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Abstract

Mika et al. (in: Neural Network for Signal Processing, Vol. IX, IEEE Press, New York, 1999; pp. 41–48) apply the
“kernel trick” to obtain a non-linear variant of Fisher’s linear discriminant analysis method, demonstrating state-of-the-art
performance on a range of benchmark data sets. We show that leave-one-out cross-validation of kernel Fisher discriminant
classi'ers can be implemented with a computational complexity of only O(‘3) operations rather than the O(‘4) of a na@Ave
implementation, where ‘ is the number of training patterns. Leave-one-out cross-validation then becomes an attractive means
of model selection in large-scale applications of kernel Fisher discriminant analysis, being signi'cantly faster than conventional
k-fold cross-validation procedures commonly used.
? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The now familiar “kernel trick” [1] has been used
to derive non-linear variants of many linear methods
borrowed from classical statistics (e.g. Refs. [2,3]), in-
cluding ridge-regression [4], principal component analysis
[5] and canonical correlation analysis [6] as well as more
recent developments such as the maximal margin classi'er
[7] (giving rise to the support vector machine [8]). These
methods have come to be known collectively as “kernel
machines” and have attracted considerable interest in the
machine learning research community due to a combina-
tion of conceptual elegance, mathematical tractability and
state-of-the-art performance on real world as well as bench-
mark problems. One such method, the kernel Fisher dis-
criminant (KFD) classi'er [1], implements the well-known
Fisher linear discriminant [9] in a feature space induced
by a Mercer kernel [10], giving rise to a non-linear pattern
recognition method demonstrating an impressive level of
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performance on a range of benchmark data sets. An impor-
tant advantage of many kernel methods, including the kernel
Fisher discriminant, is that the optimal model parameters are
given by the solution of a convex optimisation problem with
a single, global optimum. However, optimal generalisation
still depends on the selection of an appropriate kernel func-
tion and the values of regularisation [11] and kernel parame-
ters, an activity known as model selection. For kernel Fisher
discriminant networks this is most frequently performed by
a lengthy optimisation of a simple k-fold cross-validation
estimate of an appropriate performance statistic. In this
paper, we set out a fast implementation of the leave-one-
out cross-validation procedure, providing a more e�cient
means of model selection for kernel Fisher discriminant
classi'ers than the conventional k-fold cross-validation ap-
proach and evaluate its performance on a range of standard
benchmark machine learning problems.

The remainder of this paper is structured as follows:
Section 2 provides a summary of the strengths and limi-
tations of leave-one-out cross-validation for the purposes
of model selection. Section 3 gives a full description of
kernel Fisher discriminant analysis, establishing the nota-
tion used throughout. An e�cient implementation of the
leave-one-out cross-validation procedure for kernel Fisher
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discriminant networks is given in Section 4. A compar-
ison of model selection procedures based on k-fold and
leave-one-out cross-validation schemes, over a range of
standard benchmark learning problems, is then presented in
Section 5. Finally the works are summarised in Section 6.

2. Strengths and limitations of leave-one-out
cross-validation

Cross-validation [12] is often used to estimate the gen-
eralisation ability of a statistical classi'er (i.e. the perfor-
mance on previously unseen data). Under cross-validation,
the available data are divided into k disjoint sets; k models
are then trained, each on a diOerent combination of k − 1
partitions and tested on the remaining partition. The k-fold
cross-validation estimate of a given performance statistic is
then simply the mean of that statistic evaluated for each of
the k models over the corresponding test partitions of the
data. Cross-validation thus makes good use of the available
data as each pattern used is used both as training and test
data. Cross-validation is therefore especially useful where
the amount of available data is insu�cient to form the
usual training, validation and test partitions required for
split-sample training, each of which adequately represents
the true distribution of patterns belonging to each class. The
most extreme form of cross-validation, where k is equal to
the number of training patterns is known as leave-one-out
cross-validation, and has been widely studied due to its
mathematical simplicity.

A property of the leave-one-out cross-validation estima-
tor, often cited as being highly attractive for the purposes of
model selection (e.g. Refs. [13,14]), is that it provides an
almost unbiased estimate of the generalisation ability of a
classi'er:

Lemma 1 (Bias of leave-one-out cross-validation [15,16]).
Leave-one-out cross-validation gives an almost unbiased
estimate of the probability of test error, i.e.

