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Abstract at different times, comparing the performance of algo-

rithms at each of several levels of training. Unfortunately,

Three factors are related in analyses of per-
formance curves such as learning curves: the
amount of training, the learning algorithm, and
performance. Often we want to know whether
the algorithm affects performance and whether
the effect of training on performance depends on
the algorithm. Analysis of variance would be an
ideal technique but for carryover effects, which

multiple comparisons can lead to overestimates of the sig-
nificance of results (see Sectign 2) and are inappropriate for
comparing performance curves.

A better approach is to describe differences between algo-
rithms during training in terms of two effects:

Algorithm Effect: Does one algorithm generally achieve
higher performance than another?

violate the assumptions of parametric analysis
of variance and can produce dramatic increases
in Type | errors. We propose a novel, random-
ized version of the two-way analysis of variance
which avoids this problem. In experiments we
analyze Type | errors and the power of our tech-
nigue, using common machine learning datasets.

Interaction Effect: Does the influence of training on per-
formance depend on the algorithm?

Figureg[Jla and 1b illustrate prototypical cases for each ef-
fect. In practice, however, some combination of effects
will occur. In FigureflLc, for instance, both curves start out
with similar slopes, but one of them converges to a lower
asymptote. Figurg 1d shows a case where both curves start
at the same point and achieve similar asymptotic perfor-
mances, but one algorithms learns faster (with respect to
the amount of training) than the other. In this latter case, we
find that both algorithm and interaction effects concentrate

A common task in machine learning is comparative asin the early stages of training, and both effects essentially
sessment of learning methods. Most research on this igjisappear with increasing amount of training.

sue focuses on performance measures such as classification ) ]
accuracy after training, or percentage of games won by 4 his paper presents a method for detecting Algorithm and

game-playing program (e.g. Mitcheil 1997 ch[ 5, Dieuerich.lnteraction' effectsin qurning curves. Actgally, the mgthod
(1998), Rasmussen et al. 1996). However, it is sometime!$ not restricted to learning curves, it applies to any kind of
interesting to compare time series of performance, such aRerformance curves. The method tests two hypotheses:
learning curves. For example, two algorithms might have

comparable asymptotic performance, but we would like to ® The mean performances of two or more algorithms are
test the hypothesis that one achieves this level of perfor-  the same (no Algorithm effect).

mance more quickly than the other.

1 INTRODUCTION

e The relationship between training and performance
Which statistical procedures are appropriate to identify dif- ~ does not depend on Algorithm (no Interaction effect).
ferences between the performance of algorithms over time,

and particularly during training? One obvious approachSuch effects are typically tested wigimalysis of variance

might be to apply the aforementioned methods repeatedlganova). However, the conventional parametsiROVA is
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Figure 1: Some kinds of differences between learning curves. The statistical effects on performance (Algorithm and/or
Interaction effects) are listed for each situation. In aggbe Interaction effect disappears at the later stages of training; in
cased, both effects disappear.

based on several assumptions, of which one, homogen®ne may also ask, “What value 6{s) must | exceed to

ity of covariance, is strongly violated by most time se- be assured that myvalue is less than some threshol@”

ries data. In particular, conventionaNoOvAs on learning  Thisis called theritical valueof ¢ and, obviously, it varies

curves can dramatically overestimate the significance of alwith «.

gorithm effects and underestimate the significance of in-
: ) - .~~~ . One should not compare performance curves by repeatedly

teraction effects. Following some statistical preliminaries

in Section[R, we demonstrate howovA gives incorrect (rf;]g:r;?eé)g;t; on :Pa?n?nur\ﬁzt;ifé%)cog F;?}Tgmpz:fr'
results for learning curves (Sectigh 3) and then introduce BN 9 ; P

. : Son will with some probabilityv assert a difference in per-
our novel procedure, a randomized versioneDVA (Sec-

. . : formance when in reality there is none — a Type | error.
tion@). The remainder of the paper presents expenmenta} the comparison procedure is appliedtimes, tom pairs
results with conventional and randomizedlova, compar- '

