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ABSTRACT
Motivation: In genomic studies, thousands of features are collected
on relatively few samples. One of the goals of these studies is to build
classifiers to predict the outcome of future observations. There are
three inherent steps to this process: feature selection, model selection
and prediction assessment. With a focus on prediction assessment,
we compare several methods for estimating the ‘true’ prediction error
of a prediction model in the presence of feature selection.
Results: For small studies where features are selected from thou-
sands of candidates, the resubstitution and simple split-sample estim-
ates are seriously biased. In these small samples, leave-one-out
cross-validation (LOOCV), 10-fold cross-validation (CV) and the .632+
bootstrap have the smallest bias for diagonal discriminant analysis,
nearest neighbor and classification trees. LOOCV and 10-fold CV have
the smallest bias for linear discriminant analysis. Additionally, LOOCV,
5- and 10-fold CV, and the .632+ bootstrap have the lowest mean
square error. The .632+ bootstrap is quite biased in small sample
sizes with strong signal-to-noise ratios. Differences in performance
among resampling methods are reduced as the number of specimens
available increase.
Contact: annette.molinaro@yale.edu
Supplementary Information: A complete compilation of results and
R code for simulations and analyses are available in Molinaro et al.
(2005) (http://linus.nci.nih.gov/brb/TechReport.htm).

1 INTRODUCTION
In genomic experiments one frequently encounters high dimensional
data and small sample sizes. Microarrays simultaneously monitor
expression levels for several thousands of genes. Proteomic profil-
ing studies using SELDI-TOF (surface-enhanced laser desorption
and ionization time-of-flight) measure size and charge of proteins
and protein fragments by mass spectroscopy, and result in up to
15 000 intensity levels at prespecified mass values for each spectrum.
Sample sizes in such experiments are typically <100.

In many studies, observations are known to belong to predeter-
mined classes and the task is to build predictors or classifiers for
new observations whose class is unknown. Deciding which genes or
proteomic measurements to include in the prediction is called fea-
ture selection and is a crucial step in developing a class predictor.

∗To whom correspondence should be addressed.

Including too many noisy variables reduces accuracy of the predic-
tion and may lead to over-fitting of data, resulting in promising but
often non-reproducible results (Ransohoff, 2004).

Another difficulty is model selection with numerous classification
models available. An important step in reporting results is assessing
the chosen model’s error rate, or generalizability. In the absence of
independent validation data, a common approach to estimating pre-
dictive accuracy is based on some form of resampling the original
data, e.g. cross-validation. These techniques divide the data into a
learning set and a test set, and range in complexity from the popu-
lar learning-test split to v-fold cross-validation, Monte-Carlo v-fold
cross-validation and bootstrap resampling. Few comparisons of
standard resampling methods have been performed to date, and all of
them exhibit limitations that make their conclusions inapplicable to
most genomic settings. Early comparisons of resampling techniques
in the literature are focussed on model selection as opposed to predic-
tion error estimation (Breiman and Spector, 1992; Burman, 1989). In
two recent assessments of resampling techniques for error estimation
(Braga-Neto and Dougherty, 2004; Efron, 2004), feature selection
was not included as part of the resampling procedures, causing the
conclusions to be inappropriate for the high-dimensional setting.

We have performed an extensive comparison of resampling meth-
ods to estimate prediction error using simulated (large signal-to-noise
ratio), microarray (intermediate signal to noise ratio) and proteomic
data (low signal-to-noise ratio), encompassing increasing sample
sizes with large numbers of features. The impact of feature selection
on the performance of various cross-validation methods is high-
lighted. The results elucidate the ‘best’ resampling techniques for
future research involving high dimensional data to avoid overly
optimistic assessment of the performance of a model.

2 METHODS
In the prediction problem, one observes n independent and identically dis-
tributed (i.i.d.) random variables O1, . . . , On with unknown distribution P .
Each observation in O consists of an outcome Y with range Y and an l-vector
of measured covariates, or features, X with range X , such that Oi = (Xi , Yi),
i = 1, . . . , n. In microarray experiments X includes gene expression meas-
urements, while in proteomic data, it includes the intensities at the mass
over charge (m/z) values. X may also contain covariates such as a patient’s
age and/or histopathologic measurements. The outcome Y may be a con-
tinuous measure such as months to disease or a categorical measure such as
disease status.
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The goal in class prediction is to build a rule implementing the information
from X in order to predict Y . The intention is that by building this rule, based
on the observations O1, . . . , On, a future unobserved outcome Y0 can be
predicted based on its corresponding measured features X0. If the outcome
is continuous, then the rule, or predictor, ψ is defined as a mapping from the
feature space X onto the real line, i.e. ψ : X → R. Consequently, ŷ = ψ(x)