E{p‘−1
error} = E

{
L(x1; y1; x2; y2; : : : ; x‘; y‘)

‘

}
; (1)

where p‘−1
error is the probability of test error for a

classi6er trained on a sample of size ‘ − 1 and
L(x1; y1; x2; y2; : : : ; x‘; y‘) measures the number of
leave-one-out errors for a classi6er trained on a set of
input-target pairs, {(xi ; yi)}‘i=1, of size ‘.The leave-one-out
estimator is almost unbiased in the sense that the expecta-
tions are taken over samples of size ‘− 1 on the left-hand
side of Eq. (1) and of size ‘ on the right.

However, a model selection criterion need not give an
unbiased estimate of the generalisation performance. For
example, adding a 'xed constant to the leave-one-out
estimator would not alter the outcome of the model selec-
tion procedure, but would no longer provide an unbiased

estimate of the test error. The principal requirement of a
practical model selection criterion is that it should be
strongly correlated with the true generalisation error, such
that the minimum of the selection criterion reliably coin-
cides with the minimum of the true generalisation error.

Empirical studies have shown that in some cases model
selection based on k-fold cross-validation out performs
selection procedures based on the leave-one-out estimator
as the latter is known to exhibit a comparatively high vari-
ance. For large data sets, however, it could be argued that
the variances of k-fold and leave-one-out estimators are
likely to be similar:

Lemma 2 (Variance of k-fold cross-validation [17]). Ass-
uming the training algorithm for a classi6er system is
stable with regard to the perturbation of the training data
introduced during the cross-validation procedure (i.e. the
perturbation of the training data does not change the de-
cision rule obtained), the variance of the k-fold estimate
of the accuracy of the inducer is independent of k.

A straightforward corollary of Lemma 2 is that provided
the data set is su�ciently large such that the inducer is sta-
ble, the variance of k-fold and leave-one-out cross-validation
estimates coincide. Most kernel machines (including kernel
Fisher discriminant analysis) are trained by minimising a
regularised loss functional, comprised of a sum of indepen-
dent terms representing the loss for each training pattern. It
seems reasonable to suggest then, that such models will be-
come stable for su�ciently large data sets, at least in the case
of the leave-one-out estimator, as the eOect of removing a
single term from the loss functional becomes diminishingly
small as the size of the training data becomes large.

Leave-one-out cross-validation is normally restricted to
applications where the amount of training data available is
severely limited, such that even a small perturbation of the
training data is likely to result in a substantial change in
the 'tted model. In this case, it makes good sense to adopt
a leave-one-out cross-validation strategy as it minimises
the perturbation to the data in each trial. Leave-one-out
cross-validation is rarely adopted in large-scale applications
simply because it is computationally expensive. The train-
ing algorithms for kernel machines, including that for the
kernel Fisher discriminant, typically have a computational
complexity of O(‘3), where ‘ is the number of training
patterns. In this case, the leave-one-out cross-validation pro-
cess has a computational complexity ofO(‘4), which quickly
becomes impractical as the number of training patterns
increases. Note however that minimising an upper bound
on the leave-one-out error has proved an eOective means
of model selection for support vector machines (e.g. Refs.
[13,14]).

Since there exist theoretical and experimental justi'ca-
tion both for and against the use of leave-one-out cross-
validation in model selection, we provide an experimental
comparison of leave-one-out and k-fold cross-validation
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in this study. We further demonstrate that, in the case
of kernel Fisher discriminant models, the leave-one-out
cross-validation procedure can be implemented with a com-
putational complexity of only O(‘3) operations, the same
as that of the basic training algorithm, and by extension of
the k-fold cross-validation procedure. Experiments show
that the proposed leave-one-out cross-validation process is
actually faster than k-fold cross-validation (for any value
of k), overcoming the prohibition against leave-one-out
cross-validation in large-scale applications.

