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Abstract

This work is concerned with the estimation of a classifier’s accuracy. We first review

some existing methods for error estimation, focusing on cross-validation and bootstrap,

and motivate the use of kernel-based smoothing for small sample size. We use the term

data cloning to refer to the process of (re)sampling the data via kernel-based smoothed

bootstrap. A number of novel estimators based on cloning is presented. Finally, we extend

our estimators to to allow cloning of complex real-life data sets, in which a data point

may include continuous, bounded, integer and nominal attributes. This allows for better
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classifier evaluation over heterogeneous real data repositories with limited amount of data,

such as the UCI repository. We use the root mean squared error (RMSE) as a measure

of estimators quality and support this choice with a probabilistic argument. Using this

measure, we report on a set of 28 experiments in which the new cloning methods outperform

cross-validation as well as the .632+ bootstrap, which, according to Efron and Tibshirani

Efron and Tibshirani (1997), is the estimator of choice. Although the proposed estimators

require more computational effort than the established ones, the increased time complexity

is within a constant factor of that of the relevant traditional estimators. Based on the

motivation and the empirical results, we suggest that the cloning-based .632+ estimator

is superior to the other estimators, and note bootstrapped cross-validation as the second

choice.

Keywords: Classifier evaluation, empirical error estimation, data cloning, smoothed

bootstrap

1. Introduction

A common approach to the evaluation and comparison of inductive learning algorithms is to

test them on data sets from various “real-life” settings. We shall refer to such data as “real”,

in contrast to data generated by artificial methods. While many theoretical conclusions can

be drawn from an algorithm’s performance on synthetic data, good performance on real data

sets is believed to be evidence for an algorithm’s practical plausibility. Public repositories

of real data have appeared in recent years; one of the most known and widely used of

these is the University of California at Irvine (UCI) repository Blake and Merz (1998).

Unfortunately, real data is often expensive to label, sometimes tedious to collect, and in

some domains is available only in limited amounts. The UCI repository, which is one of the
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largest, contains about 100 data sets, just a few compared to the huge number of studies

using these data sets. Such over-usage of data can lead to a compromise in the significance

of the obtained results Salzberg (1997).

This problem would be greatly alleviated if one could generate arbitrarily many “new”

data samples, distributed according to the same probability law as the real data set at

hand. This would provide a valuable tool for the machine learning research community,

since algorithm performance results on real data would be obtained with greater statistical

significance. Since the true distribution of the data is unknown, this task is impossible.

However, one can “clone” the available data and generate a family of data sets that are

different from but similar to the original one (in a statistical sense to be defined) and

evaluate the performance of an algorithm on these data sets. The bootstrap, introduced in

Efron (1979), provides a means for such data cloning.

1.1 The learning paradigm

We consider the following supervised learning paradigm. A data set X (n) consists of n

labeled pairs 〈x1, y1〉, . . . , 〈xn, yn〉, where the points xi are generated i.i.d. in a d-dimensional

data space D, according to an unknown probability distribution F , and y = 0, 1, . . . are class

labels. For brevity, we shall usually use the notation x to refer to 〈x, y〉. Given a data sample

X(n), the learning algorithm A produces a hypothesis CA(X
(n)) = A(X(n)) from a certain

concept class. This hypothesis, called a classifier, is a function that assigns a class label to

each x.

Throughout the paper, we consider the zero-one loss function. Fixing the learning

algorithm A and following standard notation (e.g. McLachlan (1992)), we denote the error
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function (the penalty for the classification decision made by A(X (n)) on the test point x)

by

Q
(
x, X(n)

)
= Q

(
x, X(n),A(X(n))

)
.

We assume that this penalty is 0 for correct classification and 1 otherwise. For further

simplicity, we shall use a similar notation for the average error of the classifier trained on

X(n), over a test set W (m) = (w1, . . . ,wm):

Q
(
W (m), X(n)

)
=
1

m

m∑

i=1

Q(wi, X
(n))

1.2 Generalization error of a classifier

We are interested in measuring the accuracy of a classifier by its ability to generalize, that

is, to assign the correct class label to a previously unseen data point. The true error Err

of a classifier trained on X(n) is

Err = Err(X (n),F ) = EF (x0 )[Q(x0 ,X
(n))]. (1)

Here, the assumption is that a random test point 〈x0, y0〉 is distributed according to the

same F as the training set. Err is sometimes called a conditional true error, since it depends

on the random variable X(n). For a fixed training set, Err can be written as

Err(X (n),F ) =

∫

D
Q(x0 ,X

(n))dF (x0 ) (2)
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Note that this is different from the expected true error for a training set of size n:

µn(F ) = EF (X(n))[Err(X
(n),F )]. (3)

In practice, given a fixed training set of size n, it is not clear how to estimate the expectation

over all possible training sets of size n . We therefore focus in this paper on the task of

estimating Err .

1.3 Bias and variance in error estimation

Being based on X(n), which is a random variable, any estimator Êrr of the true error Err is

a random variable itself. Neither its bias EF (X(n))[Êrr −Err ] nor its variance each by itself

can serve as a good measure of the estimator’s quality. In a single experiment, the error of

an unbiased estimator with a large variance can to be greater than that of a mildly biased

estimator with a small variance.

We follow the practice of using the squared error (Êrr−Err)2 as a measure of estimator

quality Efron and Tibshirani (1997), and motivate it as follows. Consider the task of

obtaining a single estimate of a classifier’s accuracy on a given data set. Assuming that

the objective in choosing an estimator is to minimize the probability of a large absolute (or

squared) deviation from the true error in this single estimate. Then by Markov’s inequality,

Pr
(
(Err − Êrr)2 ≥ ε

)
≤ E

[
(Err − Êrr)2

]
/ε. (4)
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The sample mean of (Err − Êrr)2 (MSE) is an estimate of E

[(
Err − Êrr

)2
]
and can be

used to estimate the bound in (4). We use the root mean squared error (RMSE ) to bring

the value to linear scale.

1.4 Contributions of this work

In this paper we propose a number of novel bootstrap estimators for a classifier error. The

new estimators are based on a smoothed version of the bootstrap method where we use a

density estimation technique to resample from the available data with some additional noise.

Smoothed bootstrap estimators are already known; as far as we know, however, they have

never been employed for classifier error estimation. The new estimators improve on existing

ones by variance reduction. We present an extensive set of simulation results on synthetic

data that show the consistent advantage of our estimators over the best known estimators

to date. In particular, our estimators outperform the .632+ of Efron and Tibshirani (1997)

and the standard cross-validation technique. We repeat the exact experiments performed

by Efron and Tibshirani and test our methods with respect to various classifiers, including

Support Vector Machines.

Second, we propose algorithms for computing smoothed bootstrap samples on complex

real data sets, such as those in the UCI repository, that may include continuous, bounded,

integer and nominal attributes. We refer to this method as statistical data cloning. Finally,

we test our cloning algorithms on a few data sets from UCI, including the two data sets that

were used in Efron and Tibshirani (1997), and show again that our data cloning techniques

exhibit performance superior to that of the traditional estimators. Throughout the paper

we use the term “cloning” for all smoothed bootstrap sampling techniques.
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2. On some known methods for estimation of Err

2.1 Empirical error

A classifier can be tested on the same data it was trained on. The empirical (or resubstitu-

tion) error

err = Q(X(n), X(n)) (5)

is typically over-optimistic (i.e., it underestimates the true error) and has a negative bias

that is especially large for learning algorithms with high overfitting. In an extreme case,

like that of the nearest neighbor rule, err can be zero even when Err is 1/2.

Let us denote the computational complexity of training the classifier onX (n) by Ttrain(n),

and the complexity of testing it on a single point by Ttest. Then the complexity of err is

O(Ttrain(n) + nTtest). It is worth to notice that the dominant factor between Ttrain(n) and

Ttest depends on the learning algorithm. For k-nearest neighbors Ttrain(n) is zero for all n

but Ttest is high, while for a perceptron Ttrain(n) is dominant while Ttest = O(1).

2.2 Cross-validation and holdout

To avoid underestimating the error due to resubstitution, in the holdout the data is split

randomly into two parts, and the classifier is trained on one and tested on the other. As

has been observed in Blum et al. (1999), holdout reduces the amount of data available for

training. There is also an issue of statistical dependence between the two subsets.

A way to overcome this by using both subsets for training, is generalized in the cross-

validation methodology. In the k-fold cross-validation (CV), the data set is partitioned

into k mutually disjoint subsets called folds. For each fold Sj , j = 1, . . . , k, the classifier is
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trained on all of the data except Sj and tested on Sj . The resulting estimator is computed

as the average of the error rates over the k folds:

ErrCV×k =
1

k

k∑

j=1

Q(Sj ,X (n)\Sj ). (6)

The extreme case of the k-fold CV-based estimator is the leave-one-out estimator,

ErrCV×n . The leave-one-out CV is known to produce an almost unbiased estimate of

Err , since for every fold the classifier is trained on almost the complete X (n); however,

it often suffers from high variance due to the learning algorithm’s instability under small

perturbations in the data Kohavi (1995). A possible approach to reducing the variance of

CV is to perform k-fold CV in a number of trials, when the random partition of data into k

folds is independent in each trial, and average the result. We denote the described estimator

by ErrRCV×k .

The computational complexity of a k-fold CV is O(k[Ttrain(n− n/k) + kTtest]). Thus

for classifiers in which training is more expensive than generalization, the leave-one-out has

an asymptotic complexity O(nTtrain(n)).

2.3 Bootstrap and its use for error estimation

The bootstrap method is based on the following idea. A (nonparametric) maximum likeli-

hood estimator of a statistic θ(X (n)) is given by the expectation of θ with respect to the

empirical distribution F̂n, which gives a probability mass of 1/n to each sample xi in X
(n)

Efron (1992). Usually no analytical expression for this expectation exists, as it is in case

of θ(X(n)) = Err . Combinatorial explosion does not allow the enumerative computation

8



of this expectation: there are approximately
(
2n−1
n−1

)
resampling of X(n), different as sets.

However, a Monte-Carlo algorithm allows for numerical evaluation of this expectation by

drawing B samples of size n from F̂n. These samples X
(n)∗

1, . . . , X
(n)∗

B are called bootstrap

samples, and the value θ(X(n)∗
b) is called a bootstrap replication of θ. A bootstrap estimate

of θ is then computed by averaging over the bootstrap replications. The averaging done by

bootstrap typically reduces the discontinuities in the statistic, and thus lowers its variability.

2.3.1 Ordinary bootstrap estimator

The ordinary, or “naive”, bootstrap estimate of Err , constructed with B replications, is

given by

ErrBS =
1

B

B∑

b=1

Q(X (n),X (n)∗

b), (7)

that is, in each of the B iterations the classifier is trained on a BS sample X
(n)∗
b and tested

on the original data set. The final estimate is the average over B estimates. Note that a

test point xi is included in the training set X
(n)∗

b with probability 1 − (1 − 1/n)n, which

is approximately .632 for large n. Due to this expected partial resubstitution, one should

expect ErrBS to be biased downwards.

If we assume that sampling a single point from X (n) costs O(1), then the computational

complexity of ErrBS is O(B[Ttrain(n) + nTtest]).

2.3.2 Leave-one-out bootstrap

Leave-one-out bootstrap Efron and Tibshirani (1997) is a “smoothed” version of ErrCV×n .

To compute it, one draws the bootstrap samples from the empirical distribution of the

original sample with the i-th point removed, X
(n)
(i) . This distribution F̂(i) assigns probability
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1/(n− 1) to all xj , j 6= i. Then,

Err
(1 )
BS =

1

n

n∑

i=1

1

B

B∑

b=1

Q(xi ,X
(n)
(i)

∗

b
). (8)

This smoothing reduces the variance. However, in computation of a single term in (8), the

training set has an expected .632n distinct data points, as opposed to ErrCV×n , which is

based on classifiers trained on n−1 points. Since, for many classifiers, Err tends to decrease

as the size of the training set grows, this fact implies an upward bias.

The complexity of this estimator is O(B[Ttrain(n− 1) + Ttest]).