denotes the predicted outcome based on the observed X. Such predictors can
be built via regression (linear and non-linear) or recursive binary partitioning
such as classification and regression trees (CART) (Breiman et al., 1984).
If the outcome Y is categorical it assumes one of K values. In this case,
the rule ψ partitions the feature space X into K disjoint and exhaustive
groups Gk , where k = 1, . . . , K , such that ŷ = k if x ∈ Gk . Standard
statistical analyses include linear discriminant analysis (LDA) and diagonal
discriminant classifiers (DDA), nearest neighbors (NN) and CART, as well
as aggregate classifiers.

Thorough discussions of the prediction problem and available algorithms
can be found in Breiman et al. (1984), McLachlan (1992), Ripley (1996) and
Hastie et al. (2003).

The rule ψ can be written as ψ(·|Pn), where Pn denotes the empirical
distribution of O and reflects the dependence of the built rule on the observed
data. Loss functions may be employed to quantify the performance of a given
rule. A common loss function for a continuous outcome Y is the squared
error loss, L(Y , ψ) = [Y −ψ(X)]2. With a categorical outcome Y , a popular
choice is the indicator loss function, L(Y , ψ) = I [Y �= ψ(X)]. A loss
function could also incorporate differential misclassification costs (Breiman
et al., 1984).

For either type of outcome, the expected loss, or risk, is defined as:

θ̃ = R(ψ , P) = EP [L(Y , ψ)] =
∫

L(y, ψ(x)) dP(x, y). (1)

The rule in Equation (1) is constructed and evaluated upon the distribution
P , as such, θ̃ is referred to as the asymptotic risk. However, in reality P

is unknown, thus, the rule based upon the observations O1, . . . , On has an
expected loss, or conditional risk (also known as the generalization error),
defined as:

θ̃n = R(ψ(·|Pn), P) =
∫

L(y, ψ(x|Pn)) dP(x, y). (2)

There are two impetuses for evaluating the conditional risk: model selec-
tion and performance assessment. In model selection, the goal is to find the
one which minimizes the conditional risk over a collection of potential mod-
els. In performance assessment, the goal is to estimate the generalization
error for a given model, i.e. assess how well it predicts the outcome of an
observation not included in O.

In an ideal setting an independent dataset would be available for the pur-
poses of model selection and estimating the generalization error. Typically,
however, one must use the observed sample O for model building, selec-
tion and performance assessment. The simplest method for estimating the
conditional risk is with the resubstitution or apparent error:

θ̂RS
n = R(ψ(·|Pn), Pn) =

∫
L(y, ψ(x|Pn)) dPn(x, y). (3)

Here each of the n observation is used for constructing, selecting and,
subsequently, evaluating the prediction error of ψ . Consequently, the resub-
stitution risk estimate tends to underestimate the generalization error (Efron,
1983; McLachlan, 1992). To alleviate this biased estimation, resampling
methods such as cross-validation or bootstrapping can be employed. In the
next section, we describe these techniques and their implications in the
framework of prediction error.

2.1 Resampling methods
In the absence of a large, independent test set, there are numerous techniques
for assessing prediction error by implementing some form of partitioning or
resampling of the original observed data O. Each of these techniques involves
dividing the data into a learning set and a test set. For purposes of model
selection, the learning set may further be divided into a training set and a

validation set. We will focus solely on the partitioning of the data into learning
and test sets for the express purpose of estimating the generalization error.

To enhance a general discussion of resampling methods, we define a binary
random n-vector, Sn ∈ {0, 1}n, which splits the observations into the desired
subsets (Molinaro et al., 2004). A realization of Sn = (Sn,1, . . . , Sn,n) pre-
scribes a particular split of the entire dataset of n observations into a learning
set, {i ∈ {1, . . . , n} : Sn,i = 0}, and a test set, {i ∈ {1, . . . , n} : Sn,i = 1}. Let
p be the proportion of observations in the test set. The empirical distributions
of the learning and test sets are denoted by P 0

n,Sn
and P 1

n,Sn
, respectively.