3. Kernel Fisher discriminant analysis

Assume we are given training data X={x1; x2; : : : ; x‘}=
{X1;X2} ⊂ Rd, where X1 = {x1

1; x
1
2; : : : ; x

1
‘1} is a

set of patterns belonging to class C1 and similarly
X2 = {x2

1; x
2
2; : : : ; x

2
‘2} is a set of patterns belonging to class

C2; Fisher’s linear discriminant (FLD) attempts to 'nd a
linear combination of input variables, w · x, that maximises
the average separation of the projections of points belonging
to C1 and C2, whilst minimising the within class variance
of the projections of those points. The Fisher discriminant
is given by the vector w maximising

J (w) =
wTSBw
wTSWw

; (2)

where SB is the between class scatter matrix SB = (m1 −
m2)(m1 −m2)T, mj = ‘−1

j

∑‘j
i=1 x

j
i and SW the within class

scatter matrix

SW =
∑
i∈{1;2}

‘i∑
j=1

(xij −mi)(xij −mi)T:

The innovation introduced by Mika et al. [1] is to construct
Fisher’s linear discriminant in a 'xed feature space F(� :
X → F) induced by a positive de'nite Mercer kernel
K :X × X → R de'ning the inner product K(x; x′) =
�(x) · �(x′) (see e.g. Ref. [2]). Let the kernel matrices for
the entire data set, K , and for each class, K1 and K2 be
de'ned as follows:

K = [kij = K(xi ; xj)]
‘
i; j=1 and

Ki = [kijk = K(xj ; x
i
k)]

j=‘;k=‘i
j; k=1 :

The theory of reproducing kernels [18,19] indicates that w
can then be written as an expansion of the form

w =
‘∑
i=1

�i�(xi): (3)

The objective function (2) can also be written such that the
data x∈X appear only within inner products, giving

J (�) =
�TM�
�TN�

; (4)

where �={�i}‘i=1,M=(m1−m2)(m1−m2)T, mi=Kiui, ui
is a column vector containing ‘i elements with a common
value of ‘−1

i and

N =
∑
i∈{1;2}

Ki(I −Ui)KT
i ;

where I is the identity matrix and Ui is a matrix with all
elements equal to ‘−1

i . The coe�cients, �, of expansion (3)
are then given by the leading eigenvector of N−1M . Note
that N is likely to be singular, or at best ill-conditioned, and
so a regularised solution is obtained by substituting N� =
N + �I , where � is a regularisation constant. To complete
the kernel Fisher discriminant classi'er, f(x)=w ·�(x)+b,
the bias, b, is given by

b= −� ‘1M1 + ‘2M2

‘
:

Xu et al. [20] show that the parameters of the kernel Fisher
discriminant classi'er are also given by the solution of the
following system of linear equations:[
KK + �I K1

(K1)T ‘

][
�

b

]
=

[
K

1

]
y; (5)

where 1 is a column vector of ‘ ones and y is a column vec-
tor with elements yi = ‘=‘j∀i: xi ∈Xj . This illustrates the
similarities between the kernel Fisher discriminant and the
least-squares support vector machine (LS-SVM) [21]. The
kernel Fisher discriminant (KFD) classi'er has been shown
experimentally to demonstrate near state-of-the-art perfor-
mance on a range of arti'cial and real-world benchmark
data sets [1] and so is worthy of consideration for small to
medium scale applications.

4. E!cient leave-one-out cross-validation

The system of linear equations (5) can be written more
concisely in the form

p = [R + ZTZ ]−1ZTy; (6)

where Z = [K 1], R = diag([�1 0]) and p = (�; b) (n.b.
this is very similar to the set of normal equations to be
solved in multi-variate linear regression [22]). At each step
of the leave-one-out cross-validation procedure, a kernel
Fisher discriminant classi'er is constructed excluding a sin-
gle training pattern from the data. The vector of model
parameters, p(i) = (�(i); b(i)) at the ith iteration is then given
by the solution of a modi'ed system of linear equations,

p(i) =
[
R + ZT

(i)Z(i)

]−1
ZT

(i)y;

where Z(i) is the sub-matrix formed by omitting the ith row
of Z . Normally, the most computationally expensive step
is the inversion of the matrix C(i) = [R + ZT

(i)Z(i)], with
a complexity of O(‘3) operations. Fortunately, C(i) can be
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written as a rank one modi'cation of a matrix C ,

C(i) = [R(i) + ZTZ − zizT
i ] =

[
C − zizT

i

]
; (7)

where zi is the ith row of Z . The following matrix inversion
lemma then allows C−1

(i) to be found in only O(‘2) opera-
tions, given that C−1 is already known:

Lemma 3 (Matrix inversion formula [23–28]). Given an
invertible matrix A and column vectors u and C, then as-
suming 1 − CTA−1u �= 0,

(A+ uCT)−1 = A−1 − A−1uCTA−1

1 + CTA−1u
: (8)

This is known as the Bartlett–Sherman–Woodbury–
Morrison formula.