2.3.3 Hybrid bootstrap and .632+

The error estimate of the general form of a hybrid bootstrap error estimator is given by

Êrr
λ
= λErr

(1 )
BS + (1 − λ)err,

and a mixing parameter λ is sought that minimizes the bias. Many authors (e.g. McLachlan

(1992), Efron (1983), Davison and Hinkley (1998)) report “substantial empirical evidence”

favoring λ = 0.632. Efron also gives a heuristic motivation for this number: a bootstrap

sample of size n is expected to be supported by approximately .632n original data points.

This choice of λ gives rise to the .632 bootstrap estimator given by Err .632 = .632Err
(1 )
BS +

.368 err. The intuition behind Err .632 suggests compensation for the downward bias of err

via the upward bias of Err
(1 )
BS . However, for a classifier with high overfitting (such as 1-NN)

err ≡ 0, and Err .632 is downward biased itself.

10



The computation of Err .632 does not require any applications of the classifier beyond

the computation of Err
(1 )
BS and err.

2.3.4 The .632+ estimator

Err .632+, proposed by Efron and Tibshirani in Efron and Tibshirani (1997), is a sophisti-

cated estimator that attempts to estimate the amount of overfitting and adjust λ accord-

ingly. Let Find be the probability distribution on points 〈x, y〉 with the same marginals

over x and y as the true F , but with the label y independent of x. The authors define the

“no-information” error rate γ, which is the error rate of the classifier when the data conveys

no information for the classifier (x’s and y’s independent):

γ = EFind(x)[Q(x, X
(n))],

and obtain its estimate γ̂ by averaging the error rate of the classifier trained on X (n) over

all possible permutations of the data and the labels:

γ̂ =
n∑

i=1

n∑

j=1

Q(〈xi, yi〉, X(n))/n2 .

Intuitively, γ̂−err characterizes the maximum amount of the overfitting of the classifier, for

given classification problem and learning algorithm. For example, for a binary classification

problem, with class labels 0 and 1, let p̂1 be the observed proportions of points labeled 1 in

X(n), and q̂1 be the proportion of points in X
(n) that are assigned 1 by a classifier trained

on X(n). Then,

γ̂ = p̂1(1− q̂1) + (1− p̂1)q̂1.
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In particular, if p̂1 is 1/2, then γ̂ = 1/2 for any classifier.

From the no-information error rate estimate γ̂ , the estimated relative overfitting rate

R̂ is derived:

R̂ =
Err

(1 )
BS − err
γ̂ − err .

(The values of Err
(1 )
BS and R̂ are corrected if necessary, to ensure that R̂ falls within [0, 1].)

For a classifier with no overfitting R̂ = 0, while the highest possible overfitting corresponds

to R̂ = 1.

Finally the .632+ estimator is obtained as

Err .632+ = Err .632 + (Err
(1 )
BS − err)

.368 · .632 · R̂
1 − .368 R̂

.

The computation of Err .632+ involves obtaining the values of Err .632 and err, and

computing the γ̂; the total complexity is

O
(
B[Ttrain(n− 1) + Ttest] +O(Ttrain(n) + Ttest) +O(n2Ttest)

)
.

For classifiers with training more expensive than testing, and for values of n larger than B

(which is fixed, typically 50 or 100), this can be less than the complexity of CV methods.
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3. Related work

3.1 Estimating classifier accuracy

A great deal of work exists on error estimation for both regression (with the prediction error

usually measured in terms of squared loss) and classification (with various loss functions).

A majority of the researchers in Machine Learning measure a classifiers performance by its

misclassification rate, which is equivavlent to a symmetric, zero-one loss function Kohavi

and Wolpert (1996). An up-to-date survey of some of the most important results in this

field can be found in Chapter 9 of Duda et al. (2001).

It has been noted (see discussion on the “No Free Lunch Theorem” in Duda et al. (2001))

that there is no single estimator that could be theoretically proven or even empirically shown

to be optimal for any given data domain and classifier. For many classifiers, especially the

more complex ones such as SVMs, it is difficult to describe the error function in terms of

the data distribution, and to predict the behavior of a certain estimator for that classifier,

on a particular problem domain. While some bounds on the discrepancy of estimators

can be established, the choice of an estimator largely relies on empirical evidence of its

performance, that is, simulation studies, in which accuracies of different estimators are

compared for classifiers at hand, on synthetic and real data.

Different authors seem to use different measures to quantify and compare accuracy of

estimators. In the statistical literature it is common to use mean square error (MSE) over a

number of trials. In the machine learning literature, often bias and variance of an estimator

are referred to as the properties that define its accuracy. This parameters are also estimated

by taking the results from a number of trials.
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3.2 Studies of different accuracy estimators

Vapnik in Vapnik (1982) provides a bound on the discrepancy of err, which is expressed in

terms of the VC-dimension of the concept class. Cross-validation has been studied by many

authors. Kearns and Ron prove in Kearns and Ron (1999) that under certain conditions on

the algorithmic stability of the learning algorithm, there is an upper bound on the absolute

deviation of leave-one-out estimator from the true error, and this bound is of the same order

of magnitude as the one for err. Holdout is studied in Blum et al. (1999), that shows that

k-fold CV for k > 2 is more accurate than a single holdout estimate with test subset of size

n/k. Based on this result we decided not to include holdout in our empirical study.

According to reports in the ML community (e.g., Bailey and Elkan (1993)), cross-

validation is the most widely used method of accuracy estimation for this task. Bootstrap

methods are less popular. From empirical results bootstrap estimators is known to have

higher biases than CV but lower variances, and consequently show better results in terms

of squared error when a large number of trials is performed (Efron (1983),Shao and Tu

(1995)). Kohavi Kohavi (1995) shows that for 10 UCI data sets, with respect to zero-one

loss, CV-based estimators work better due to the large bias of the .632 bootstrap. However,

the main criterion used in the study is the bias of the estimator, and no RMSE perfomance

is reported. Dietterich in Dietterich (1998) considers a few statistical tests for comparing

classifiers, and while he concludes that all the discussed tests have some shortcomings, he

recommends the 5x2CV (2-fold CV repeated 5 times) and the McNemar’s test. He does

not address the task of estimating the accuracy of a single classifier, however. More re-

cently, Efron and Tibshirani Efron and Tibshirani (1997) obtained the best performance

14



with their .632+ estimator for a number of data sets, including some of those used by Ko-

havi. Therefore .632+ appears to be the state-of-the-art BS-based estimator, in terms of

RMSE performance.

There have been previous efforts at classification using density estimation for complex,

real-life data involving non-numeric features (e.g. Hermans et al. (1982)), but with no clear

means of sampling from the estimated density. We also do not know of any published

system that would implement all the currently established techniques in density estimation,

such as whitening of the data, and allow the user to sample a value from the estimated

probability function without a need to “tune” the system.

3.3 Bootstrap methods

Bootstrap was introduced by Efron in Efron (1979), and since has become a topic of active

research in the statistics community. It has been successful in many cases of statistical

estimation (Shao and Tu (1995),Davison and Hinkley (1998)). A comprehensive description

of the bootstrap method is given in Efron and Tibshirani (1993).

Investigation of the properties of smoothed bootstrap is still an ongoing research effort

in statistics. A brief summary follows.

3.4 Smoothed bootstrap

Constructing a bootstrap replication of the data by sampling with replacement is equivalent

to randomly drawing samples from the empirical probability distribution F̂n Davison and

Hinkley (1998). Instead, one may estimate the PDF of the data, using non-parametric

density estimation, and use the estimated density to draw samples. This is the underlying
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idea of smoothed bootstrap Silverman and Young (1987). In this work we focus on kernel

density estimation method, in which a smoothing value h must be chosen to generate the

kernel-based distribution F̂h,n.

No general conditions have been established under which the smoothed bootstrap im-

proves on the results of the ordinary bootstrap. The accepted intuition is that if the true

distribution F is smooth, it is reasonable to prefer the smooth F̂h,n to the non-smooth F̂n.

More importantly, the effect of smoothing depends on the statistic under consideration.

This dependence has been explored by several authors (Silverman and Young (1987),Shao

and Tu (1995),Hall et al. (1989),El-Nouty and Guillou (2000)). Generally, smoothing is

considered to be beneficial when the estimated statistic depends on local behavior of F , for

instance, if a small change in F significantly changes the value of the statistic. Our intuition

is that the generalization error of many classifiers behaves in this way, as a small change in

F which produces the training and the test sets may change the decision boundary, and as

a result the error on a test point may change from 0 to 1 or vice versa.

Since both the empirical distribution F̂n and the kernel-based estimate F̂h,n are consis-

tent estimators of the true F , the difference between the smoothed BS and the non-smoothed

one disappears as n→∞. The difference can be significant in the case of small sample size,

with which we are concerned in this work.

Examples of a statistics for which smoothing the bootstrap has been shown to signifi-

cantly improve the estimation accuracy, include sample quantiles Shao and Tu (1995) and

sample correlation coefficient Silverman and Young (1987). Recent reports suggest that

smoothing is beneficial for computation of confidence intervals for continuous El-Nouty and

Guillou (2000) and discrete Guerra et al. (2000) data. One of the main obstacles in apply-
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ing smoothed bootstrap methods to real problems with complex data domains has been the

complexity of implementation of the density estimation and the resampling for such data.

In this work we attempt to alleviate the task, and discuss both technical and conceptual

problems that arise on the way. In the remainder of this section we describe the basic mech-

anism for resampling from the kernel-based density estimate for the simplest case, in which

all the attributes are continuous and unbounded. In Section 7 we extend this mechanism

for the general case of arbitrary data domains.

4. Smoothed bootstrap for accuracy estimation

4.1 Kernel-based nonparametric density estimation

We use kernel-based density estimation (Parzen windows), as described, for example, in

Scott (1992). The estimated PDF of a point x, based on the sample X (n), is

f̂(x) =
1

n|H|

n∑

i=1

K
(
H−1 (x− xi)

)
, (9)

where the kernel K is a probability density function, and H is a matrix which essentially

describes the covariance structure of K. It has been suggested in the literature Fukunaga

(1990) that if the d-dimensional data set is whitened, that is, transformed to have a unit

covariance matrix, one can use the product kernel, which is a product of d one-dimensional

kernels:

f̂(x) =
1

n

d∏

j=1

1

hj

n∑

i=1

d∏

j=1

K

(
xj − xij
hj

)
. (10)
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To apply a kernel method, two parameters must be set: the kernel function K and

its bandwidth hj . The choice of bandwidth is critical to the success of the method, and

a large number of methods for automatic bandwidth selection exist Jones et al. (1996).

Intuitively, the optimal bandwidth should enforce some smoothness conditions on f̂ , which

can be expressed as bounds on
∫
f̂ ′′. Our algorithms use a direct plug-in method, based

on kernel-based estimation of the derivatives of f . The algorithm is described in detail in

Wand and Jones (1995), and here we provide a brief explanation.

It can be shown Wand and Jones (1995), that the asymptotic mean integrated squared

error (MISE) of density estimate is minimized for the value of bandwidth

hAMISE =

[
R(K)

µ2(K)2ψ4n

]
, (11)

where for any r,

ψr =

∫
f (r)(x)f(x)dx, (12)

and for a function K

R(K) =

∫
[K(x)]2dx. (13)

Since f is unknown, so is also the functional ψ4. We have to estimate it by a kernel

estimate ψ̂4(g) where g is a bandwidth. Now, we face the problem of choosing g. The

optimal g, in turn, is given in terms of ψ6. This goes on, as the optimal bandwidth for

estimation of ψr depends on ψr+2. To stop this dependence, one can estimate ψr, for some

r, using normal scale. The data is assumed to be distributed normally, with variance σ2
x.

Then, the variance is estimated using the standard sample variance estimate σ̂2
x, and we
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have

ψ̂r =
(−1)r/2r!

(2σ)r+1(r/2)!π1/2

From here, we estimate gr−2, gr−4 etc., and finally estimate the h.

The choice of kernel is known to be much less important for the quality of the density

estimate (Silverman (1986)). The Epanechnikov kernel K(x) = 3(1 − x2)/4, with support

|x| ≤ 1, has been shown to be the optimal kernel for density estimation: used with the

optimal value of its bandwidth, it minimizes the mean integrated squared error (MISE)

of the estimation Scott (1992). This is only slightly better than many other kernels, and

optimality criterion unrealistically assumes the ability of finding the optimal bandwidth.