Importantly, Sn is independent of the empirical distribution of the complete
dataset of n observations Pn and the particular distribution of Sn defines the
type of resampling method. Given Sn, the performance of any given estimator
ψ(·|Pn) can be assessed via the resampling conditional risk estimate

θ̂n(1−p) = ESn

∫
L(o, ψ(·|P 0

n,Sn
))dP 1

n,Sn
(o), (4)

where Sn refers to binary split vectors for the entire dataset of n observations
and p = ∑

i Si,n/n is the proportion of n observations in the test set.
There are several considerations when selecting a resampling method.

The first is sample size n. For v-fold cross-validation and bootstrap, Dudoit
and van der Laan (2003) (http://www.bepress.com/ucbbiostat/paper126) have
shown that as n → ∞ (and consequently np → ∞) asymptotic optimality
is achieved. However, no such results exist for finite samples. Other consid-
erations are on the proportion p of the observations for the test set and the
number of times the estimate is calculated. We address these considerations
in the following sections and refer the reader to more detailed discussions in
McLachlan (1992) and Davison and Hinkley (1997).

2.1.1 Split sample This popular resampling method, also known as the
learning-test split or holdout method (McLachlan, 1992), entails a single par-
tition of the data into a learning set and a test set based on a predetermined
p. For example, p = 1/3 allots two-thirds of the data to the learning set and
one-third to the test set. The distribution of Sn places mass 1/2 on two binary
vectors which assign the n observations to the learning and test sets. The
advantage of this method is the ease of computation. Also, since the classifier
is developed only once, a completely specified algorithm for classifier devel-
opment need not be available; the development can be more informal and
subjective. There are two potential sources of bias inherent in this method:
bias introduced by each individual observation contributing only to the learn-
ing or test set; and, bias due to a small learning set, whereas both features and
classifiers selected depend solely on the learning set. Because the learning
set is smaller than the full data set, the test set error for a model built on the
training set will tend to over-estimate the unknown generalization error for a
model built on the full dataset.

2.1.2 v-fold cross-validation This method randomly assigns the n

observations to one of v partitions such that the partitions are near-equal size.
Subsequently, the learning set contains all but one of the partitions which is
labeled the test set. The generalization error is assessed for each of the v test
sets and then averaged over v. In this method, the distribution of Sn puts mass
1/v on the v binary vectors, which assign each of the n observations to one
of the v partitions. The proportion p is approximately equal to 1/v. Both p

and the number of averages can adversely or positively affect this estimate
of error. For example, a larger v (e.g. v = 10) results in a smaller proportion
p in the test set; thus, a higher proportion in the learning set decreases the
bias. In addition, the number of averages is equivalent to v and thus, may
additionally decrease the bias.

2.1.3 Leave-one-out cross-validation (LOOCV) This is the most
extreme case of v-fold cross-validation. In this method each observation is
individually assigned to the test set, i.e. v = n and p = 1/n (Lachenbruch
and Mickey, 1968; Geisser, 1975; Stone, 1974, 1977). The distribution of
Sn places mass 1/n on the n binary vectors, which assign each of the n

observations to the learning and test sets. LOOCV and the corresponding
p = 1/n represent the best example of a bias-variance trade-off. It tends
toward a small bias with elevated variance. In model selection, LOOCV has
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performed poorly compared to v-fold cross-validation (Breiman and Spector,
1992). Due to the computational burden, LOOCV has not been a favored
method for large samples, and its behavior in estimating generalization error
has not been thoroughly studied.

2.1.4 Monte Carlo cross-validation (MCCV) MCCV randomly
splits the sample into a learning and test set numerous times (e.g. 20, 50
or 1000 iterations). For each split, np = n(1/v) of the observations are
labeled as the test set and n(1 − p) = n(1 − 1/v) as the learning set. For
example, in MCCV with v = 10 each of 50 iterations allot 10% of the data to
the test set and 90% to the learning set. The generalization error is assessed
for each of the 50 test sets and subsequently averaged over the 50 iterations.

The distribution of Sn puts mass 1/

(
n
np

)
on each of the binary vectors rep-

resenting one split into a learning and test set. As the number of iterations
increases the computational burden of MCCV is quite large. However, unless
the iterations of random splits approaches infinity, the chance that each obser-
vation is included in a learning set and a test set (over all iterations) is small,
introducing a similar bias to that of the split sample approach (i.e. when each
observation is either in the learning set or test set).

