —_ —_ — —

(1.3 (1.4) (2,3) (2,4) (3,4)

o (587 (677)  (587) (677)  (587) (677)  (587) (677)  (006) (.010)
STP 604 695 588 666 573 665 594 674 008 014
Duncan 710 725 680  .699 685  .708 682 703 017 018
Ryan 772 743 742 717 746 723 737 716 024 023
Newman-Keuls 819 794 797 777 805 775 786 763 051 .05
Peritze 819 794 797 77 805 775 786 763 024

.023

4 F = sum of squares statistics; Q = range statistics.
b Values in parentheses are exact powers.
© This is.a modification of the Newman-Keuls method.
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lerable deviations from the null hypothesis outside
enhanced the likelihood that the stepwise mcp
eached P, and thus increased the power for P. (In
p, of course, the configuration outside P was ir-
nt.) However, these systematic deviations only
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For_a_ summary description of the relation between
stepwise McP power 8 and sTP power BSTE we therefore
looked for functions which would fit the band well over
its entire range. After some experimentation, we found
good fits with

gy = (gD 2.2)
for the range statistics, and with
6M = (1 — 3STP) (HSTP) (1—a) + (,BSTP) (2—¢) (2'3)

for the sum of squares statistic. Both these curves pass
through

gM = BSTP = ( (2.4)

as well as
(2.5)

which are necessary conditions for such a relation. The
relationship is exponential and the curvature of the ex-
ponential over the line 8# = BSTF is measured in (2.2)
by a parameter b, (0 < b <1). In (2.3) this curvature
varies from a to ¢ (0 < a, ¢ < 1) as 88TF varies from zero
to one. Clearly, B¥ = BSTP over the entire range if and
only if b, @ and ¢ are zéro. The larger these parameters the
higher the exponential above the 45° line B = BSTE.
Least squares? estimates of these parameters are given in
Tables 4A and 4B along with typical values of 8 cal-
culated for 8STF = 0.5 and 0.75.

Another comparison of interest was that of the powers
of the sum of squares Ryan mcp with those of the range
stp. These scatterplots were very similar to Figure A, so
functions of type (2.2) were fitted as broken lines to each
of these plots and the results summarized in Table 5.

BM = BSTP =1 |

2.5 The Monte Carlo Results

The summarized results in Tables 4A and 4B show
that the excess of stepwise MCP power over STP power is
much greater for the sum of squares than for the range.
It also depends on the sizes of the subset and the total
set of the configuration—the excess is greatest for the
smallest subsets of the largest configurations. And, of
course, it depends on the nominal level allocation.

The results for range methods (Table 4A) confirms the
order of powers to be

ﬁP>ﬁR>,3D>BSTP)
which agrees with (1.20) when Peritz’s modification of
the Newman-Keuls mcp is used. However, most of the
differences are exceedingly small, increasing the power at
most (for k = 5, p = 2) from B8TF = 0.5 to BF = 0.56
and from BSTE = 0.75 to 8% = 0.79. For smaller con-
figurations and/or larger sets the increases are even less.

The results for sums of squares Mces (Table 4B) show
the same order, but the differences are much more notice-
able than those for the range. In the extreme case k=5,
p = 2) the increase is from g8TF = 0.50 to ¥ = 0.72 and

(2.6)

X
er, de ly affected the narrowness of the bands of points on
large ts. ‘
) sets
verall -
there catter Diagram of Power of Sum of Squares
4 ethods: Ryan’s Against STP (k =5, p = 3)
—_—
. v / "
——e Pr
e
e
(1,2) P P
e
) //.Eq:.
e
/
e
Ve
7/
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% -1
0 2-5
° 6-9
D 10+
025 050 o7 100

STP POWER

4 Fitted by “Marquart’s compromise’ method of iterative nonlinear least squares
{6, Ch. 10] as programmed in IBM Share library program No. 3094.
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4. Powers of Various Range and Sum of Squares

MCP’s in Comparison with STP Power

Method k p Estimate Power of method
A. Powers of Various Range MCP's
b of (27) BSTF =0.50 BT =075
Duncan 3 2 085 523 764
Ryan 3 2 .133 .548 .780
Duncan 4 3 .028 510 756
_Ryan 4 3 .047 517 - .760
Duncan 4 2 085 .523 .764
.Ryan 4 2 105 .538 .773
Peritz 4 2 .126 .546 .778
Duncan 5 4 .025 .509 .755
Ryan 5 4 .036 513 .758
Duncan 65 3 .053 .519 .762
Ryan 5 8 .080 .529 .768
Peritz 5 3 113 ) 541 775
Duncan 5 2 .082 .529 .768
‘Ryan 5 2 134 .548 779
Peritz 5 2 164 .560 .786
B. Powers of Various Sum of Squares MCP's
aof(28) cof(28) pP=050 pTF=0.75
Duncan 3 2 A 17 .232 .565 .795
Ryan 3 2 19 313 .596 .814
Duncan 4 3 .054 .256 .558 .796
Ryan 4 3 .064 322 .574 .808
Duncan 4 2 107 .381 .595 .821
Ryan 4 2 - 152 .573 .650 : .860
Peritz 4 2 174 757 .705 .896
Duncan &5 4 .062 .208 .550 .788
Ryan 5 4 .100 335 .583 .812
Duncan 5 3 A71 .387 .608 .826
Ryan 5§ 3 180 518 641 © .850
Peritz 5 3 .180 559 .6562 .858
Duncan 5 2 215 617 .674 . .8Mm
Ryan 5 2 .248 719 .708 .893
5 2.