Also, it has not been proven that minimal MISE for density estimation corresponds to the

best performance in smoothed bootstrap. Nevertheless, the Epanechnikov kernel allows

for simple resampling procedure, which further motivated us to use it. The shape of 2-D

product Epanechnikov kernel is shown in Figure 1(a).

4.2 Sampling from the estimated density

Kernel-based PDF estimation is a computationally expensive task. However, to sample

from f̂ , one does not need to compute (9) explicitly. For arbitrary x, the value of f̂(x) is

the sum of the contributions of all of the sample points, each weighted by 1/n. Therefore,

the result of adding random noise w drawn from K to a uniformly chosen xi will have

density f̂ . This is formalized in Lemma 1 Davison and Hinkley (1998), given below with

our proof.

Lemma 1 The random variate generated by Alg. 1 has the PDF given by (10).
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Algorithm 1 Generation of x distributed with f̂ , a PDF estimate based on X(n), with
kernel K and bandwidths h.

Input: A sample X(n), set of bandwidths h1, . . . , hd, and a kernel K.
Output: x ∼ f̂ as in (10)
Draw l uniformly from {1, . . . , n}
Generate a random vector w = [w1, . . . , wd]

T with elements iidwi ∼ K.
Let wh ← [h1w1, . . . , hdwd]

T .
Return x← xl + wh.

Proof Let px(·) be the PDF of an x = xl +wh generated by the algorithm, and pwh(·) the

PDF of wh. Note that wh = x− xl. Since the elements of w (and therefore those of wh)

are independent, we have

pwh(wh) =
d∏

j=1

K (xj − xlj) ,

and using the fact that for any PDF pt, pat(at) =
1
|a|pt(t) (Papoulis (1991)),

pwh(wh) =

d∏

j=1

1

hj
K

(
xj − xlj
hj

)
.

Since the algorithm assigns an equal probability mass of 1
n to all of the xz, z = 1, . . . , n,

one can write

px(x) =
n∑

z=1

1

n
px (x|l = z) =

1

n

n∑

z=1

pw(x− xz)

=
1

n

n∑

z=1

d∏

j=1

1

hj
K

(
xj − xzj
hj

)

= f̂(x)
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Using the Epanechnikov kernel, each component of w can be generated using the re-

jection method Devroye and Győfri (1985). The expected number of trials of the rejection

method for generating an element of w, with K being the Epanechnikov kernel, is 3 Devroye

(1986).

Algorithm 2 Generation ofW ∼ K for Epanechnikov kernel K.

repeat

Generate W uniformly on [−1, 1].
Generate U uniformly on [0, 1].

until U ≤ 1−W 2.
return W .

Lemma 2 Algorithm 2 generates a random variate distributed by K, and has expected time

complexity O(1), namely, 3.

Proof The distribution of the returned value of W ′ is

F (x) = Pr(W ′ ≤ x) = Pr(W ≤ x|U ≤ 1−W 2) =
Pr(W ≤ x, U ≤ 1−W 2)

Pr(U ≤ 1−W 2)
.

We compute the denominator:

Pr(U ≤ 1−W 2) =

∫ 1

−1
Pr(U ≤ 1− w2|w =W )dFW (w) =

=
1

2

∫ 1

−1
(1− w2)dw = 2/3,

using the fact that U has a uniform distribution. The joint distribution in the nominator is

computed in a similar way:

Pr(W ≤ x, U ≤ 1−W 2) =
1

2

∫ x

−1
(1− w2)dw =

x

2
− x3

6
=
1

3
.
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Now, to compute the density of W ′ we take the derivative:

f(x) =
3

2

(
1

2
− x2

2

)
=
3

4
(1− x2) = K(x).

Now we prove the expected time complexity. Let us denote U ′ = 1−U . For fixed U , the

probability of rejection of the chosen W in a single iteration of the algorithm equals

Pr (W 2 < U ′|U) = Pr (0 < W < U ′
1
2 |U) + Pr (−U ′

1
2 < W < 0|U)

= 2Pr (0 < W < U ′
1
2 |U).

(the last equality follows from the symmetry of the uniform PDF of W ). Then, the total

probability to reject the uniformly chosen U is

Pr(W 2 < U ′) = 2

∫ 1

0
Pr(0 < W < U ′

1
2 )du =

∫ 1

0
U

1
2 du =

2

3
.

Then, each iteration step in Algorithm 2 is a Bernoulli trial with
2

3
failure probability, and

the expected number of trials for a success is thus 3.

Thus, the expected time complexity of Algorithm 1 is O(1), and the computational cost of

resampling n points in smoothed BS has the same order of magnitude as that in ordinary

BS.
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4.3 Whitening the data

Consider a sample (dataset) of n points, X (n) = 〈X1, . . . ,Xn〉, which are mutually in-

dependent and identically distributed (iid), drawn from probability distribution function

F (X) with PDF (or probability mass function in case of discrete feature space) f(X); that

is, each sample point (which is actually a d-dimensional vector) Xi = [xi1, . . . , xid]
T is a

value of the random variable X ∼ f . It may be the case, and indeed usually is with the

real data, that we don’t know what F or f is, but assume their existence. Let M be the

expected (mean) value of X, M(X) = E[X], and Σ the covariance matrix of X:

Σ(X) = E[(X−M)(X−M)T ] = S −MMT ,

where S = E[XXT ] is the autocorrelation matrix of X. Since one cannot compute the Σ

and related values without knowing the underlying PDF , it is customary to use their sample

estimates. The sample autocorrelation matrix is defined by

Ŝ(X(n)) =
1

n

n∑

i=1

XiX
T
i , (14)

the sample mean

M̂(X(n)) =
1

n

n∑

i=1

Xi, (15)
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(which are unbiased consistent estimates of S andM, respectively), and the sample covari-

ance matrix

Σ̂(X(n)) =
1

n− 1

n∑

i=1

(Xi − M̂)(Xi − M̂T ). (16)

The division by n− 1 rather than n eliminates the bias in the estimator. Generally, values

of different features in the data have different scales, and different sample variances. The

whitening transformation suggested in Fukunaga (1990), is meant to make the covariance

matrix of the transformed sample to equal I. Let Λ be the diagonal matrix of the eigen-

values of Σ̂(X(n)), and Φ be the matrix whose columns are the eigenvectors of Σ̂(X(n)),

corresponding to Λ. The whitening transformation is defined by

W = (ΦΛ− 1
2 )T ; (17)

It can be shown Fukunaga (1990) that Σ̂
(
WX(n)

)
= I. Subtracting the sample mean

from the sample before the multiplication byW, will ensure the mean of the transformed

sample to be 0. The reverse transformation is done by multiplication by ΦΛ
1
2 and further

addition of M̂.

5. New estimation schemes

It is evident from both theoretical and empirical results that variance reduction in an

estimator of can be advantageous even if the bias somewhat increases. This is the essence

of the so called “bias-variance dilemma” Duda et al. (2001). In order to reduce the variance,

we consider two extensions of known estimators. Both are guided by the objective to smooth
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the discontinuities in the estimation of Err that may be caused by perturbations in data.

We would like to reduce the effect that substitution of one point in a subset of X (n) has

on the estimated accuracy of a classifier, to decrease the variability in the estimate, and

eventually to reduce the probability of having a large deviation in a single estimation trial.

5.1 Using cloning in BS-based estimators

The first idea is to use cloning where normally an ordinary BS is used. Possible improvement

in the expected squared error here is achieved by using a more sophisticated sampling

method. Smoothed bootstrap is known Shao and Tu (1995) to outperform the ordinary

BS for statistics that are sensitive to local properties of the underlying distribution. Our

intuition is that this holds for Err in the case of many classifiers.

We denote BS-type estimators that use cloning - resampling from the estimated density

- instead of ordinary BS by appending an asterisk. For example, to construct Err
(1 )
BS ∗, the

X(n)∗
(i) in (8) is a the clone of the X

(n)\{xi} rather than its BS replica. From the previous

section, we know that this change does not increase the computational intensity of the

procedure.

5.2 Bootstrapped cross-validation

An alternative approach is to smooth the cross-validated estimation by bootstrapping the

data on which the computation is performed. Here too the cloning method may replace

the ordinary bootstrap. Incorporation of a BS or cloning allows us to obtain a less noisy

estimate. To smooth the discontinuities in the results of CV caused by perturbations in the
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training and test sets, CV is performed on each BS sample (or clone) of X (n):

ErrBSCV×k =
1

B

B∑

b=1

ErrCV×k

(
X (n)∗

b

)
. (18)

The computational cost is similar to that of computing ErrRCV×k with B trials.

6. Simulation study with synthetic data

In order to test the plausibility of the proposed estimators, we followed the experimental

framework of Efron and Tibshirani (1997), described in Table 1. In all cases, there were

two classes, represented in the by an equal number of data points. In experiments 2 and

4, the distribution of the data was independent of the class label, and each data point

had probability of 1/2 to be assigned to each class, so that any classifier had an expected

accuracy of 1/2. The true error Err was approximated by testing each trained classifier on

20,000 data points drawn from the same distribution (a validation set). Both the training

data and the validation data are balanced: the same amount of data is assigned to each class.

In all the experiments, the classifiers used were 1- and 3-NN, Fisher’s Linear Discriminant

Functions (LDF), and Support Vector Machines (SVMs) with radial basis function (RBF)

kernels. The σ parameter for the SVMs was chosen from a range of possible values by

minimizing the generalization error over a large set of test points. Except for using the

SVMs, this setup is identical to that reported in Efron and Tibshirani (1997). We repeated

the computation of different estimators for a number of trials. In each trial, to reduce

the variability in the differences due to random factors, the same data sets and the same

bootstrap samples and clones were used for all of the estimators.
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Table 1: Setting of the simulation with synthetic data described in Section 6. All data sets
have two balanced classes. In 2 and 4 the distribution of a point is independent of
its class label. The size of each data set is given by n.

# Distribution n Trials

1 N
(
(±1, 0, 0, 0, 0)T , I5

)
14 200

2 N (05, I5) 14 200

3 N
(
(±.5, 0)T , I2

)
20 200

4 N (02, I2) 20 200

5 N (010, I10) vs.
∏10

j=1N
(√

j/2, 1/j
)

100 50

Table 2: Results on synthetic data. Err is the true accuracy estimated on a large validation
set. Êrrnew corresponds to the best-performing (in terms of RMSE) new estima-

tor; Êrrold to the best-performing among the old ones for each classifier and data
set. Significantly better RMSE shown in bold.