2.1.5 .632+ Bootstrap Several variations of the bootstrap have been
introduced to estimate the generalization error. The leave-one-out boot-
strap (θ̂BS

n ) is based on a random sample drawn with replacement from n

observations (Efron, 1983; Efron and Tibshirani, 1993). For each draw, the
observations left out (≈.368n) serve as the test set. The learning set has
≈.632n unique observations which leads to an overestimation of the predic-
tion error (i.e. a decrease in the learning set leads to an increase in the bias).
To correct for this, two estimators have been suggested: the .632 bootstrap
and the .632+ estimator. Both correct by adding the underestimated resubsti-
tution error θ̂RS

n , ωθ̂BS
n + (1 − ω)θ̂RS

n . For the .632 bootstrap the weight ω is
constant (ω = .632), whereas for the .632+ bootstrap ω is determined based
on the ‘no-information error rate’ (Efron and Tibshirani, 1997). We focus on
the latter as it is the most used in the literature and the most robust across
different algorithms (Efron and Tibshirani, 1997).

2.2 Algorithms
Predictions of outcomes based on the observed X can employ parametric or
non-parametric algorithms. If the outcome is continuous, predictors can be
built using regression models or recursive binary partitioning like CART. If
the outcome is categorical, algorithms which partition the feature space X

into disjoint and exhaustive groups are used. In this manuscript, we limit our
discussion to the classification of binary outcomes, i.e. Y = 0 or Y = 1, and
thus, evaluate methods for the estimation of prediction error in the context of
the following classification algorithms.

We calculate the LDA with the lda function in the MASS library of the
statistical package R (Venables and Ripley, 1994; Ihaka and Gentlemen,
1996). We use the function dlda in the library supclust in R to imple-
ment DDA (Dettling and Maechler, 2005, http://lib.stat.cmu.edu/R/CRAN/
src/contrib/Descriptions/supclust.html). The library supclust also houses
the function nnr for NN. CART classification is obtained using the library
and function rpart in R (Breiman et al., 1984; Therneau and Atkinson,
1997).

3 ANALYSIS
The goal of this analysis is to ascertain differences between res-
ampling methods in the estimation of generalization error (presently,
limited to the classification problem) in the presence of feature
selection. We evaluate the influence of sample size, parametric to
non-parametric classification methods, and large feature spaces on
each resampling method’s ability to estimate the resampling con-
ditional risk θ̂n(1−p) [Equation (4)] compared to that of the ‘true’
conditional risk θ̃n [Equation (2)]. As such, a range of sample sizes
(n = 40, 80 and 120), classification algorithms (LDA, DDA, NN

and CART), and data sets (simulated, microarray and proteomic; see
Sections 3.1–3.3) are utilized. Prior to discussing results, the general
strategy for estimating the risks is explained followed by the specifics
of each dataset.

Each dataset consists of N observations with N1 cases and N0 con-
trols and l measured features. For r = 1, . . . , R repetitions, a random
sample of size n stratified by case/control status is selected from N ,
such that the number of cases in the subsample (n/2) equals the num-
ber of controls. The stratification allows for equal representation of
both, cases and controls, such that classification algorithms relying
on majority consensus are not biased toward either (Quackenbush,
2004). This random sample, or subsample, plays two roles. First, it
serves as a sample from which the resampling conditional risk θ̂n(1−p)

can be estimated. This is accomplished by splitting the subsample
into a learning and test set corresponding to each of the resampling
methods. For each r , an estimate of θ̂n(1−p) is obtained for each res-
ampling method with all four algorithms. In reality, the distribution
P of the observed data O is unknown and thus, so is the ‘true’ con-
ditional risk. In order to estimate θ̃n in Equation (2) we will use the
complete observed data. As such, the subsample’s second role is to
serve as the learning set and the remaining N − n observations as
the test set for an approximation of the conditional risk θ̃n.

Given the high-dimensional structure of each data set (i.e. large
l), feature selection is an important task administered before running
any of the algorithms. Feature selection must occur based on the
learning set within each resampling, otherwise additional bias is
introduced (Simon et al., 2003). This correct approach to feature
selection within cross-validation has been referred to as honest or
complete (Quackenbush, 2004). There are many methods available
for feature selection; here t-tests are used. Initially components of
X with the largest 10 absolute value t-test statistics are considered.
Subsequently, the largest 20 are discussed.

All simulations and analyses were implemented in R (Ihaka and
Gentlemen, 1996).