. of points on learning curves, then thatal probability of

ing the power and Type | errors of the methods. Type | error is roughlyl — (1 — a)™. (The probability is

exactlyl — (1 — «)™ if the comparisons are independent,

2  STATISTICAL HYPOTHESIS TESTING but they are not, and the_ir nqn—independence necessitates
the technique developed in this paper.) One can control the
total probability of a Type | error, but only by reducing

This section defines terms and may safely be skipped by \yhich increases the critical values for individual com-

readers familiar with statistical hypothesis testing. parisons — making it less likely that comparisons will find

Hypothesis testing involves these steps: Assertiihy-  differences that actually exist. Said differently, the power

pothesisH,. Decide on a statisti¢. Collect a sample  Of the tests is reduced (se& Cohen 1995 for a discussion of

of sizen and calculatep(s) for the sample. Derive the related issues). Multiple comparisons are not the right tool
probability distributions of all possible values af(i) for ~ for comparing performance curves.

samples of sizen under Hy. These restrictions are im-

portant: S isn’'t the distribution of¢ for any sample, but 3 ANOVA FOR COMPARING

for samples of size that would arise if the null hypoth- PERFORMANCE CURVES

esis were trueS is called thesampling distributiorof ¢.

One may then ask, “What is the probability of obtaining a , )

statistic value ofs(s) or more by chance ifl, were true?”  SUPPOSe we have two learning algorithrisand A, each

The answer, called avalue, is the area o above(s). of which trains_l times on a set ok instances, e.g., in an
Suppose = .01. Should you reject the null hypothesis? [-fold cross validation procedure..Then we haestimates .
There isn't a correct answer to this question, but you can b8 the performance of each algorithm atleach leV?' of train-
assured that if you do rejeéf,, the probability that you do  ing. Put another way, we havelines” LV, Y for

so in error is no greater than RejectingH, when itistrue A, and anothet lines L{*, ..., L!*, where each line is

is called aType | error. Failing to rejectH, when itis false  a list of £ numbers that represent the performance of the
is a Type Il error, and thpowerof a test—the probability algorithm at levelh (1 < h < k) of training, on that par-
that you will rejectH, when it is false—is one minus the ticular fold of the cross validation. A schematic data table

probability of a Type Il error. is shown in Figuré]2, where the axes of the table represent



the factorsTraining and Algorithm Lines may of course performance afterandt + 1 training instances is apt to be
be generated by methods other than cross-validation; fdnigher than the correlation between performance ated
example, they might represent training on several differ+ 4+ 100 instances, so homogeneity of covariance is apt to
ent datasets. The important thing is that the data points ohe violated. The consequence is that the Type | error prob-
a line are not independent. In statistical parlance, they arabilities no longer correspond to the givarlevel (Cohen
repeated measuresd they createarryover effectsmean- 1995 (p. 306)) Keppel 1913, O'Brien and Kaiser 1985).

ing that the performance represented by earlier points on

L2 . goF statistics can represent the effects in Figure 1, nicely,
line influences, or carries over to, later performance.

but carryover effects bias thevalues of the statistics. Can
we salvageaNOvA and F' tests? One common tactic is to
correct statistics to compensate for biases. The following
experiment (and those in S€t. 5) shows that this tactic will
not work. We generated learning curves from three dif-
ferent datasets (Chess, RL, and Tic-Tac-Toe; see the Ap-
pendix). The results (Figufé 3) demonstrate a dramatic in-
crease in Type | error in the case of Algorithm effects, and
a decrease for Interaction effects. The histograms demon-
strate that the frequencies of these errors depend on the
dataset, which implies that one cannot correctAhgtatis-

tics with a simple adjustment. In particular, the Chess and
Tic-Tac-Toe learning curves were generated according the
same procedure, their degrees of freedom are identical, and
yet their mean rejection rates differ dramatically.
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Another way to salvageNOVA is to somehow find the ap-
propriate sampling distributions fdr statistics when ho-
mogeneity of covariance is violated. This would allow us
to control Type | errors precisely. Our method, discussed
in Section[#, yields these sampling distributions, and ac-
curatep values, whether or not homogeneity of covariance
is violated. The procedure is basedrandomization(see,
e.g.,[Cohen 1995, ch. 5). Consider first the null hypothe-
sis thatAlgorithmhas no effect on performance. If it were