# Classifier Err Êrrnew Mean STD RMSE Êrrold Mean STD RMSE
√
µd σd α

1

LDF .262 ErrBSCV×n∗ .2668 .0626 .0767 ErrBS .2537 .0662 .0776 .0121 .006 .37
1-NN .2785 Err.632 ∗ .217 .0707 .0863 Err .632+ .256 .1139 .0999 .05 .0105 .01

3-NN .2462 ErrBSCV×5 ∗ .24 .0651 .0598 ErrBS .199 .0745 .0815 .055 .0061 10−13

SVM .2367 ErrBSCV×5 ∗ .247 .0632 .0671 Err .632 .146 .0626 .1108 .055 .0061 10−13

2

LDF .5 ErrBSCV×n∗ .511 .0729 .0731 Err
(1)
BS

.507 .0705 .0703 -.02 .0024 .15

1-NN .5 ErrBSCV×n∗ .535 .0729 .0803 Err
(1)
BS

.54 .1051 .1118 .078 .0137 10−10

3-NN .5 Err.632+∗ .4585 .0526 .0668 Err .632+ .4588 .066 .0772 .039 .0066 .01
SVM .5 Err.632+∗ .412 .0472 .1005 Err .632+ .4173 .0562 .1003 -.0057 .0084 .48

3

LDF .35 ErrBSCV×5 ∗ .35 .0794 .0813 ErrBS .313 .091 .0996 .0575 .0078 10−10

1-NN .414 ErrBSCV×5 ∗ .363 .0646 .0737 Err .632+ .354 .0834 .1002 .068 .0106 10−10

3-NN .392 ErrBSCV×5 ∗ .361 .0679 .0689 Err .632+ .391 .0848 .0816 .044 .0067 10−5

SVM .356 ErrBSCV×5 ∗ .368 .072 .0776 ErrBS .32 .0886 .0959 .056 .01 10−6

4

LDF .5 Err.632+∗ .471 .0771 .0828 Err .632+ .468 .086 .0924 .041 .0026 10−19

1-NN .5 Err
(1)
BS

∗ .527 .0572 .0633 Err
(1)
BS

.533 .1005 .1061 .085 .0126 10−15

3-NN .5 Err.632+∗ .458 .0457 .0625 Err .632+ .457 .0622 .0763 .0438 .0065 10−5

SVM .5 Err.632+∗ .485 .0511 .0537 Err .632+ .484 .0614 .0641 .035 .0044 .0002

5

LDF .018 ErrBSCV×n∗ .009 .0084 .0148 Err .632 .0085 .0076 .0147 .0017 5 · 10−5 .33

1-NN .022 ErrBSCV×n∗ .016 .0094 .0123 Err
(1)
BS

.014 .01 .0141 .007 3 · 10−5 0

3-NN .027 ErrBSCV×10 ∗ .0171 .0073 .013 Err
(1)
BS

.0171 .0106 .0156 .009 .0001 10−6

SVM .0036 ErrBSCV×n∗ .002 .0018 .0029 Err .632 .001 .0018 .0033 .0015 10−6 10−7

In Table 2 we compare the best of the new methods to the best of the old ones, described

in section 2. All the statistics were computed from the corresponding number of trials given

in Table 1. To determine the statistical significance of these results, we perform hypothesis

testing for each classifier/data set. The null hypothesis is that the expected squared errors of

the two methods are equal. We attempt to reject this hypothesis in favor of the alternative
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that the expected error of the new method is smaller. Since all of the estimators are applied

to the same data set in each trial, the obtained values are dependent, and the paired single-

tailed test for comparison of the means is appropriate Papoulis (1991). The sample of

interest here is d = (Êrrold − Err)2 − (Êrrnew − Err)2 . The significance α of the test

corresponds to the z-value zα = µd/(σd/
√
N), where N is the number of trials, µd is the

sample mean, and σd is the sample variance of the differences. These values appear in the

last three columns of Table 2.

In 17 out of 20 cases, one of the new estimators was significantly better (α ≤ .01)

in terms of RMSE than any of the old ones. While our estimators are sometimes more

biased, their variances are noticeably smaller, as hoped. We note the particularly good

performance of Err .632+∗, which in 12 cases was better than Err .632+, and of ErrBSCV×5∗,

which outperformed all versions of ErrCV×k and ErrBSCV×k in 16 cases. The detailed

results for all the estimators can be found in Appendix A.

7. Cloning real-life data sets

So far we have only considered data sets with unbounded continuous attributes. We now

turn to the issue of extending our methods to real-life data. In general, the data space D

of an arbitrary problem domain can be represented as

D ⊆ Rmc × Zmo × A1 × . . .× Amn , (19)
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where mc, mo and mn are the numbers of continuous, discrete, and nominal attributes,

respectively. Ai denotes a nominal domain (possibly different for each i). We shall denote

a general point in D by 〈v,u,w〉, where v ⊆ Rmc etc.

Straightforward kernel density estimation as in (9) is not applicable in the general case,

since it assumes that the data are continuous and unbounded.

7.1 Cloning continuous data with boundaries

The standard kernel estimate (9) becomes inaccurate near points of discontinuity of the

actual PDF . Such a discontinuity occurs at an endpoint of an interval outside which the

density vanishes. Kernel estimate overestimates the density outside the boundaries. Most

boundary correction techniques mentioned in the literature involve kernel functions with

negative values (see Scott (1992)). Such a kernel is no longer a PDF , making sampling

problematic. In addition, different PDF s behave in different ways at boundaries. For

instance, at x → 0+ the negative exponential PDF tends to ∞, while the PDF of the Γ-

distribution vanishes. No general solution to the task of finding the “right” type of boundary

kernel to fit the specific behavior of the estimated PDF is known to date. Moreover, one

may need to apply different boundary kernels at different boundaries for the same data set

in order to obtain reasonable behavior.

To generate boundary-obeying values, we use the following method. Let D be the set

of admissible values (“inside” the boundaries). We force the modified kernel KD(x) to be

zero outside D and divide by s =
∫
x∈DK(x)dx in order for the kernel KD to integrate to

unity, as illustrated in Figure 1(b). The shape of a boundary-corrected 2-D product kernel

shown in Figure 1(c).
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Figure 1: Boundary correction for the Epanechnikov kernel K(x) = 3(x − 1)2/4. (a) 2-
dimensional product kernel (b) Boundary-corrected kernel in one dimension. The
density is known to vanish outside [−.3, 1]. The dashed line shows the original
kernel; the rejection region is shaded (c) Boundary-corrected product kernel in 2
dimensions. The density vanishes outside [−.3, 1]× [−.5, 1].
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An example of applying our boundary correction method is shown on Fig 2, for two

gamma distributions, that vanish for x < 0. In each case, the corresponding gamma PDF

was estimated based on a random sample of 1000 points. Boundary correction has no effect

for points that are farther from the boundary than h, therefore we look at the improvement

in PDF estimate only over [−h, h], where h is the chosen bandwidth. For Γ(4, 1), shown in

Figure 2(a), the improvement is small, and only due to the region x < 0 where the density

is overestimated by the non-corrected kernel. Within the support region of the true density

the boundary corrected kernel is in fact slightly worse. Overall, the L1 error in the estimate

is reduced by about 1%. In case of Γ(1.1, 2), shown in Figure 2(b), the shape of the function

near boundary is much closer to that of the kernel, and the boundary correction results in

a much more well-behaved estimate. The reduction in L1 error in this case is more than

60%.
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Figure 2: Boundary corrected estimation of gamma distribution with different parameters.
The true distribution (dotted line), non-corrected kernel estimate (dashed line),
and our boundary-corrected estimates are shown over [−h, h].
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Sampling from this boundary-corrected kernel is straightforward. We repeat the algo-

rithm for sampling from f̂ until the result falls within D. The failure probability of a single

trial is 1− s. The algorithm is always applied for an actual data point in the original data

set, which is within the boundaries. Therefore, as long as the point has a neighborhood

over which the distribution is positive, a positive lower bound can be established on s, from

which an upper bound on the expected time to success can be derived.

7.2 Cloning data with discrete attributes

Discrete feature values come from a domain with countable cardinality. We, however,

observe only a finite subset of it with cardinality T . We assume that a corresponding

metric and order are defined, in contrast to nominal domain (see Section 7.3). Such a

domain can be mapped into Z. In our experience, applying kernel functions of a continuous

variable to a discrete attribute might lead to poor results when applied to resampling, and
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Figure 3: A family of discrete smoothing kernels. The values of Kd
h(x, xi) are shown for

X(5) = 〈0, 2, 3, 4, 10〉.
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we do not see clear and natural solution to the related rounding problem. Instead we follow

Aitchison and Aitken (1976) and use the following family of discrete kernels:

Kd
h(x, xi) = Kd(h, x, xi) =

h‖x−xi‖
2

∑T
k=1 h

‖x−xi‖2
. (20)

Kd
h(x, xi) is centered on xi and assigns to x a weight that is inversely proportional to

its distance from xi; the rate at which it drops depends on h, which is between 0 and 1.

Since we have no theoretically solid method of choosing h, the following heuristic was used

to avoid over-smoothing. For each x, we would like to keep a large proportion, say, 95%

of the probability mass assigned to x by the empirical distribution F̂n close to x. We take

the standard deviation σx of the values of x as a measure of spread, and set h = .051/σ
2
x ,

which enforces this spread constraint, since for a y which has ‖x − y‖2 = σx, we will have

h‖x−xi‖
2
= .05. The discrete attributes are sampled similarly to the continuous ones, with

the substitution of Kd for K, as described in Algorithm 3. Figure 3 shows an example of

a kernel family, computed for a discrete data set.
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Algorithm 3 Resampling a discrete attribute.

Input: An ordinal attribute domain A = {a1, . . . , aT }, a value v ∈ A, and a set of kernels
{Kd

h(·, ·)} defined by the data set X (n) as in (20).
Output: u ∈ A.
for i = 1 to T do

Let pi = Kd
h(ai, v).

end for

Let P = 〈p1, . . . , pT 〉.
Draw i according to a polynomial distribution with probability vector P .
Return u← ai.

As a note of caution, we point out that, in some data sets, the integer attribute serves

as a label or encodes nominal values. In such cases, there is no meaning to the metric or the

order defined over Z, and smoothing the resampling may be meaningless. Such an attribute

should be treated as nominal.

7.3 Cloning data with nominal attributes

The support space of a nominal (sometimes called categorical) attribute is a non-metric

unordered space A of finite cardinality T . In this case there is no reasonable meaning for a

distance between two possible values.

Smoothing of the marginal distribution of nominal attributes could introduce impossi-

ble data points for which the true probability to appear in the given domain is zero. For

example, in the Adult data set in Blake and Merz (1998), in which data of different people

are labeled with income level, two of the nominal attributes are “marital status” and “re-

lationship”. If we allow smoothing over the nominal domain, we might create a data point

with the value of the attribute “relationship”, say, “Husband”, but with “marital status”

set to “Never married” - an impossible combination. We feel that this hazard overwhelms

the possible benefit from enriching the cloned data, and choose not to perform smoothing
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directly on a nominal domain. For data with multiple nominal attributes, this means that

a combination of nominal attribute values can appear in the clone only if it appears in the

original sample.

To sample from the conditional probability mass function of a nominal attribute, we

need to estimate it explicitly. Abusing notation, denote by f both the joint PDF over the

whole domain, and its marginals over sub-domains. Recall from (19) that we are estimating

the density at a “mixed point” 〈v,u,w〉 ∈ D:

f(〈v,u,w〉) = f(〈v,u〉)f(w|v,u)

= f(〈v,u〉)f(w1|v,u)f(w2|v,u, w1) . . . f(wmn |v,u, w1, . . . , wmn−1).

(21)

Thus in order to estimate f(〈v,u,w〉), one can find f(wj |v,u, w1, . . . , wj−1) for all j =

1, . . . ,mn. Of course, all the conditional densities appearing above are estimated rather

than used with their true (unknown) values.

For simplicity we use the following “generalized kernel” notation:

K(x, xi) =





I(x, xi) if x,xi ∈ As, 1 ≤ s ≤ mn;

1
hK(

x−xi
h ) if x, xi ∈ R;

Kd
h(x, xi) if x, xi ∈ Z,

(22)

where I(x, xi) denotes the identity function of the corresponding nominal domain, K is

the chosen univariate kernel, Kd
h is the ordinal kernel, and h is the bandwidth (smoothing

parameter) for the corresponding dimension, automatically set as described in Sections 4.1
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and 7.2. In these terms,

f̂(〈v,u, w1, . . . , wj〉) =
1

n

n∑

i=1

j∏

s=1

K(ws, wis)

mc∏

l=1

K(ul, uil)

mo∏

m=1

K(vm, vim). (23)

Clearly,

∑

wj∈Aj

f̂(wj |v,u, w1, . . . , wj−1) = f̂(〈v,u, w1, . . . , wj−1〉). (24)

All that remains is to normalize the values obtained in (23) by dividing them by their total

sums for all possible values of wj . Now we are ready to generate a value for the j-th nominal

feature, such that it is distributed according to the estimated distribution. This procedure

is given in Algorithm 4.

Algorithm 4 Resampling a nominal value from an unordered domain with finite cardinality,
given the values of the numeric features and the preceding nominal features.

Input: A sample X(n), a point 〈v,v, w1, . . . , wj−1〉, an index 1 ≤ j ≤ mn.
Output: w ∈ A.
for all a ∈ A do

Let pa ← f̂(a,w1, . . . , wj−1,u,v) as given by (23).
end for

Let S ←∑
a∈A pi.

Let pa ← pa/S.
Draw a according to a polynomial distribution with probability vector p = [p1, . . . , pT ].
Return w ← a.

7.4 Cloning a data set

Building a clone of a complex (that is, multi-typed) data set X (n) consists of repeated inde-

pendent generation of points 〈v,u,w〉. Algorithm 5 describes the process. The smoothing

parameters for the numerical attributes are set automatically, based on the input. There-

fore, the cloning algorithm does not require tuning or setting any parameter by the user.
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Note, however, that boundaries for the numeric values are part of the definition of D and

should be explicitly provided to the algorithm.