3.1 Simulated data
The simulated datasets are generated as described in Bura and Pfeiffer
(2003). Each dataset contains N = 300 observations with 750 cov-
ariates, representing patients and genes, respectively. Half of the
observations (i.e. 150) are labeled controls (Y = 0) and half cases
(Y = 1). Of the 750 genes, 8 are associated with disease and the
others are non-predictive. The controls are simulated from a mul-
tivariate normal distribution with a mean of 0 and covariance matrix
�. The cases have 99% non-differentially expressed genes which
are generated from the same N(0, �) as the controls. The 1% of the
genes that are differentially expressed are generated from a mixture
of two multivariate normals with means µ1 and µ2 and covariance
structure �. The mixing probability is 0.5. The covariance matrix
� = (σij ) has a block structure with σij = 0.2 for |j − i| ≤ 5 and
zero otherwise. Estimates of θ̂n(1−p) and θ̃n are based on learning
samples of size 40, 80 and 120 and test sets of size 260, 220 and
180, respectively.

3.2 Lymphoma and lung datasets
The microarray datasets are both publicly available. The first focuses
on diffuse large-B-cell lymphoma (Rosenwald et al., 2002). In this
study there are 7399 genes on the microarray and 240 patients. For
the purposes of this analysis, the outcome-variable represents the
lymphoma subtype: activated B-cell for Y = 0 and germinal-center
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B-cell for Y = 1. This is an example of a moderate signal-to-noise
ratio dataset, as the subgroups do not separate perfectly based on the
microarray observations (Wright et al., 2003). Estimates of θ̂n(1−p)

and θ̃n are based on learning samples of size 40, 80 and 120 and test
sets of size 200, 160 and 120, respectively. The second study uses
oligonucleotide microarrays to measure 12 601 transcript sequences
for 186 lung tumor samples (Bhattacharjee et al., 2001). For our
analysis, the outcome represents the 139 adenocarcinomas as Y = 0
and the remaining 47 tumors as Y = 1.

3.3 Proteomic ovarian dataset
The proteomic dataset consists of 164 SELDI-TOF measurements
from NCI/Mayo Clinic serum samples. These data are part of a
study designed to validate previously identified proteomic markers
for ovarian cancer. The readings are from fraction 4, IMAC30 Pro-
teinChip arrays, read at high and low energy settings in a PCS4000
ProteinChip Reader (Ciphergen Biosystems, Inc., Fremont, CA).
The spectra were externally calibrated for mass, internally normal-
ized for intensity using total ion current, and baseline subtracted.
Peaks were manually selected and the intensity recorded.

Of the n = 164 observations, 45 are ovarian cancer cases and 119
controls. Estimates of θ̂n(1−p) and θ̃n are based on learning samples
of size 40 and 80 and test sets of size 144 and 104, respectively.
Given the nature of proteomic data as well as the naive algorithms
implemented, this will serve as a low signal-to-noise example.

3.4 Results
To compare the resampling methods in Section 2.1, conditional risk
estimates for each method are calculated and compared to each other
and the truth (i.e. the conditional risk). This evaluation is based on
the mean squared error (MSE) and bias, calculated as follows:

MSE = 1

r

R∑
r=1

(θ̂n,r − θ̃n,r )
2

Bias = 1

r

R∑
r=1

(θ̂n,r − θ̃n,r ),

where θ̂n,r is the resampling conditional risk and θ̃n,r is the conditional
risk for the r-th repetition. In all results the total number of repetitions
is set at 100, i.e. R = 100.

There were several attempts to examine the effect of varying p

on those resampling methods which allow user-defined test set pro-
portions (i.e. v-fold cross-validation, MCCV and split sample). For
v-fold cross-validation, 2-, 5- and 10-fold were explored. In MCCV,
both p and the number of MCCV repetitions affect the estimation,
thus, test set proportions of p = 0.5, p = 0.2, p = 0.1 as well as
repetitions of 20, 50 and 1000 were run. In split-sample estimation
test set proportions of both p = 1/3 and p = 1/2 were examined to
assess the bias/variance trade-off.

Due to space limitations, all results are discussed but only a limited
number of tables can be displayed. The interested reader is referred to
Molinaro et al. (2005) (http://linus.nci.nih.gov/brb/TechReport.htm)
for a comprehensive compilation of results. The MCCV results are
not included below, as the only noticeable improvement over v-fold
CV is a slight decrease in variance. Additionally, the advantage of
increasing the MCCV iterations from 20 to 50 to 1000 is minimal.