Were it not for these carryover effects, analysis of variancéﬂ_‘e’ thenthe lines associat_ed with _algoritlﬂlmin Figure(P
would be an ideal tool to analyze learning curves. Analysigdnt équally well be associated witty, or with any other

of variance tests fomain effectsf factors andnteraction ~ 2/90rithm. Thus, if we randomly redistribute lines among
effectsbetween factors. Each kind of effect is represented?/90rithms, and then calculat€,, in the usual way, we
by anF statistic, which has an expected value of 1.0 undetill derive one value of,; under the null hypothesis that
the null hypothesis of no effect. Formulae for calculaltingAlgor'thmIS md_epfndent of_performan(_:e. For C"’?‘“‘y’ de-
F are straightforward and widely available (e.g.,see Coheffote th|§ St_at'St'CFal ._to remln_d us that it was de_nvgd b-y
1995) and will not be repeated here. The patterns of data iffndomization, that is, shuffling lines, and to distinguish

Figure[l can be discriminated Wy statistics for main and 't rom the sample statistié?,, that was calculated from
interaction effects. the original (unshuffled) data table. If we shuffle the lines

o _ ~again, we will get another, somewhat different value of
Carryover effects make it difficult to specify the sampling F},, and if we shuffle 1000 times we can get a distribu-
distributions of F' statistics. Classical’ distributions are  tjon of 1000 values of this statistic.

derived under some assumptions, and whileests are ro-

bust against departures from most of these, learning curvedY Shuffling lines instead of, say, individual data points
violate an important one: homogeneity of covariance. ToAMong algorithms, we preserve the dependencies among

see what this means, note that we could calculate a correl1® data points on each line. Said differently, we treat a line
tion between the four data points in tHe, ¢, cell of Figure as a unit for the purpose of estimating the distribution qf
@ and the four in thel,, ¢, cell. Under homogeneity of co- F* , sothe degree of dependence among the data on aline

- alg ) .
variance, this correlation would be constant for any pair of'S irelevant. As mentioned above, when homogeneity of
cells Ay, t; and Ay, t;. However, the correlation between

A
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Figure 2: Data table setup for randomizedova. This
example shows = 4 learning curves per algorithm.

covariance is violated, comparitfg,, to a conventional’



Initialize ¢ = 0. Then do 1000 times:
1. Generate a sdt of learning curves using C4.5.

2. PartitionL randomly intoL; and L, representing two different imaginary algorithms,
with |Ly| = |L| = £1.

3. Perform conventionaiNOVA on these data, obtaining the probabifitthat it is incor-
rect to reject the null hypothesis that there is no effect of Algorithm on performance.

4. If p < 0.05 then increment.
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Figure 3: lllustration of the increase in Type | error resulting from carryover effects. For each dataset, the procedure
given above was executed 100 times and the resultivgiues averaged. Without carryover effects, one would expect

¢ = 1000 = 50. The histograms of values show that/, was rejected much more frequently, which demonstrates the
inappropriateness of the conventiomalova for comparison of learning curves. See the Appendix for details about the
datasets used.

distribution will underestimate, that is, it will makeF,, ingf] Note thatt and thet;, (1 < h < k) are the same for all
look significant at a given level ak when it is not. The algorithms, but, the number of learning curves generated
distribution of F*,  protects against this error, as illustrated by an algorithm, need not be the same for all algorithms.

alg
by Figuref§. We will test two null hypotheses: There is no effect of
Fre is not technically a sampling distribution but it serves Algorithm on performance, and there is no effect Aif
the same purpose, namely, to estimatevalue for a sam- gorithmon the relationship betwe€Fraining and perfor-
ple result, or to find a critical value thaf,;, must exceed mance. These correspond kotests of a main effect and
to rejectH, with some levek of confidence[(Cohen 1995, the interaction effect in a two-way analysis of variance, so

p. 175). we will compute the appropriate statistids,;, and Fi,,

but we will compare them to the randomized sampling dis-
4 THE PROCEDURE IN DETAIL tributions of £, and ;.