Algorithm 5 Cloning a data set from domain D.
Input: A data set X(n) of points in D, integer R
Output: A cloned data set X(R)∗ of size R defined on the same space, so that f̂(x) =
f̂(x∗).
Set the smoothing parameters:
h1, . . . , hmc ∈ R for the continuous kernels, Section 4.1,
hmc+1, . . . , hmc+mo ∈ (0, 1) for the ordinal kernels, Section 7.2.
for k = 1 to R do

Draw an index i uniformly from {1, . . . , n}.
Let 〈v,u,w〉 ← xi.
Generate [v∗1, . . . , v

∗
mc
]T from [v1, . . . , vmc ]

T by Alg. 1.
for r = 1 to mo do

Generate u∗r from ur by Alg. 3.
end for

for s = 1 to mn do

for all a ∈ At do

Estimate p(a) = f̂(a|v∗,u∗, w∗
1, . . . , w

∗
s−1) by Alg. 4.

Draw w∗
s ∼ p(a).

end for

end for

Let x∗k ← 〈v∗,u∗,w∗〉.
end for

8. Simulation study with data from UCI machine learning repository

For the experiments with real data, we used 3 data sets from the UCI Machine Learning

repository Blake and Merz (1998). Table 3 gives the settings for the simulation. The data

sets used were the Wisconsin Breast Cancer, Vehicle and Pima Indians Diabetes. Breast

Cancer and Vehicle were the only two real data sets used in Efron and Tibshirani (1997).

We chose Pima since it has complex domain with both continuous and integer attributes,

which allowed us to examine some of the algorithms developed in Section 7. For each data

set, we chose classifiers reported to work well on that domain. In each trial, a small data
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subset X(n) of size n was chosen as the input for the experiments. A classifier was then

trained on this X(n) and tested on the remaining larger subset to estimate the conditional

true error. This value was then compared to the predictions of different estimators, to which

only X(n) was made available. For example, in a trial on the Pima data set, a subset of

60 points was drawn uniformly at random from the entire data set and a classifier, e.g., an

SVM, was trained on these 60 data points. Then the error of the classifier was computed

on the remaining 708 data points, and the result was taken as an approximate value of Err .

We next estimated the error of the SVM trained on the chosen 60 points, and compared

the estimate to the value of Err computed as above. For SVMs on the multi-class Vehicle

data set, we used the max-win paradigm: decomposition of the classification problem into a

number of binary classification problems, and combining the resulting classifiers by a voting

scheme with values of the discriminant function as the weights.

Table 3: Settings for the simulation study with UCI data sets (Section 8).

Data set Size n Number of features Type of features Number of classes Number of trials

Breast Cancer 683 36 9 all integer, bounded 2 150
Vehicle 846 100 18 all continuous, bounded 4 100
Pima 768 60 8 6 integer, 2 continuous, all bounded 2 150

Table 4: Results on UCI data sets, experiments in Section 8.

Data set Classifier Err Êrrnew Mean STD RMSE Êrrold Mean STD RMSE
√
µd σd α

Breast
1-NN .052 Err .632+∗ .036 .0259 .0269 Err .632 .035 .0255 .0271 .0025 .0002 .3
3-NN .045 ErrBSCV×5 ∗ .037 .0225 .0248 ErrBS .036 .0234 .0259 .007 .0002 .002

cancer
SVM linear .04 ErrBSCV×5 ∗ .028 .0203 .0254 ErrBS .028 .0206 .0259 .005 .0002 .058
SVM RBF .04 Err .632 ∗ .027 .0199 .022 Err .632 .028 .0209 .0222 .003 .0001 .09

Pima
17-NN .33 ErrBSCV×5 .3135 .0235 .0284 ErrRCV×10 .333 .0236 .025 -.013 .001 .019
SVM RBF .294 Err .632+∗ .302 .0567 .0584 Err .632+ .286 .0596 .0624 .022 .003 .0355

Vehicle
1-NN .438 ErrBSCV×5 ∗ .447 .0278 .0338 Err

(1)
BS

.464 .0431 .0537 .042 .004 10−5

SVM RBF .351 ErrBSCV×5 ∗ .334 .0264 .0399 Err .632+ .321 .0384 .0567 .04 .003 10−8

As with the synthetic data, in the majority of cases (6 out of 8) one of the new esti-

mators performed significantly better in terms of RMSE than any of the old estimators,
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Table 5: RMSE of .632+ with and without cloning. The better estimator for each test is
shown in bold. α is the significance level of the test.

Breast Cancer Pima Indians Vehicle

1-NN 3-NN SVM linear SVM RBF 17-NN SVM RBF 1-NN SVM RBF
Err .632+ .0275 .0307 .0276 .0230 .0301 .0624 .076 .0567
Err .632+∗ .0269 .0297 .0271 .0225 .0324 .0584 .0417 .0438

α .15 .0093 .0064 .0262 .0463 .0355 10−11 10−6

Table 6: RMSE performance of repeated CVs versus the proposed estimators. ’-’ indicates
that ErrRCV×k is worse, ’+’ that it is better, and ’?’ that it is not different with
significance below .1

Err .632+∗ ErrBSCV×5∗ ErrBSCV×n∗
- + ? - + ? - + ?

ErrRCV×n 8 0 0 6 1 1 4 2 2
ErrRCV×10 7 1 0 5 2 1 4 2 2
ErrRCV×5 7 0 1 6 2 0 4 2 2

at a significance level .1 (Table 4). In most cases, the winning estimator had the lowest

variance. In Table 5 we show that the cloned version of Err .632+ outperformed its tradi-

tional counterpart in 6 out of 8 cases with significance below .05, and in a seventh case with

significance .15. We also show (Table 6), in accordance with the suggestion in Salzberg

(1997), that repeating the standard CV multiple times on the same data provides only a

partial solution, in exchange for a significant increase in computational cost. In particular,

Err .632+∗ clearly outperforms ErrRCV×k for various values of k (in 7 out of 8 cases), and

ErrBSCV×5∗ was significantly better in 5 out of 8, with one tie.

Figure 4 displays the behavior of Err .632+ (dashed line) and of Err .632+∗ (solid line) for

an SVM classifier, applied on two of the UCI data sets used in the simulation. For the Pima

data set (left column, (a)-(c)), the cloning-based estimator is more biased than Err .632+.
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However, as Figure 4(b) shows, the estimated PDF of its absolute error has a thinner tail,

corresponding to its lower variance. Integration over possible error values produces the

estimated probability distribution of absolute error, shown in Fig.4 (c). For the values of

absolute error ε that exceed .033, the graph corresponding to the cloning-based estimator

stays below the graph for Err .632+. The results for the Vehicle data set (right column of

Figure 4, (d)-(f)) are even clearer. In particular, for any value of ε, the estimated probability

of the absolute error in Êrr to exceed ε is greater for the traditional Err .632+. This behavior

of absolute error is consistent with the relative bounds that can be established using (4).

The bottom two plots of Fig. 4 show, for each estimator, the estimated probability

distribution of absolute error. These probabilities, that correspond to the left-hand side of

(4), exhibit behavior consistent with the prediction by (4).

The case in which the cloning-based estimators failed compared to the traditional ones is

the 17-NN classifier on the Pima data set. (We chose this classifier because of the reported

good performance of k-NN with k = 17, 19 on this domain Michie et al. (1994).) As can

be seen in Figure 5, Err .632+∗ had larger variance than Err .632+, and consequently had a

higher RMSE.

Some graphical representation of the resampling results obtained with our system is

given in Figures 6-7. Each figure presents a two-dimensional subspace of the original 8-

dimensional Pima data set(the upper subplot) and a clone (the lower subplot). Dimensions

are labeled by their indices in the data set. Attribute 6 is continuous , while attributes 1,3

and 5 are discrete. Figure 7 reveals a certain shortcoming of the current algorithm. The

kernel method is still unable to capture some properties of real life data. Here, there is a

cluster of points with the 5th attribute value being zero. We believe this is due to the true
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Figure 4: Analysis of the results for an SVM with an RBFkernel, on the Pima (left column)
and Vehicle (right column) data sets. Solid lines correspond to the cloned .632+,
and dashed lines to the traditional one.
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Figure 5: Analysis of the results for the Pima data set, with the 17-NN classifier. The cloned
.632+ (solid line) does not achieve lower variance than .632+ (dashed line), and
shows worse performance.
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density being a mixture of some smooth density and a δ-function in zero. However, due to

the smoothing, this property of the data is not represented in the clone, and is preserved

in the ordinary BS sample. In our experience this phenomenon is not uncommon in real

data sets. This artifact may be critical for some classifiers, such as decision trees, where

an important rule may involve testing equality to an exact value. For comparison, Figure

7 shows an ordinary BS sample of Pima data as well. While the phenomenon mentioned

above does not affect the BS sample (note a cluster of points with x5 = 0), there are much

fewer distinct points than the original. The original data set has 768 distinct points, and

so does the clone, but the displayed ordinary BS sample contains only 483 distinct points,

which is very close to .632*768.

The actual computation cost of various estimators in our experiments was consistent

with the predictions based on the expected running times. Table 7 gives the CPU time,

in seconds, averaged over 30 trials for each estimator, on the three UCI data sets. The

cloning-based estimators required only slightly more time than their respective ordinary

BS-based counterparts. We ran the experiments, implemented in C++ and Matlab, on a

dual-600MHz machine running Linux.

9. Conclusions and future work

The contribution of this work is two-fold. First, we propose two new smoothed bootstrap

schemes to clone data for better error estimation for supervised learning algorithms, and

report on extensive simulations with both synthetic and real data. We show that in terms of

the root mean squared error (RMSE), cloning improves the quality of the bootstrap-based

estimators. Our argument in favor of RMSE as a measure of estimator quality is based
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Figure 6: A look at the original versus a clone of the Pima data set, for two two-dimensional
subspaces. The upper plot is the original data set, the lower plot corresponds to
a clone.
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Figure 7: Original (the upper plot) versus a clone (second from above) and an ordinary BS
sample (the lower plot) of the Pima data set. Note the cluster of points with
dim5=0, which is not properly represented in the clone. BS sample is better in
this sense, but has only 483 distinct points, compared to 768 in the original and
the clone.
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Table 7: Average CPU time in seconds for computing a single instance of an estimator in
the UCI data experiments, on a dual 600MHz processor machine. Resampling
algorithms are implemented in C++; the rest of the computation was done in
Matlab.

Estimator Breast Cancer, n = 36 Vehicle, n = 100 Pima, n = 60
1-NN 3-NN linear SVM RBFSVM 1-NN RBFSVM 17-NN RBFSVM

Err 0.06 0.07 0.02 0.03 0.23 0.68 0.14 0.07
err 0.00 0.01 0.01 0.01 0.03 0.25 0.02 0.04
Err .632 26.24 26.52 55.87 54.15 136.81 1563.76 58.91 174.79
Err .632+ 26.10 26.62 55.22 54.03 136.93 1541.28 60.08 173.12
ErrCV×n 0.10 0.11 0.49 0.49 0.40 18.98 0.29 2.00
ErrCV×10 0.03 0.03 0.13 0.13 0.06 1.59 0.05 0.31
ErrCV×5 0.02 0.02 0.06 0.06 0.04 0.68 0.03 0.13
ErrBS 0.99 1.02 1.57 1.55 3.91 20.82 1.94 3.14

Err
(1)
BS

26.08 26.79 54.81 53.49 137.12 1588.49 60.08 174.02

Err×2

BS
1.02 1.05 1.62 1.61 3.95 21.08 2.00 3.08

ErrBSCV×n 10.23 10.87 40.63 40.04 41.04 1469.27 28.46 145.62
ErrBSCV×10 3.25 3.48 11.36 11.14 6.76 127.49 5.96 22.48
ErrBSCV×5 1.99 2.08 5.62 5.47 4.64 55.75 3.62 10.42
Err .632∗ 25.36 26.16 62.83 63.08 124.95 2026.89 57.74 205.13
Err .632+∗ 25.49 26.13 61.40 63.41 124.59 2072.86 57.65 204.02
ErrBS∗ 1.40 1.51 2.25 2.26 4.62 26.86 2.37 4.06

Err
(1)
BS
∗ 0.86 0.87 0.88 0.87 1.70 1.70 0.99 1.00

ErrBSCV×n∗ 10.59 11.29 49.60 49.57 41.96 1952.16 28.80 181.33
ErrBSCV×10∗ 0.86 0.88 0.88 0.88 1.70 1.72 0.97 0.99
ErrBSCV×5∗ 2.42 2.54 6.70 6.71 5.30 71.81 4.09 12.83
Err×2

BS
∗ 1.41 1.47 2.24 2.27 4.58 26.87 2.36 4.12

ErrRCV×n 9.78 10.47 48.71 49.85 39.92 1920.13 27.89 208.41
ErrRCV×10 1.51 1.63 6.00 6.08 3.65 64.73 3.06 13.12
ErrRCV×5 2.83 3.04 12.69 13.02 5.77 157.98 5.38 29.92

on Markov’s inequality, which bounds the probability of getting a large absolute error in

an estimator. Our results show a high correlation of the improvement in RMSE with a

reduction in the variance of the estimator. In particular, in 7 out of 8 experiments on the

UCI data sets (Table 5), and in 12 out of 20 on synthetic data sets, .632+ is outperformed

by its cloning-based counterpart. In general, while no estimator wins in all cases, in 22

of 28 cases, including 7 of 8 experiments on UCI data , one of the new estimators was
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significantly better in terms of RMSE than any of the old ones. Based on these observations,

we recommend the novel cloning-based .632+* estimator. Cloned 5-fold CV was the best

estimator for synthetic data, but showed inferior performance on UCI sets. We intend

to investigate the properties of the data that affect the relative performance of these two

estimators.