Simulation study results For n = 40, LOOCV and 10-fold CV have
the smallest MSE and bias, followed by 5-fold CV and then .632+

Table 1. Prediction error estimates

Estimator p Algorithm Estimate SD Bias MSE

θ̃n 0.87 LDA 0.078 0.093
DDA 0.160 0.086
NN 0.042 0.084
CART 0.121 0.133

v-fold CV 0.5 LDA 0.357 0.126 0.279 0.097
DDA 0.342 0.106 0.182 0.052
NN 0.277 0.135 0.235 0.077
CART 0.430 0.121 0.309 0.134

0.2 LDA 0.161 0.127 0.083 0.017
DDA 0.208 0.086 0.048 0.012
NN 0.108 0.102 0.066 0.011
CART 0.284 0.117 0.163 0.055

0.1 LDA 0.118 0.120 0.040 0.008
DDA 0.177 0.087 0.017 0.007
NN 0.078 0.102 0.036 0.005
CART 0.189 0.104 0.068 0.024

LOOCV 0.025 LDA 0.092 0.115 0.014 0.008
DDA 0.164 0.096 0.004 0.007
NN 0.058 0.103 0.016 0.005
CART 0.146 0.125 0.025 0.018

Split 0.333 LDA 0.205 0.184 0.127 0.053
DDA 0.243 0.138 0.083 0.034
NN 0.145 0.169 0.103 0.044
CART 0.371 0.174 0.25 0.121

0.5 LDA 0.348 0.185 0.270 0.113
DDA 0.344 0.139 0.184 0.062
NN 0.265 0.177 0.223 0.086
CART 0.438 0.155 0.317 0.147

.632+ 50 ≈.368 LDA 0.274 0.084 0.196 0.047
repetitions DDA 0.286 0.074 0.126 0.028

NN 0.200 0.070 0.158 0.032
CART 0.387 0.080 0.266 0.100

The estimate θ̂n (column 4) and SD (column 5) based on learning sample of size 40.
The estimate θ̃n (rows 1–4) and SD based on the remaining 260 observations. Bias
(column 6) and MSE (column 7) reported for each resampling technique (column 1)
and algorithm (column 3). The ten features with largest t-statistics used in algorithms.
Minimums in bold.

(Table 1). The largest MSE and bias occur with 2-fold CV and split
sample with p = 1/2. For n = 80 and n = 120, the differences
among these methods diminish. For n = 40 and n = 80, .632+ has
the smallest SD, followed by 10-fold CV, LOOCV and 5-fold CV.
The only exception is for LDA and NN at n = 80, when LOOCV and
10-fold CV have the smallest. At n = 120, the differences among
these methods diminish.

Lymphoma and lung study results In the lymphoma study, for
n = 40, 80 and 120, .632+, LOOCV, 5- and 10-fold CV have the
smallest MSE and bias. The two split-samples and 2-fold CV have
the largest MSE and bias. Similar to the simulation study, .632+
has the smallest SD across the algorithms and sample sizes, while
both split samples do by far the worst. Partial results are shown in
Table 2. The results from the lung study are very similar and thor-
oughly discussed in Molinaro et al. (2005). (http://linus.nci.nih.gov/
brb/TechReport.htm).

Ovarian study results For n = 40 to n = 80, LOOCV and .632+
have the smallest MSE, followed by 5- and 10-fold CV. As for bias,
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Table 2. Lymphoma study results

Resampling method n = 40 n = 80 n = 120
SD Bias MSE SD Bias MSE SD Bias MSE

2-fold CV 0.085 0.038 0.01 0.043 0.002 0.004 0.031 0.0 0.003
5-fold CV 0.07 0.004 0.007 0.045 −0.008 0.005 0.032 −0.006 0.003
10-fold CV 0.063 −0.007 0.006 0.036 −0.009 0.003 0.031 −0.006 0.003
LOOCV 0.072 −0.019 0.008 0.04 −0.013 0.004 0.033 −0.004 0.003
Split 1/3 0.119 0.001 0.017 0.071 0.0 0.007 0.059 −0.004 0.005
Split 1/2 0.117 0.037 0.018 0.058 0.001 0.005 0.046 −0.001 0.004
.632+ 0.049 −0.006 0.004 0.025 −0.02 0.003 0.018 −0.015 0.002

Comparison of resampling method’s MSE, bias and SD. Results shown are for the DDA algorithm using the top 10 genes as ranked by t-tests.