Applying the Bartlett–Sherman–Woodbury–Morrison
formula to the matrix inversion problem given in Eq. (7),
we have that

C−1
(i) = [C − zizT

i ]
−1 = C−1 +

C−1zizT
i C

−1

1 − zT
i C−1zi

:

The computational complexity of the leave-one-out
cross-validation process is thus reduced to only O(‘3)
operations, as l matrix inversions are required, at a com-
putational complexity of O(‘2). This is the same as that of
the basic training algorithm for the kernel Fisher discrimi-
nant classi'er, and by extension the k-fold cross-validation
procedure for these models.

4.1. A practical model selection criterion

For model selection purposes, we are not principally con-
cerned with the values of the model parameters themselves,
but only statistics such as the leave-one-out error rate

E =
1
‘

card{i: yi(w(i) · �(xi) + b(i))6 0} (9)

or equivalently

E =
1
‘

card{i: sign(yi){r(i)}i6− 1};

where {r(i)}i = yi − w(i) · �(xi) + b(i) is the residual
error for the ith training pattern during the ith iteration of
the leave-one-out cross-validation procedure. Alternatively,
since the kernel Fisher discriminant minimises a regularised
sum of squares loss functional [20], the natural model se-
lection criterion would be a leave-one-out estimate of the
sum of squares error, i.e. Allen’s PRESS (predicted residual
sum of squares) statistic [29],

PRESS =
‘∑
i=1

{r(i)}2
i : (10)

Fortunately, it is possible to compute these residuals without
explicitly evaluating the model parameters in each trial. It is

relatively straightforward to show that

{r(i)}i = ri
1 − hii ;

(see Appendix A) where ri = yi − f(xi) is the residual
for the ith training pattern for a kernel Fisher discriminant
model trained on the entire data set and H = ZC−1ZT is
the hat matrix [22] of which hii is the ith element of the
leading diagonal [30]. Allen’s PRESS statistic can therefore
be evaluated in closed form without explicit inversion of
C(i)∀i∈{1; 2; : : : ; ‘}, again with a computational complex-
ity of only O(‘3). Note that this result is well known in
the 'eld of linear least-squares regression (e.g. Ref. [30]);
again the “kernel trick” enables its use in a non-linear
context.

5. Results

In this section we present an experimental compar-
ison of e�cient leave-one-out and conventional k-fold
cross-validation procedures for model selection in train-
ing kernel Fisher discriminant classi'ers, in terms of both
computational complexity (e�ciency) and in terms of the
generalisation of the resulting kernel Fisher discriminant
networks. The relative e�ciency of the proposed approach
is determined using a relatively large-scale synthetic learn-
ing task. A set of 13 real-world and synthetic benchmark
datasets from the UCI repository [31] is used to evaluate
the generalisation properties resulting from model selection
schemes based on leave-one-out and k-fold cross-validation.
An isotropic Gaussian kernel,

K(x; x′) = exp
{
−‖x− x′‖2

2�2

}
;

is used in all experiments.

5.1. Computational complexity

The proposed approximate leave-one-out cross-validation
method is evaluated over a series of randomly generated
synthetic datasets, as shown in Fig. 1. In each case, ap-
proximately one-quarter of the data belong to class C1 and
three-quarters to class C2. The patterns comprising class C1

are drawn from a bivariate normal distribution with zero
mean and unit variance. The patterns forming class C2 form
an annulus; the radii of the data are drawn from a nor-
mal distribution with a mean of 5 and unit variance, and
the angles uniformly distributed. The data sets vary in size
between 10 and 1000 patterns. Fig. 2 shows a graph of
run-time as a function of the number of training patterns
for fast and na@Ave leave-one-out and 10-fold cross-validation
estimates of the test sum of squares error statistic. Clearly,
the fast leave-one-out method is considerably faster and ex-
hibits signi'cantly better scaling properties than the na@Ave
implementation of the leave-one-out estimator. For large
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Fig. 1. Decision boundary formed by kernel Fisher discriminant
analysis for a synthetic data set.
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Fig. 2. Graph of run-time as a function of the number of training
patterns for leave-one-out cross-validation of kernel Fisher discrim-
inant classi'ers via direct and fast approximate methods (mean of
20 trials).

data sets, the run-time for the fast leave-one-out es-
timator is also approximately seven times faster than
10-fold cross-validation. Inspection of the gradients of
the curves displayed on The log–log axes show that the
computational complexity of k-fold and the proposed
leave-one-out estimator is, as expected, approximately
O(‘3).