Second, we propose a suite of algorithms that can statistically clone real data from

“complex” domains in which data points have several types of dependent attributes (con-

tinuous, integer, bounded and nominal). While our algorithms perform well on a number

of UCI data sets, some limitations (such as the one illustrated in Figure 7) exist. We would

like to overcome these limitations in future work.

We should emphasize that the use of statistical cloning techniques comes with increased

computation. However, with the proposed choice of kernel, the increase in computation

needed for cloning is within a constant factor relative to the ordinary bootstrap. Boot-

strapped cross-validation involves O(n2) additional applications of the learning algorithm,

which is expensive. However, in the spirit of work done recently to allow effective leave-

one-out estimation “customized” for specific classifiers, such as SVMs Joachims (2000), the

design of an efficient cloning technique for particular classifiers is an interesting problem.

One of the advantages of the bootstrap over cross-validation is the ability to provide

confidence intervals for the estimated value. We are working on expanding our system to

include this capability.

Another area in which a study is needed is the performance of smoothed bootstrap and

the factors that determine it. The current choice of smoothing parameters is based on
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results from density estimation. However, it was not proven that the optimal bandwidth

for density estimation is also the best choice for the smoothed bootstrap error estimation.

Finally, and perhaps most importantly, an advance in theory of smoothed bootstrap

may allow for a better understanding of the conditions that make it suitable for accuracy

estimation of certain classifiers and domains, and eventually for a better choice of classifier

for a given classification problem.
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Appendix A. Detailed results of simulation experiments

A.1 Synthetic data sets

The experiments are described in Section 6. For each estimator, we report the mean value

of the prediction (first column) and the standard deviation (second column) over the trials.

Third column gives the RMSE. First row in each table gives the value of the true error Err

estimated on a large validation set.

Description of the data sets id given in Table 1. Here we repeat the values of the

parameters n (size of the data set), d (dimensionality0 and the number of trials in the

simulation with each data set.

For data sets with less than 20 points, we did not perform 10-fold cross validation. The

corresponding entries in the tables are marked NA (Not Available).
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Table 8: Syntehtic data set 1, n = 14, d = 5, 200 trials.
LDF 1-NN

Estimator Mean STD RMSE Estimator Mean STD RMSE

Err 0.262 0.0710 0.0000 Err 0.278 0.0517 0.0000
err 0.093 0.0832 0.1917 err 0.000 0.0000 0.2832
Err .632 0.268 0.0706 0.0826 Err .632 0.199 0.0812 0.1053
Err .632+ 0.327 0.0778 0.1096 Err .632+ 0.256 0.1139 0.0999
ErrCV×n 0.261 0.1272 0.1371 ErrCV×n 0.296 0.1583 0.1450
ErrCV×10 NA NA NA ErrCV×10 NA NA NA
ErrCV×5 0.293 0.1261 0.1349 ErrCV×5 0.302 0.1587 0.1483
ErrBS 0.254 0.0662 0.0776 ErrBS 0.111 0.0457 0.1737

Err
(1)
BS

0.371 0.0714 0.1378 Err
(1)
BS

0.315 0.1284 0.1161
ErrBSCV×n 0.273 0.0655 0.0767 ErrBSCV×n 0.122 0.0492 0.1644
ErrBSCV×10 NA NA NA ErrBSCV×10 NA NA NA
ErrBSCV×5 0.311 0.0585 0.0874 ErrBSCV×5 0.141 0.0542 0.1467
Err .632∗ 0.265 0.0758 0.0873 Err .632∗ 0.216 0.0707 0.0863
Err .632+∗ 0.320 0.0846 0.1135 Err .632+∗ 0.279 0.0990 0.0877
ErrBS∗ 0.230 0.0661 0.0834 ErrBS∗ 0.146 0.0594 0.1414

Err
(1)
BS
∗ 0.365 0.0797 0.1383 Err

(1)
BS
∗ 0.343 0.1119 0.1133

ErrBSCV×n∗ 0.267 0.0626 0.0767 ErrBSCV×n∗ 0.178 0.0604 0.1136
ErrBSCV×10∗ NA NA NA ErrBSCV×10∗ NA NA NA
ErrBSCV×5∗ 0.299 0.0573 0.0823 ErrBSCV×5∗ 0.192 0.0617 0.1016

3-NN SVM
Estimator Mean STD RMSE Estimator Mean STD RMSE

Err 0.246 0.0451 0.0000 Err 0.237 0.0423 0.0000
err 0.124 0.0945 0.1511 err 0.039 0.0521 0.2058
Err .632 0.256 0.1016 0.0901 Err .632 0.238 0.0908 0.0869
Err .632+ 0.288 0.1106 0.1068 Err .632+ 0.295 0.1104 0.1225
ErrCV×n 0.280 0.1580 0.1460 ErrCV×n 0.296 0.1803 0.1841
ErrCV×10 NA NA NA ErrCV×10 NA NA NA
ErrCV×5 0.288 0.1641 0.1555 ErrCV×5 0.335 0.1952 0.2128
ErrBS 0.199 0.0745 0.0815 ErrBS 0.146 0.0626 0.1108

Err
(1)
BS

0.333 0.1134 0.1313 Err
(1)
BS

0.354 0.1238 0.1665
ErrBSCV×n 0.208 0.0762 0.0773 ErrBSCV×n 0.158 0.0636 0.1018
ErrBSCV×10 NA NA NA ErrBSCV×10 NA NA NA
ErrBSCV×5 0.228 0.0776 0.0697 ErrBSCV×5 0.184 0.0651 0.0839
Err .632∗ 0.268 0.0947 0.0873 Err .632∗ 0.265 0.0804 0.0834
Err .632+∗ 0.306 0.1011 0.1088 Err .632+∗ 0.329 0.0890 0.1292
ErrBS∗ 0.188 0.0680 0.0834 ErrBS∗ 0.174 0.0683 0.0921

Err
(1)
BS
∗ 0.352 0.1037 0.1402 Err

(1)
BS
∗ 0.397 0.1088 0.1920

ErrBSCV×n∗ 0.218 0.0655 0.0662 ErrBSCV×n∗ 0.219 0.0648 0.0692
ErrBSCV×10∗ NA NA NA ErrBSCV×10∗ NA NA NA
ErrBSCV×5∗ 0.239 0.0651 0.0598 ErrBSCV×5∗ 0.247 0.0632 0.0671
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Table 9: Syntehtic data set 2, n = 14, d = 5, 200 trials.
LDF 1-NN

Estimator Mean STD RMSE Estimator Mean STD RMSE

Err 0.500 0.0031 0.0000 Err 0.500 0.0035 0.0000
err 0.231 0.1166 0.2930 err 0.000 0.0000 0.5000
Err .632 0.406 0.0819 0.1247 Err .632 0.341 0.0664 0.1717
Err .632+ 0.446 0.0597 0.0804 Err .632+ 0.384 0.0618 0.1315
ErrCV×n 0.493 0.1459 0.1452 ErrCV×n 0.545 0.1518 0.1575
ErrCV×10 -1.000 0.0000 1.5002 ErrCV×10 -1.000 0.0000 1.4999
ErrCV×5 0.494 0.1511 0.1505 ErrCV×5 0.537 0.1546 0.1582
ErrBS 0.343 0.0573 0.1668 ErrBS 0.192 0.0379 0.3101

Err
(1)
BS

0.507 0.0705 0.0703 Err
(1)
BS

0.540 0.1051 0.1118
ErrBSCV×n 0.355 0.0567 0.1557 ErrBSCV×n 0.205 0.0405 0.2973
ErrBSCV×10 -1.000 0.0000 1.5002 ErrBSCV×10 -1.000 0.0000 1.4999
ErrBSCV×5 0.381 0.0487 0.1283 ErrBSCV×5 0.234 0.0430 0.2697
Err .632∗ 0.408 0.0839 0.1240 Err .632∗ 0.338 0.0461 0.1681
Err .632+∗ 0.442 0.0623 0.0844 Err .632+∗ 0.376 0.0523 0.1345
ErrBS∗ 0.343 0.0613 0.1683 ErrBS∗ 0.247 0.0431 0.2561

Err
(1)
BS
∗ 0.511 0.0729 0.0731 Err

(1)
BS
∗ 0.535 0.0729 0.0803

ErrBSCV×n∗ 0.371 0.0567 0.1406 ErrBSCV×n∗ 0.280 0.0463 0.2244
ErrBSCV×10∗ -1.000 0.0000 1.5002 ErrBSCV×10∗ -1.000 0.0000 1.4999
ErrBSCV×5∗ 0.391 0.0491 0.1198 ErrBSCV×5∗ 0.297 0.0452 0.2082

3-NN SVM
Estimator Mean STD RMSE Estimator Mean STD RMSE

Err 0.500 0.0035 0.0000 Err 0.500 0.0033 0.0000
err 0.261 0.1017 0.2598 err 0.092 0.0707 0.4144
Err .632 0.439 0.0819 0.1015 Err .632 0.396 0.0692 0.1255
Err .632+ 0.459 0.0660 0.0772 Err .632+ 0.417 0.0562 0.1003
ErrCV×n 0.550 0.1506 0.1576 ErrCV×n 0.653 0.2258 0.2714
ErrCV×10 -1.000 0.0000 1.5001 ErrCV×10 -1.000 0.0000 1.5004
ErrCV×5 0.548 0.1660 0.1719 ErrCV×5 0.638 0.1824 0.2278
ErrBS 0.338 0.0578 0.1723 ErrBS 0.259 0.0514 0.2468

Err
(1)
BS

0.543 0.0807 0.0908 Err
(1)
BS

0.572 0.0891 0.1139
ErrBSCV×n 0.347 0.0580 0.1636 ErrBSCV×n 0.272 0.0506 0.2342
ErrBSCV×10 -1.000 0.0000 1.5001 ErrBSCV×10 -1.000 0.0000 1.5004
ErrBSCV×5 0.370 0.0572 0.1415 ErrBSCV×5 0.299 0.0487 0.2068
Err .632∗ 0.440 0.0704 0.0918 Err .632∗ 0.400 0.0563 0.1155
Err .632+∗ 0.459 0.0526 0.0668 Err .632+∗ 0.412 0.0472 0.1005
ErrBS∗ 0.311 0.0456 0.1939 ErrBS∗ 0.297 0.0494 0.2096