The complete procedure can be summarized as follows:
Consider a setd of m learning algorithmsA,, ..., A,,.
For each algorithm4; we have a sef.() of I learning 1. For each algorithmi, collect [ learning curves
curveng’), . L(l) Each learning curvé(’) constitutes ng)a - L( 9 If there arem algorithms, this will pro-

(2) (4) i) —_—

ak- tuPIe(LJ 1 L ) of real numbers, where eaa:lﬁ h 1The “amount of training” is an abstract notion here which

gives the performance score of the learning algorithron  could be given by the number of training instances processed, the
the jth run afterA4; has performed an amoun} of train-  number of trials run, or even by the training time.
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Figure 4: Histograms generated by the same procedure as [jgure Byalues were compared against randomizéed
distributions (500 shuffles) instead of the parametric distributions. In fact, the mean rejection rates of around 50 correspond
to the target significance level of = 0.05. This is also true for the corresponding histograms for the Interaction effect
(not shown).

duce a data table like the one in Figlire 2. 5 EXPERIMENTAL RESULTS

2. Run a conventional two-way analysis of variance onin Section[B we illustrated the increase in Type | error
this data table to obtain sample statistiGs, andFi.;.  caused by comparing’ statistics to standard distribu-
tions. This section provides a more detailed account of this
phenomenon. Both Algorithm and Interaction effects are
analyzed on the Chess dataset (see Appendix). The fol-

3. Generate the sampling distributioR§, and £,

int*

Throw them x [ learning curves into a“poolP. |oying section discusses the probability of Type | error,
Doi = 1...z times (wherez is large, e.g., and Sectiorf 5]2 compares the power of the conventional
1000): and randomizedNoOVAS. In all cases we use = 2 sets

(@) ShuffleP and reassign each of thel learn-  of learning curves. Note that our method applies to any
ing curves to them algorithm categories ™m = 2.
(rows in the data table) such that each row
containsl curves. ShufflingP enforces the 5.1 TYPEI|IERROR MEASUREMENTS

null hypothesis of no association between
performance and algorithm. As shown in Sectiofl 3, the standaddistributions tend to

(b) Run a conventional two-way analysis of vari- overegtimate the signifigance of Algorithm effects, but un-
ance on the resulting data table and recordderestimate the Interaction effects. We expected the overes-
F*  andF*. . timations based on previously published results (€.9.,|Kep-
alg:d e pel 1973, p. 464) but the underestimations were a surprise
4. Find the critical values in the distributiorfg;, and and we do not have a satisfactory explanation for this phe-
F* If o= .05andz = 1000 then the critical value Nomenon. In one sense, we do not care why the standard
inmetachsorteddistribution is the 950th, because 5% of £~ distributions detect Interaction effects less often than ex-
the distribution lies above this value. In general, theP€cted, because we have a method to construct caftect
distributions. Yet we were curious. To shed some light on
this issue, we examined the frequency of Type | errors for
Interaction and Algorithm effects, for conventiomalova
and our method, in a variety of conditions.

critical value is thex100th quantile.
5. If F,, exceeds the critical value for the}, distri-
bution, reject the null hypothesis thatgorithm does
not affect performance. Similarly ifi,; exceeds the Recall that Type | error rates are the frequencies with which
critical value for theF?;, distribution, reject the null  the null hypothesis is rejected when it is true, i.e., when
hypothesis of no interaction effect. there is no effect. In Sectiofl 3 we enforced the null hy-
pothesis by splitting a set of learning curves generated by
6. Thep value for each hypothesis is derived from the gne algorithm into two groups, calling one group “algo-
rank of the closest value in the sorted sampling dis-ithm A the other “algorithm B,” then testing for an Al-
tribution. For example, if7,1; = 10.3 and the closest  gorithm effect and an Interaction effect. Because the two
value inF:lg is 10.2, and if the rank of this value is 972 groups were generated by one a|gorithm, we expected nei-
out of 1000, therp < (1000 — 972)/1000 = .028. ther effect; that is, we expected Type | error ratesioin