5.2. Generalisation

In order to verify that the improved e�ciency of the
leave-one-out cross-validation procedure is not obtained at
the expense of generalisation, the proposed model selection
procedure is evaluated on a suite of 13 real-world and syn-
thetic benchmark problems from the UCI repository [31].
We adopt the experimental procedure used in the study by
R@atsch et al. [32], where 100 diOerent random training and
test splits are de'ned (20 in the case of the large-scale image
and splice datasets). Model selection is performed on the 'rst
've training splits, taking the median of the estimated values
for the optimal regularisation (�) and kernel (�) parameters.
Generalisation is then measured by the mean error rate over
the 100 test splits (20 for image and splice datasets). The
benchmarks, including test and training splits are available
from http://ida.first.gmd.de/∼raetsch/data/
benchmarks.htm.

Model selection via minimisation of leave-one-out and
10-fold cross-validation estimates of the sum of squares
error (10) are compared directly, to determine whether the
higher variance of the leave-one-out estimator results in a
consistent reduction in generalisation ability. The results
obtained are also compared with those from Mika et al. [33],
including kernel Fisher discriminant models where
the model selection procedure minimised a 10-fold
cross-validation estimate of the test error rate (9). This
supports a comparison of continuous and discrete model
selection criteria as well as a comparison with a range
of other state-of-the art classi'cation algorithms such as
AdaBoost [34] and the support vector machine [16].

Table 1 shows the outcome of a comparison of model
selection procedures for kernel Fisher discriminant models
and a range of state-of-the-art statistical pattern recognition
algorithms. The KFD with a leave-one-out model selec-
tion procedure (KFD-LOO) outperforms the KFD with
10-fold cross-validation (sum of squares) model selection
(KFD-XVAL) on two of the 13 data sets (german and
twonorm), demonstrates similar performance on nine, and
performs worse on two (breast-cancer and splice). This
clearly demonstrates that for a sum of squares selection
criteria, the leave-one-out estimator does not signi'cantly
degrade performance, despite being known to exhibit a
higher variance. The proposed leave-one-out model se-
lection procedure outperforms the 10-fold cross-validation
estimate of the test error rate adopted by Mika et al.
(KFD) on seven of the 13 data sets (banana, diabetes,
german, heart, ringnorm, titanic and waveform) and per-
forms worse on the remaining six. This demonstrates that
neither the continuous sum of squares or the discrete error
rate statistics result in consistently superior generalisation.
The leave-one-out model selection procedure should then
be considered superior on the grounds of computational
complexity. The superior performance of the leave-one-out
KFD method, against the range of state-of-the-art algo-
rithms, should also be noted, providing the lowest error

http://ida.first.gmd.de/~raetsch/data/benchmarks.htm
http://ida.first.gmd.de/~raetsch/data/benchmarks.htm
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Table 1
Comparison of kernel Fisher discriminant with leave-one-out and k-fold model selection procedures using a simple least-squares criterion
(LOO-KFD and XVAL-KFD, respectively), support vector machine (SVM) [2,8], kernel Fisher discriminant (KFD) [1], radial basis function
(RBF) [35], AdaBoost (AB) [34] and regularised AdaBoost (ABR) [32] classi'ers on 13 diOerent benchmark data sets [33]