Err
(1)
BS
∗ 0.545 0.0643 0.0779 Err

(1)
BS
∗ 0.578 0.0681 0.1033

ErrBSCV×n∗ 0.337 0.0463 0.1699 ErrBSCV×n∗ 0.330 0.0474 0.1772
ErrBSCV×10∗ -1.000 0.0000 1.5001 ErrBSCV×10∗ -1.000 0.0000 1.5004
ErrBSCV×5∗ 0.357 0.0434 0.1498 ErrBSCV×5∗ 0.351 0.0435 0.1558
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Table 10: Syntehtic data set 3, n = 20, d = 2, 200 trials.
LDF 1-NN

Estimator Mean STD RMSE Estimator Mean STD RMSE

Err 0.350 0.0504 0.0000 Err 0.414 0.0422 0.0000
err 0.289 0.0953 0.1138 err 0.000 0.0000 0.4158
Err .632 0.348 0.1019 0.1010 Err .632 0.279 0.0711 0.1477
Err .632+ 0.356 0.1020 0.1024 Err .632+ 0.354 0.0834 0.1002
ErrCV×n 0.349 0.1151 0.1117 ErrCV×n 0.437 0.1387 0.1298
ErrCV×10 0.350 0.1218 0.1193 ErrCV×10 0.440 0.1433 0.1347
ErrCV×5 0.359 0.1235 0.1212 ErrCV×5 0.441 0.1461 0.1393
ErrBS 0.313 0.0910 0.0996 ErrBS 0.158 0.0403 0.2589

Err
(1)
BS

0.382 0.1100 0.1126 Err
(1)
BS

0.442 0.1125 0.1021
ErrBSCV×n 0.314 0.0914 0.0997 ErrBSCV×n 0.167 0.0433 0.2503
ErrBSCV×10 0.316 0.0910 0.0990 ErrBSCV×10 0.176 0.0448 0.2415
ErrBSCV×5 0.320 0.0896 0.0965 ErrBSCV×5 0.196 0.0490 0.2222
Err .632∗ 0.354 0.0992 0.0988 Err .632∗ 0.289 0.0547 0.1336
Err .632+∗ 0.364 0.0991 0.1009 Err .632+∗ 0.364 0.0715 0.0913
ErrBS∗ 0.322 0.0900 0.0953 ErrBS∗ 0.339 0.0703 0.0954

Err
(1)
BS
∗ 0.391 0.1061 0.1127 Err

(1)
BS
∗ 0.457 0.0866 0.0840

ErrBSCV×n∗ 0.345 0.0800 0.0819 ErrBSCV×n∗ 0.358 0.0653 0.0772
ErrBSCV×10∗ 0.350 0.0794 0.0813 ErrBSCV×10∗ 0.363 0.0646 0.0737
ErrBSCV×5∗ 0.350 0.0794 0.0813 ErrBSCV×5∗ 0.363 0.0646 0.0737

3-NN SVM
Estimator Mean STD RMSE Estimator Mean STD RMSE

Err 0.392 0.0514 0.0000 Err 0.356 0.0492 0.0000
err 0.211 0.0811 0.2010 err 0.248 0.0880 0.1406
Err .632 0.359 0.0889 0.0887 Err .632 0.377 0.1054 0.1055
Err .632+ 0.391 0.0848 0.0816 Err .632+ 0.402 0.1036 0.1133
ErrCV×n 0.426 0.1452 0.1317 ErrCV×n 0.446 0.2273 0.2330
ErrCV×10 0.427 0.1482 0.1354 ErrCV×10 0.450 0.1997 0.2096
ErrCV×5 0.442 0.1561 0.1485 ErrCV×5 0.448 0.1913 0.2044
ErrBS 0.277 0.0657 0.1316 ErrBS 0.320 0.0886 0.0959

Err
(1)
BS

0.444 0.1031 0.1041 Err
(1)
BS

0.452 0.1208 0.1512
ErrBSCV×n 0.284 0.0684 0.1264 ErrBSCV×n 0.326 0.0902 0.0949
ErrBSCV×10 0.291 0.0695 0.1205 ErrBSCV×10 0.330 0.0891 0.0926
ErrBSCV×5 0.307 0.0704 0.1076 ErrBSCV×5 0.339 0.0874 0.0889
Err .632∗ 0.367 0.0818 0.0804 Err .632∗ 0.390 0.0963 0.1019
Err .632+∗ 0.400 0.0775 0.0779 Err .632+∗ 0.417 0.0910 0.1109
ErrBS∗ 0.331 0.0735 0.0906 ErrBS∗ 0.340 0.0825 0.0858

Err
(1)
BS
∗ 0.457 0.0947 0.1053 Err

(1)
BS
∗ 0.472 0.1072 0.1571

ErrBSCV×n∗ 0.353 0.0694 0.0741 ErrBSCV×n∗ 0.356 0.0756 0.0787
ErrBSCV×10∗ 0.361 0.0679 0.0689 ErrBSCV×10∗ 0.368 0.0724 0.0776
ErrBSCV×5∗ 0.361 0.0679 0.0689 ErrBSCV×5∗ 0.368 0.0724 0.0776
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Table 11: Syntehtic data set 4, n = 20, d = 2, 200 trials.
LDF 1-NN

Estimator Mean STD RMSE Estimator Mean STD RMSE

Err 0.501 0.0031 0.0000 Err 0.500 0.0036 0.0000
err 0.394 0.0874 0.1384 err 0.000 0.0000 0.5005
Err .632 0.462 0.0902 0.0983 Err .632 0.337 0.0635 0.1757
Err .632+ 0.468 0.0860 0.0924 Err .632+ 0.376 0.0544 0.1359
ErrCV×n 0.487 0.1316 0.1320 ErrCV×n 0.538 0.1352 0.1407
ErrCV×10 0.496 0.1423 0.1423 ErrCV×10 0.536 0.1398 0.1445
ErrCV×5 0.502 0.1423 0.1424 ErrCV×5 0.537 0.1266 0.1322
ErrBS 0.405 0.0715 0.1198 ErrBS 0.191 0.0363 0.3119

Err
(1)
BS

0.502 0.0969 0.0972 Err
(1)
BS

0.533 0.1005 0.1061
ErrBSCV×n 0.404 0.0710 0.1200 ErrBSCV×n 0.202 0.0380 0.3010
ErrBSCV×10 0.406 0.0709 0.1184 ErrBSCV×10 0.213 0.0393 0.2907
ErrBSCV×5 0.408 0.0689 0.1157 ErrBSCV×5 0.234 0.0414 0.2699
Err .632∗ 0.464 0.0828 0.0909 Err .632∗ 0.333 0.0361 0.1711
Err .632+∗ 0.471 0.0771 0.0828 Err .632+∗ 0.376 0.0437 0.1323
ErrBS∗ 0.413 0.0678 0.1111 ErrBS∗ 0.398 0.0519 0.1147

Err
(1)
BS
∗ 0.505 0.0848 0.0852 Err

(1)
BS
∗ 0.527 0.0572 0.0633

ErrBSCV×n∗ 0.423 0.0604 0.0984 ErrBSCV×n∗ 0.408 0.0480 0.1043
ErrBSCV×10∗ 0.427 0.0580 0.0941 ErrBSCV×10∗ 0.413 0.0473 0.0998
ErrBSCV×5∗ 0.427 0.0580 0.0941 ErrBSCV×5∗ 0.413 0.0473 0.0998

3-NN SVM
Estimator Mean STD RMSE Estimator Mean STD RMSE

Err 0.500 0.0033 0.0000 Err 0.500 0.0033 0.0000
err 0.257 0.0880 0.2587 err 0.321 0.0747 0.1943
Err .632 0.432 0.0803 0.1058 Err .632 0.474 0.0726 0.0777
Err .632+ 0.457 0.0622 0.0763 Err .632+ 0.484 0.0614 0.0641
ErrCV×n 0.529 0.1517 0.1551 ErrCV×n 0.727 0.2502 0.3375
ErrCV×10 0.535 0.1532 0.1577 ErrCV×10 0.650 0.1781 0.2330
ErrCV×5 0.545 0.1416 0.1491 ErrCV×5 0.622 0.1491 0.1928
ErrBS 0.333 0.0563 0.1758 ErrBS 0.403 0.0634 0.1165

Err
(1)
BS

0.534 0.0823 0.0897 Err
(1)
BS

0.563 0.0793 0.1020
ErrBSCV×n 0.341 0.0580 0.1694 ErrBSCV×n 0.406 0.0637 0.1142
ErrBSCV×10 0.349 0.0577 0.1615 ErrBSCV×10 0.408 0.0625 0.1115
ErrBSCV×5 0.366 0.0565 0.1455 ErrBSCV×5 0.416 0.0584 0.1033
Err .632∗ 0.433 0.0655 0.0935 Err .632∗ 0.475 0.0628 0.0681
Err .632+∗ 0.458 0.0457 0.0625 Err .632+∗ 0.485 0.0511 0.0537
ErrBS∗ 0.395 0.0524 0.1170 ErrBS∗ 0.413 0.0552 0.1032

Err
(1)
BS
∗ 0.537 0.0625 0.0732 Err

(1)
BS
∗ 0.565 0.0642 0.0914

ErrBSCV×n∗ 0.411 0.0503 0.1020 ErrBSCV×n∗ 0.420 0.0528 0.0967
ErrBSCV×10∗ 0.419 0.0478 0.0944 ErrBSCV×10∗ 0.429 0.0488 0.0866
ErrBSCV×5∗ 0.419 0.0478 0.0944 ErrBSCV×5∗ 0.429 0.0488 0.0866
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Table 12: Syntehtic data set 5, n = 100, d = 10, 50 trials.
LDF 1-NN

Estimator Mean STD RMSE Estimator Mean STD RMSE

Err 0.018 0.0044 0.0000 Err 0.022 0.0020 0.0000
err 0.000 0.0000 0.0187 err 0.000 0.0000 0.0222
Err .632 0.008 0.0076 0.0147 Err .632 0.009 0.0063 0.0155
Err .632+ 0.009 0.0078 0.0147 Err .632+ 0.009 0.0064 0.0155
ErrCV×n 0.007 0.0086 0.0159 ErrCV×n 0.009 0.0087 0.0164
ErrCV×10 0.008 0.0100 0.0161 ErrCV×10 0.010 0.0095 0.0161
ErrCV×5 0.007 0.0096 0.0161 ErrCV×5 0.011 0.0099 0.0161
ErrBS 0.010 0.0105 0.0159 ErrBS 0.005 0.0037 0.0179

Err
(1)
BS

0.013 0.0121 0.0160 Err
(1)
BS

0.014 0.0099 0.0141
ErrBSCV×n 0.010 0.0103 0.0157 ErrBSCV×n 0.005 0.0038 0.0179
ErrBSCV×10 0.013 0.0118 0.0159 ErrBSCV×10 0.006 0.0042 0.0173
ErrBSCV×5 0.021 0.0161 0.0196 ErrBSCV×5 0.007 0.0045 0.0166
Err .632∗ 0.007 0.0064 0.0148 Err .632∗ 0.010 0.0059 0.0141
Err .632+∗ 0.007 0.0065 0.0148 Err .632+∗ 0.010 0.0061 0.0141
ErrBS∗ 0.006 0.0064 0.0158 ErrBS∗ 0.005 0.0036 0.0174

Err
(1)
BS
∗ 0.011 0.0101 0.0150 Err

(1)
BS
∗ 0.016 0.0094 0.0123

ErrBSCV×n∗ 0.009 0.0084 0.0148 ErrBSCV×n∗ 0.008 0.0040 0.0149
ErrBSCV×10∗ 0.016 0.0126 0.0159 ErrBSCV×10∗ 0.010 0.0047 0.0132
ErrBSCV×5∗ 0.016 0.0126 0.0159 ErrBSCV×5∗ 0.010 0.0047 0.0132

3-NN SVM
Estimator Mean STD RMSE Estimator Mean STD RMSE

Err 0.027 0.0024 0.0000 Err 0.004 0.0008 0.0000
err 0.009 0.0087 0.0206 err 0.000 0.0000 0.0037
Err .632 0.014 0.0096 0.0171 Err .632 0.001 0.0018 0.0033
Err .632+ 0.014 0.0097 0.0171 Err .632+ 0.001 0.0018 0.0033
ErrCV×n 0.014 0.0121 0.0189 ErrCV×n 0.000 0.0000 0.0037
ErrCV×10 0.015 0.0124 0.0186 ErrCV×10 0.000 0.0019 0.0038
ErrCV×5 0.016 0.0135 0.0182 ErrCV×5 0.000 0.0019 0.0039
ErrBS 0.011 0.0072 0.0186 ErrBS 0.001 0.0010 0.0033

Err
(1)
BS

0.017 0.0106 0.0156 Err
(1)
BS

0.002 0.0029 0.0037
ErrBSCV×n 0.011 0.0073 0.0188 ErrBSCV×n 0.001 0.0010 0.0033
ErrBSCV×10 0.011 0.0076 0.0182 ErrBSCV×10 0.001 0.0013 0.0032
ErrBSCV×5 0.012 0.0079 0.0175 ErrBSCV×5 0.001 0.0015 0.0033
Err .632∗ 0.015 0.0094 0.0162 Err .632∗ 0.001 0.0014 0.0033
Err .632+∗ 0.015 0.0094 0.0162 Err .632+∗ 0.001 0.0014 0.0033
ErrBS∗ 0.010 0.0067 0.0187 ErrBS∗ 0.001 0.0008 0.0034

Err
(1)
BS
∗ 0.018 0.0106 0.0147 Err

(1)
BS
∗ 0.002 0.0023 0.0035

ErrBSCV×n∗ 0.014 0.0064 0.0151 ErrBSCV×n∗ 0.002 0.0018 0.0029
ErrBSCV×10∗ 0.017 0.0073 0.0130 ErrBSCV×10∗ 0.003 0.0023 0.0030
ErrBSCV×5∗ 0.017 0.0073 0.0130 ErrBSCV×5∗ 0.003 0.0023 0.0030
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A.2 Real data sets from UCI repository

Methodology of the simulation is described in section 8. Table 3 contains description of the data sets.