Table 3. Ovarian study results

Resampling n = 40 n = 80
method SD Bias MSE SD Bias MSE

2-fold CV 0.098 0.026 0.015 0.05 0.004 0.007
5-fold CV 0.082 0 0 0.012 0.039 −0.005 0.006
10-fold CV 0.082 −0.01 0.011 0.036 −0.005 0.005
LOOCV 0.079 −0.004 0.011 0.037 −0.004 0.006
Split 1/3 0.133 −0.002 0.022 0.075 −0.009 0.009
Split 1/2 0.113 0.027 0.018 0.071 0.013 0.01
.632+ 0.075 −0.006 0.011 0.028 −0.014 0.005

Comparison of resampling method’s MSE, bias and SD. Results shown are for the DDA
algorithm using the top 10 peaks as ranked by t-tests.

10-fold CV, .632+ and LOOCV vie for the smallest. The largest
MSE and bias occur with the split samples and 2-fold CV. Again
.632+ has the smallest SD across algorithms and sample sizes; how-
ever, the discrepancy is much smaller than in the other two studies.
The split samples have the largest SDs. Partial results are shown
in Table 3.

All analyses were repeated, selecting the 20 features having the
largest t-test statistics. The ranking of the resampling methods
remained the same (Supplementary material).

Repeated resampling We examined the effect of repeated res-
ampling on 2-, 5- and 10-fold CV and split sample with p = 1/3, for
the three samples sizes and four algorithms. Each was repeated 10
and 30 times. Interestingly, there was minimal improvement when
increased from 10 to 30 repeats. However, when increasing repeats
from 1 to 10 (or 30), all SDs decreased (up to 50%). The MSE either
decreased (up to 35%) or stayed similar, which was also true for the
bias except in split sample for n = 40 and 2-fold CV for n = 40 and
n = 80 (Supplementary material).

Dimensionality of feature space In the simulations of Efron and
Tibshirani (1997), .632+ outperformed LOOCV and 10-fold CV. For
example, in their experiment 22, with 10 variables and 36 patients,
the MSE was .040 for .632+ and .058 for LOOCV. However, in our
simulations with n = 40 (Table 1) .632+ does not fare so well, par-
ticularly with regard to bias. To investigate the differences between
our simulations and those in Efron and Tibshirani, we decreased the
dimensions of the feature space to a total of 10 variables instead

Table 4. Prediction error estimates without feature selection

Estimator p Algorithm Estimation SD Bias MSE

θ̃n 0.87 LDA 0.026 0.028
DDA 0.073 0.058
NN 0.010 0.017
CART 0.099 0.092

v-fold CV 0.5 LDA 0.067 0.060 0.041 0.005
DDA 0.106 0.079 0.033 0.009
NN 0.011 0.025 0.001 0
CART 0.304 0.088 0.205 0.063

0.2 LDA 0.034 0.045 0.008 0.002
DDA 0.085 0.049 0.012 0.003
NN 0.011 0.024 0.001 0
CART 0.158 0.072 0.059 0.012

0.1 LDA 0.032 0.041 0.006 0.001
DDA 0.074 0.048 0.001 0.002
NN 0.010 0.021 0 0
CART 0.118 0.063 0.019 0.006

LOOCV 0.025 LDA 0.028 0.040 0.002 0.001
DDA 0.072 0.049 −0.001 0.002
NN 0.010 0.022 0 0
CART 0.110 0.075 0.011 0.006

Split 0.333 LDA 0.046 0.076 0.020 0.005
DDA 0.066 0.085 −0.007 0.008
NN 0.007 0.029 −0.003 0.001
CART 0.265 0.116 0.166 0.047

0.5 LDA 0.073 0.078 0.047 0.007
DDA 0.093 0.099 0.020 0.013
NN 0.010 0.028 0 0.001
CART 0.308 0.114 0.209 0.071

.632+ ≈.368 LDA 0.037 0.036 0.011 0.001
50 repetitions DDA 0.085 0.036 0.012 0.003

NN 0.008 0.016 −0.002 0
CART 0.160 0.034 0.061 0.010

To assess the effect of no feature selection on resampling methods estimation, only 10
features were simulated and all 10 used in estimation. Results based on a learning sample
of 40 and a test sample of 260. Absolute minimums in bold.

of 750. The results are shown in Table 4 for the sample size of
40. With low dimension the large bias of the bootstrap is substan-
tially reduced, and the .632+ does as well or better than LOOCV
and 10-fold CV.
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Table 5. Resampling with and without replacement

n Algorithm Leave-one-out bootstrap 3-fold MCCV
Estimation SD Bias MSE Estimation SD Bias MSE