Data set LOO-KFD XVAL-KFD SVM KFD RBF AB ABR

Banana 10.4±0.04 10.4±0.04 11.5±0.07 10.8±0.05 10.8±0.06 12.3±0.07 10.9±0.04
Breast cancer 26.3±0.42 26.1±0.43 26.0±0.47 25.8±0.46 27.6±0.47 30.4±0.47 26.5±0.45
Diabetes 23.1±0.18 23.1±0.17 23.5±0.17 23.2±0.16 24.3±0.19 26.5±0.23 23.8±0.18
German 23.6±0.20 23.7±0.20 23.6±0.21 23.7±0.22 24.7±0.24 27.5±0.25 24.3±0.21
Heart 15.9±0.35 15.9±0.33 16.0±0.33 16.1±0.34 17.6±0.33 20.3±0.34 16.5±0.35
Image 4.0±0.06 4.0±0.006 3.0±0.06 3.3±0.06 3.3±0.06 2.7±0.07 2.7±0.06
Ringnorm 1.4±0.08 1.4±0.08 1.7±0.01 1.5±0.01 1.7±0.02 1.9±0.03 1.6±0.01
Solar Sare 34.2±1.63 34.2±1.66 32.4±0.18 33.2±0.17 34.4±0.2 35.7±0.18 34.2±0.22
Splice 10.8±0.07 10.7±0.06 10.9±0.07 10.5±0.06 10.0±0.1 10.1±0.05 9.5±0.07
Thyroid 4.5±0.20 4.5±0.21 4.8±0.22 4.2±0.21 4.5±0.21 4.4±0.22 4.6±0.22
Titanic 22.3±0.12 22.3±0.09 22.4±0.1 23.2±0.2 23.3±0.13 22.6±0.12 22.6±0.12
Twonorm 2.7±0.02 2.8±0.02 3.0±0.02 2.6±0.02 2.9±0.03 3.0±0.03 2.7±0.02
Waveform 9.7±0.04 9.7±0.04 9.9±0.04 9.9±0.04 10.7±0.11 10.8±0.06 9.8±0.08

The results for models SVM, KFD, RBF, AB and ABR are taken from the study by Mika et al. [3,33]. The results for each method are
presented in the form of the mean error rate over test data for 100 realisations of each data set (20 in the case of the image and splice data
sets), along with the associated standard error. The best results are shown in bold-face and the second best in italics.

rate on seven of the 13 data sets and the second best on a
further one.

6. Summary

In this paper we have presented a generalisation of an
existing algorithm for leave-one-out cross-validation of
multi-variate linear regression models (see e.g. Ref. [22])
to provide an estimate of the leave-one-out error of ker-
nel Fisher discriminant classi'ers. The proposed algorithm
implements leave-one-out cross-validation of this class of
kernel machine at a computational complexity of only O(‘3)
operations, instead of the O(‘4) of a na@Ave approach. Fur-
thermore, pro'ling information reveals that, providing C−1

is cached during training, the time taken to estimate the
leave-one-out error rate is considerably less than the time
taken to train the KFD classi'er on the entire data set. As a
result leave-one-out cross-validation becomes an attractive
model selection criterion in large-scale applications of ker-
nel Fisher discriminant analysis, being approximately seven
times faster than conventional 10-fold cross-validation,
while achieving a similar level of generalisation.
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Appendix. Derivation of closed-form expression for
predicted residuals

From Eq. (6) we know that the vector of model parameters
p= (�; b) is given by

p = (R + ZTZ)−1ZTy;

where Z = [K 1]. For convenience, let C = R+ ZTZ and
d =ZTy, such that p=C−1d . Furthermore, let Z(i) and y(i)

represent the data with the ith observation deleted, then

C(i) = C − zizT
i

and

d(i) = d − yizi :
The Bartlett matrix inversion formula then gives

C−1
(i) = C +

C−1zizT
i C

−1

1 − zT
i C−1zi

;

such that the vector of model parameters during the ith it-
eration of the leave-one-out cross-validation procedure be-
comes

p(i) =
(
C +

C−1zizT
i C

−1

1 − zT
i C−1zi

)
(d − yizi):

LetH =ZC−1ZT represent the hat matrix; note that the ith
element of the leading diagonal can be written hii=zT

i C
−1zi,

so expanding the parentheses we have

p(i) = C−1d − C−1yizi +
C−1zizT

i C
−1

1 − zT
i C−1zi

d − C−1zizT
i C

−1

1 − zT
i C−1zi

yizi = p +
(
zT
i p− yi
1 − hii

)
C−1zi :
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The residual error for the ith training pattern is ri =yi− zT
i p

and so

p(i) = p− ri
1 − hiiC

−1zi :

Noting that o = Zp, the output of the model during the ith
iteration of the leave-one-out cross-validation procedure can
be written as

o(i) = Zp(i) = t − ri
1 − hii hi ;

where hi is the ith column of H . The vector of resid-
uals for the training patterns during the leave-one-out
cross-validation procedure can then be written in closed
form as

r(i) = y− o(i) = r + ri
1

1 − hii hi :

The ith element of r(i) is given by

{r(i)}i = ri
1 − hii :
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