the following experiments we enforce the null hypothesisof o = 0.05. The conventional method, however, tends to
in a slightly different way. First we generated a deof assert an Algorithm effect too often (increase in Type | er-
learning curves with C4.5, then to each curve we appliedor probability). In contrast, Interaction effects are mostly
a transformation, yielding another set The transforma- detected less often than the expected 5%.

tion induced an Algorithm effect or an Interaction effect or Modification M, is a dramatic case: This modification did

both. In other words, the mean curves foand L corre- not introduce an Algorithm effect, and yet such an effect
spond to the pairs of curves in Figuie 1. Then, to enforce 9 ' Y

the null hypothesis, we shuffled the curvesiinand L. was often detected by the conventiomalova at a fre-

Whereas the earlier procedure enforced the null hypothesi uency mvgr_sely pr_oportlonal o the mo<_j|f|cat|on fac.tor
A L . : . The madification introduced an Interaction effect which
by randomly dividing a set of statistically-identical learn-

ing curves, this procedure is more natural in starting with, a3 then shuffled away, enforcing the null hypothesis of no

two sets of curvesi( and L’) thatare different, then shuf- interaction, yet the frequency W'th. which conventionsi-
. . OVA detected Interaction effects increases withWe do
fling them. Moreover, we have tight control over the degree

of difference betweert, and L’ because we transform the not know why, a}nd thes_,e experiments fail to explain why
Type | errors for interaction effects are lower than expected,
former to get the latter.

although the dependence @ris intriguing.
We now describe this procedure in detail. The following
steps compute the numberof rejections of Hy during
1000 analyses of variance, starting from a Bedf learn-
ing curves:

The magnitude of these misjudgments can be quite dra-
matic (up to a factor of ten in these examples), but depends
on the type of the effect and the modification facfoBe-
cause of these dependencies, we think it is not possible to
correct the standar# statistics to control Type | errors pre-
cisely. No matter: Our randomizexNOVA produces the
expected Type | errors.

Initialize ceconv = Crana = 0. Then do 1000 times:

1. Construct’ by modifying each curve fronh accord-
ing to one of the cases given in Figuie 1. The degree
of modification is controlled by a factof. We will 5.2 POWER MEASUREMENTS
denote this operation by’ = M, (L, f) for casea in

Figure[L, and likewise for casésc, d. Whereas Type | errors involve detecting effects that don’t

exist, Type Il errors involve failing to detect errors that do
2. PartitionLU L' randomly intoL; and Lo, with |L;| = exist. Thepowerof a test is one minus the Type Il error
|La| = 20. rate, that is, the probability of detecting a true effect. To
measure the power of both conventional and randomized
versions ofANOvVA, we employed the same modification
strategy as in the previous section. Here, howekesnd

3. Perform conventionadNOVA on these data to obtain
the F' statistic for the tested effect.

4. CompareF’ to the appropria‘[e conventional distri- L are not shuffled. In other Wordﬂ, andL/ giVe us con-
bution and read off the probability..., that it is in-  trolled Algorithm and Interaction effects. The following
correct to reject,. procedure measures the power of bathovas to detect

. ) o these effects:
5. Generate a randomized sampling distributiGhus-

ing 400 shuffles as described in Sectipn 4 ifém 3, and 1

read offpr.. ConstructLy = M,(L1,f), wherez is one of

ay...,d.
6. If peonv < a then incrementq,y .

If peana < o then increment, .. 2. Generate a randomized sampling distributioh as

described in Sectiofi 4 itefi 3, using 500 shuffles of

This procedure was performed with respect to Algorithm 2 x 10 learning curves each.

and Interaction effects, and for 10 different valuesfof 3.
For each of these cases, thealues resulting from 10 such

runs were averaged to yield a data point shown in Figure 5. 4. Do 100 times:
The effect of the modification factof on the shape of a

Ceonv = Crand = 0.