In addition to the estimators tested on dynthetic data sets, repeated cross-validation was included

in the study for UCI data.
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Table 13: Breast Cancer , n = 36, d = 9, 150 trials.
1-NN 3-NN

Estimator Mean STD RMSE Estimator Mean STD RMSE

Err 0.052 0.0189 0.0000 Err 0.045 0.0116 0.0000
err 0.000 0.0000 0.0553 err 0.029 0.0250 0.0321
Err .632 0.035 0.0255 0.0271 Err .632 0.046 0.0298 0.0303
Err .632+ 0.038 0.0289 0.0275 Err .632+ 0.047 0.0303 0.0307
ErrCV×n 0.052 0.0445 0.0383 ErrCV×n 0.046 0.0346 0.0344
ErrCV×10 0.055 0.0459 0.0389 ErrCV×10 0.047 0.0343 0.0334
ErrCV×5 0.053 0.0449 0.0388 ErrCV×5 0.048 0.0354 0.0353
ErrBS 0.020 0.0146 0.0354 ErrBS 0.036 0.0234 0.0259

Err
(1)
BS

0.056 0.0404 0.0336 Err
(1)
BS

0.056 0.0347 0.0360
ErrBSCV×n 0.021 0.0154 0.0355 ErrBSCV×n 0.037 0.0234 0.0260
ErrBSCV×10 0.023 0.0166 0.0340 ErrBSCV×10 0.038 0.0236 0.0257
ErrBSCV×5 0.025 0.0177 0.0320 ErrBSCV×5 0.040 0.0243 0.0256
Err .632∗ 0.033 0.0232 0.0272 Err .632∗ 0.044 0.0287 0.0295
Err .632+∗ 0.036 0.0259 0.0269 Err .632+∗ 0.045 0.0291 0.0297
ErrBS∗ 0.019 0.0134 0.0369 ErrBS∗ 0.033 0.0211 0.0256

Err
(1)
BS
∗ 0.053 0.0367 0.0303 Err

(1)
BS
∗ 0.053 0.0330 0.0339

ErrBSCV×n∗ 0.020 0.0142 0.0361 ErrBSCV×n∗ 0.033 0.0214 0.0255
ErrBSCV×10∗ 0.024 0.0166 0.0329 ErrBSCV×10∗ 0.037 0.0225 0.0248
ErrBSCV×5∗ 0.024 0.0166 0.0329 ErrBSCV×5∗ 0.037 0.0225 0.0248
ErrRCV×n 0.052 0.0451 0.0386 ErrRCV×n 0.046 0.0341 0.0338
ErrRCV×10 0.054 0.0426 0.0358 ErrRCV×10 0.047 0.0323 0.0322
ErrRCV×5 0.053 0.0439 0.0374 ErrRCV×5 0.046 0.0331 0.0328

SVM, linear kernel SVM, RBFkernel
Estimator Mean STD RMSE Estimator Mean STD RMSE

Err 0.040 0.0085 0.0000 Err 0.040 0.0092 0.0000
err 0.022 0.0219 0.0300 err 0.000 0.0000 0.0409
Err .632 0.037 0.0251 0.0273 Err .632 0.028 0.0209 0.0222
Err .632+ 0.037 0.0254 0.0276 Err .632+ 0.029 0.0230 0.0230
ErrCV×n 0.039 0.0286 0.0306 ErrCV×n 0.043 0.0359 0.0341
ErrCV×10 0.040 0.0315 0.0333 ErrCV×10 0.043 0.0363 0.0341
ErrCV×5 0.041 0.0306 0.0323 ErrCV×5 0.044 0.0385 0.0356
ErrBS 0.028 0.0206 0.0259 ErrBS 0.016 0.0120 0.0266

Err
(1)
BS

0.045 0.0290 0.0313 Err
(1)
BS

0.044 0.0331 0.0303
ErrBSCV×n 0.029 0.0207 0.0258 ErrBSCV×n 0.016 0.0126 0.0266
ErrBSCV×10 0.030 0.0209 0.0257 ErrBSCV×10 0.018 0.0135 0.0257
ErrBSCV×5 0.031 0.0213 0.0255 ErrBSCV×5 0.020 0.0152 0.0243
Err .632∗ 0.036 0.0246 0.0269 Err .632∗ 0.027 0.0199 0.0220
Err .632+∗ 0.036 0.0249 0.0271 Err .632+∗ 0.029 0.0217 0.0225
ErrBS∗ 0.027 0.0204 0.0259 ErrBS∗ 0.015 0.0118 0.0269

Err
(1)
BS
∗ 0.044 0.0282 0.0302 Err

(1)
BS
∗ 0.043 0.0315 0.0287

ErrBSCV×n∗ 0.026 0.0196 0.0259 ErrBSCV×n∗ 0.016 0.0126 0.0266
ErrBSCV×10∗ 0.028 0.0203 0.0254 ErrBSCV×10∗ 0.019 0.0146 0.0247
ErrBSCV×5∗ 0.028 0.0203 0.0254 ErrBSCV×5∗ 0.019 0.0146 0.0247
ErrRCV×n 0.038 0.0286 0.0306 ErrRCV×n 0.043 0.0359 0.0341
ErrRCV×10 0.041 0.0279 0.0300 ErrRCV×10 0.043 0.0340 0.0315
ErrRCV×5 0.039 0.0282 0.0301 ErrRCV×5 0.043 0.0351 0.0330
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Table 14: Vehicle, n = 100, d = 18, 100 trials
1-NN 3-NN

Estimator Mean STD RMSE Estimator Mean STD RMSE

Err 0.438 0.0180 0.0000 Err 0.351 0.0215 0.0000
err 0.000 0.0000 0.4387 err 0.094 0.0259 0.2589
Err .632 0.293 0.0273 0.1488 Err .632 0.283 0.0316 0.0797
Err .632+ 0.381 0.0460 0.0760 Err .632+ 0.321 0.0384 0.0567
ErrCV×n 0.434 0.0567 0.0603 ErrCV×n 0.350 0.0549 0.0615
ErrCV×10 0.440 0.0557 0.0583 ErrCV×10 0.360 0.0538 0.0619
ErrCV×5 0.445 0.0587 0.0620 ErrCV×5 0.371 0.0505 0.0616
ErrBS 0.170 0.0159 0.2696 ErrBS 0.186 0.0224 0.1683

Err
(1)
BS

0.464 0.0431 0.0537 Err
(1)
BS

0.393 0.0390 0.0648
ErrBSCV×n 0.172 0.0166 0.2673 ErrBSCV×n 0.187 0.0230 0.1670
ErrBSCV×10 0.190 0.0175 0.2493 ErrBSCV×10 0.201 0.0233 0.1541
ErrBSCV×5 0.212 0.0188 0.2279 ErrBSCV×5 0.218 0.0238 0.1376
Err .632∗ 0.330 0.0203 0.1117 Err .632∗ 0.296 0.0274 0.0657
Err .632+∗ 0.445 0.0365 0.0417 Err .632+∗ 0.341 0.0334 0.0438
ErrBS∗ 0.385 0.0298 0.0644 ErrBS∗ 0.279 0.0276 0.0810

Err
(1)
BS
∗ 0.522 0.0321 0.0919 Err

(1)
BS
∗ 0.414 0.0333 0.0767

ErrBSCV×n∗ 0.425 0.0278 0.0355 ErrBSCV×n∗ 0.305 0.0254 0.0575
ErrBSCV×10∗ 0.447 0.0278 0.0338 ErrBSCV×10∗ 0.334 0.0264 0.0399
ErrBSCV×5∗ 0.447 0.0278 0.0338 ErrBSCV×5∗ 0.334 0.0264 0.0399
ErrRCV×n 0.434 0.0568 0.0605 ErrRCV×n 0.350 0.0549 0.0613
ErrRCV×10 0.448 0.0495 0.0542 ErrRCV×10 0.371 0.0447 0.0577
ErrRCV×5 0.440 0.0528 0.0565 ErrRCV×5 0.360 0.0477 0.0567
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Table 15: Pima Indians, n = 60, d = 8, 150 trials
17-NN 3-NN

Estimator Mean STD RMSE Estimator Mean STD RMSE

Err 0.331 0.0161 0.0000 Err 0.294 0.0212 0.0000
err 0.295 0.0403 0.0500 err 0.123 0.0380 0.1768
Err .632 0.321 0.0326 0.0313 Err .632 0.246 0.0471 0.0696
Err .632+ 0.325 0.0312 0.0301 Err .632+ 0.286 0.0596 0.0624
ErrCV×n 0.330 0.0428 0.0421 ErrCV×n 0.293 0.0714 0.0717
ErrCV×10 0.330 0.0356 0.0358 ErrCV×10 0.293 0.0711 0.0709
ErrCV×5 0.337 0.0297 0.0332 ErrCV×5 0.305 0.0776 0.0783
ErrBS 0.301 0.0285 0.0398 ErrBS 0.175 0.0353 0.1256

Err
(1)
BS

0.335 0.0306 0.0299 Err
(1)
BS

0.318 0.0559 0.0629
ErrBSCV×n 0.302 0.0285 0.0389 ErrBSCV×n 0.176 0.0357 0.1246
ErrBSCV×10 0.307 0.0264 0.0341 ErrBSCV×10 0.183 0.0359 0.1181
ErrBSCV×5 0.314 0.0235 0.0284 ErrBSCV×5 0.193 0.0360 0.1093
Err .632∗ 0.324 0.0324 0.0324 Err .632∗ 0.257 0.0452 0.0605
Err .632+∗ 0.329 0.0311 0.0324 Err .632+∗ 0.302 0.0567 0.0584
ErrBS∗ 0.302 0.0303 0.0418 ErrBS∗ 0.222 0.0427 0.0844

Err
(1)
BS
∗ 0.340 0.0334 0.0366 Err

(1)
BS
∗ 0.335 0.0547 0.0695

ErrBSCV×n∗ 0.280 0.0364 0.0616 ErrBSCV×n∗ 0.178 0.0440 0.1261
ErrBSCV×10∗ 0.297 0.0290 0.0446 ErrBSCV×10∗ 0.189 0.0442 0.1160
ErrBSCV×5∗ 0.297 0.0290 0.0446 ErrBSCV×5∗ 0.189 0.0442 0.1160
ErrRCV×n 0.330 0.0428 0.0421 ErrRCV×n 0.293 0.0715 0.0717
ErrRCV×10 0.333 0.0236 0.0250 ErrRCV×10 0.301 0.0617 0.0627
ErrRCV×5 0.331 0.0319 0.0320 ErrRCV×5 0.297 0.0669 0.0671
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