LDA 0.331 0.075 0.252 0.072 0.242 0.101 0.164 0.035
DDA 0.337 0.075 0.177 0.044 0.270 0.072 0.110 0.022

n = 40 NN 0.259 0.072 0.217 0.055 0.167 0.083 0.125 0.022
CART 0.414 0.065 0.296 0.114 0.377 0.085 0.256 0.094
LDA 0.07 0.063 0.043 0.004 0.044 0.053 0.017 0.002
DDA 0.146 0.058 0.074 0.008 0.104 0.058 0.033 0.003

n = 80 NN 0.046 0.056 0.036 0.003 0.022 0.043 0.012 0.001
CART 0.098 0.047 0.057 0.006 0.062 0.039 0.020 0.002
LDA 0.032 0.033 0.011 0.001 0.026 0.026 0.005 0
DDA 0.088 0.045 0.036 0.002 0.068 0.043 0.016 0.001

n = 120 NN 0.016 0.030 0.007 0 0.012 0.023 0.003 0
CART 0.048 0.025 0.022 0.001 0.038 0.022 0.012 0.001

The leave-one-out bootstrap and 3-fold MCCV estimate, SD, bias, and MSE, over 3 samples sizes and 4 algorithms. Feature selection was used to select the top 10 ranked features
by t-tests.

Resampling with and without replacement To understand the
ramification of resampling with replacement as it pertains to the boot-
strap estimates, we compared the leave-one-out bootstrap estimate
(Section 2.1.5) to the 3-fold MCCV. The 3-fold MCCV randomly
selects .666n for the learning set and .333n for the test set. This is
repeated numerous times and the estimates averaged. Therefore the
3-fold MCCV is equivalent to the leave-one-out bootstrap, except it
employs resampling without replacement. Table 5 displays the sim-
ulation study results for the two estimates using 50 iterations for
both. Interestingly, the bias and MSE for the leave-one-out boot-
strap are roughly double that of 3-fold MCCV. The only two distinct
differences between the two methods are the replicate copies in the
learning set, inherent in the bootstrap estimate, and the fact that on
average .632n unique observations are in the learning sample for the
leave-one-out bootstrap, whereas there are always .666n in the learn-
ing sample for the 3-fold MCCV. Both these factors may contribute
to the increase in bias and MSE.

4 DISCUSSION
Estimation of prediction error when confronted with a multitude
of covariates and small sample sizes is a relatively new problem.
Feature selection, sample size and signal-to-noise ratio are import-
ant influences on the relative performance of resampling methods.
We have evaluated resampling methods for use in high dimensional
classification problems using a range of sample sizes, algorithms and
signals. Some general conclusions may be summarized as follows:

(1) With small sample sizes, the split sample method and
2-fold CV perform very poorly. This poor performance is
primarily due to a large positive bias resulting from the use of
a reduced training set size, which severely impairs its ability
to effectively select features and fit a model. The large bias
contributes to a large MSE.

(2) LOOCV generally performs very well with regard to MSE
and bias. The only exception is when an unstable classi-
fier (e.g. CART) is used in the presence of a weak signal.
In this setting, the larger MSE is attributed to LOOCV’s
increased variance.

(3) 10-fold CV prediction error estimates approximate those
of LOOCV in almost all settings. For computationally bur-
densome analyses, 10-fold CV may be preferable to LOOCV.
Additionally, in the simulated data, repeated resamplings (the
average of 10 repeats) reduce the MSE, bias, and variance of
10-fold CV.

(4) The .632+ prediction error estimate performs best with
moderate to weak signal-to-noise ratios. Previous studies
have found the bootstrap variants superior to LOOCV and
v-fold CV; however, these studies did not include feature
selection. As seen in Table 1, honest resampling in small
samples with strong signal suggest that LOOCV and 10-fold
CV are in fact better than the .632+ bootstrap. This dis-
crepancy fades when feature selection is discarded (Table 4)
and when the signal decreases, as seen in the lymphoma and
ovarian datasets (Tables 2 and 3). Additional glimpses into the
bootstrap estimate (Table 5) indicate that the sampling with
replacement increases the MSE and bias substantially over
3-fold MCCV (i.e. resampling without replacement).

(5) MCCV does not decrease the MSE or bias enough to warrant
its use over v-fold CV.

(6) As the sample size grows, the differences among the
resampling methods decrease. Additionally, as the signal
decreases from strong in the simulated data to rather weak
in the ovarian data the discrepancies between the methods
diminish.

In future work we will compare the resampling methods for
continuous outcomes and continue to explore the behavior of the
bootstrap estimates. Also, the effect of feature selection method may
play an important role in prediction and needs further investigation.
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