Peritz 276 732 .718 .897

from B8TP = 0.75 to B¥ =-0.90. Substantial increasesalso
oceur for less extreme cases. o
With range statistics, power differences between
methods are too small to warrant further comment, but
not for the sum of squares. Notice first that the modifica-
tion of the Newman-Keuls McP mostly has only a very

5. Power of Ryah's Sum of Squares MCP in
Comparison with Range STP Power

Power of Ryan's method

K p Estimate
. bof(27) B85 = 0.50 BST? =0.75

3 2 165 - 561 .786

P a 066 524 : .765
4 2 110 539 774

5 4 125 545 777

5 3 A1 540 774

5 2 - 126 .546 778

"percentage points of the F and Studentized range can be

Ryan’s allocation over Duncan’s is not large,
the additional power of stepwise McCPs is mg;
already when the Duncan Mmcp is employed. T
improvements by the other mcps contribute
small additions to power. .

Comparison of range sTps with sum of sqy;
show the former to have appreciably larger P
small subsets of large configurations, slightly larg
for large subsets and generally slightly smaller Do
overall tests.® For smaller sets, the extreme obsery
in power is illustrated for £ = 5, p = 2 when g
= 0.50 corresponds to BSTF(Ranee) = (.61. (Simiy
parisons of significance levels have been illustraty
[91) '

Similar comparisons for Ryan’s allocation ghg
slight advantage for the sum of squares when p >
difference is evident when p = 2. The advantage
sum of squares powers is at best of the order of
cent over range powers.

Finally, for comparison of both allocation and g
tics, the powers of sums of squares under Ryan’s g
tion were contrasted with the powers of range g
(Table 5). The former were found to be slightly la
than the latter, irrespective of size of configuration
subset. The extent of difference can be judged by not;
that when range STP powers were STE(Ranee) = ()
0.75, the corresponding sum of squares Ryan’s meth
had powers of about 0.54 and 0.775, respectively.

2.6 Conclusions and Recommendations

We have argued that Newman-Keuls Mcps are
satisfactory because their probability of any false réj
tion may exceed the experimentwise level. We theref
recommend that these mcps should not be used un
modified to ensure that this probability is bounded b;
the experimentwise level. Such modifications have bee
proposed and were found to be the most powerful of th
mcps studied. However, we cannot recommend them fo
practical use, since they involve impractically compli--
cated procedures and yet provide only very slight gain
in power over the next most powerful mcps. We much
prefer Ryan’s Mmcps, which have almost the same power
and seem easy enough to apply in practice, if untabulated

obtained. We find no reason to recommend Duncan’s
mcps, which entail a slight loss of power compared to
Ryan’s and are not easier to apply. (The available tables
for Duncan’s McPs are for given pairwise comparison
levels [14, 15], not for experimentwise levels.)

Against these stepwise Mcps, the sTPs, with somewhat
smaller power, have the advantages of greater simplicity
in operation, of decisions on all contrasts with corre-

& The last point agrees with the overall power calculations by David, et al. 6.
These show, for example, that for ¥ = 5, n = 9 and A% = 13.5, the sum of squared ;
power.0.663 is towards the upper end of the interval (0.611, 0.668) of the corré-

ponding range powers. :

T




tiple Comparisons

afidence bounds and of excluding extraneous
he decisions on any set. In case of the range
e gain in power by stepwise MCPs is so small
o] it cannot possibly outweigh the advantages
_ In case of the sum of squares, the power ad-
f the stepwise McPs may be large enough to
ir preference over the sTP.

he choice of statistic is open, the two favored
re the range sTP or the sum of squares Ryan
¢t comparison of the two has shown the latter
ly slightly higher power than the former. Con-
all its other advantages, including its agssociated
eous confidence bounds (see [28]), we are led
recommending the range stp above all other
res. The only exception would be when there 1is
mmitment to the sum of squares statistic, in
ase we would propose its use in Ryan’s Mcp if
ts are required and in st form if (see [26])
eous confidence bounds are needed.

tudy has dealt with powers of tests for subset
eneity among three, four or five normal popula-
equal variance when samples of size 9 are taken
ch. The questions which remain unanswered are
our conclusions generalize to other situations. We
guess that changes in sample size and deviations
ormality are unlikely to affect our conclusions
e relative merits of different mMcps. We are less
about the effect of increasing the number of
nts to be compared. Again, it is unlikely that this
ffect the order of the powers of the different McPs,
might well affect the magnitude of the differences.
it might reverse our conclusion about the ad-
res of the range STP relative to the stepwise MCPs
e found to be only slightly more powerful. This
‘seem a crucial issue for further Monte Carlo
entation.

Received April 1974. Revised February 1975.]
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