(a) Randomly draw a sek; of 10 unique curves

curve is also illustrated in the figure. Details on the four from L.
modification procedures are given in the Appendix. Randomly draw a seL), of 10 unique curves
As expected, the randomizedNovAa always achieves from L.

Type | error probabilities near the target significance level (b) Perform conventionalNOvA and obtainf".
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Figure 5: Effects asserted by the conventional and randomizeda methods. Each row shows one of the modification
casesi—d from Figure[ll. The left column illustrates the effect of the modification for different valugg pf= 0 means no
modification). The center and right columns plot the number of times (of 1000) the conventional and randomized analyses
asserted an Algorithm or Interaction effectat 0.05.



(c) CompareF' to the parametri@ distribution and
obtainpeony .
CompareF to the randomized®* distribution
and obtairnp,ang.

(d) If peony < a then increment oy, .
If prana < « thenincrement, . nq.

Divide c¢ony and cang by 100 to obtain the power
measurements.

This procedure was performed to introduce Algorithm and
Interaction effects for 10 different values 6f For each of
these cases, thevalues resulting from 8 such runs were
averaged to yield a data point shown in FigQre 6.

As in earlier experiments, the conventiomalova usually
overestimates the presence of an Algorithm effect, thus it b
appears more powerful than our randomizedvAa. But

this “power” is illusory, like a watchdog that barks all night
whether or not a prowler is on the premises. Sure, the dog
will bark when there is a prowler — the probability of de-
tecting a prowler is 1.0 — but it is a useless animal. In mod-
ificationsa, ¢ andd, where Algorithm effects are present,
our method detects them handily and at a Type | error rate
of approximately 5%. In cage where there is no algorithm €
effect, our method does not report one, but the conventional
method does. Similarly, for interaction effects, our method
does not detect one in cagebecause none exists, and it is
quite powerful in the other cases, where interaction effects
are present.

6 CONCLUSION d

We have presented a statistical method for comparing sets
of performance curves, such as learning curves, when
points on the curves are not independent, that is, when there
are carryover effects and homogeneity of covariance is vi-

tional analysis of variance produces a sometimes dramatiggndomizedanova methods. Each row shows one of the
surplus of Type | errors for main (algorithm) effects and amogdification cases—d from Figure[lL.. The horizontal axes
shortfall of Type | errors for interaction effects. Becausejngicate the degre¢ to which one of one underlying two
the magnitude of these surpluses and shortfalls depends @@ts of curves was modified with respect to the other (see
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the original dataset, among other things, we do not thinksjgyre[s).

they can be corrected by adjusting conventioRasdtatis-
tics. Instead we show how to construct sampling distribu-
tions for theF' statistics that correct for violations of ho-
mogeneity of covariance. With this method, one can con-
trol error rates precisely. We recommend the method for
its simplicity and hope it will be a helpful addition to the
statistical toolbox of the machine learning community.




Appendix: Sources of Learning Curves References
Chess: Chess Endgame Database (king-rook-vs-king, Aha, D. W. (1991). Incremental constructive induction:

Bain 1994) provided by the UCI Machine Learning An instance-based approach.Rroc. 8th Int. Work-
Repository [VMierz and Murphy 1996). Twenty Learn- shop on Machine Learnindevanston, IL, pp. 117—
ing curves were generated by running the decision tree 121. Morgan Kaufmann.

algorithm C4.5[(Quinfan 1993) in a 20-fold cross val-  gajn M. (1994) Learning Logical Exceptions in Chess
idation procedure. Ph. D. thesis, University of Strathclyde.

We now describe the modification functioms, (L, f) Cohen, P. R. (1995Empirical Methods for Artificial
used in Sectiofi . In the following, refers to the dif- Intelligence Cambridge, Massachusetts: MIT Press.

ference between the performance values of the last and
first points of a given learning curve, ie= Ly — L.

For each learning curvk, each performance valug

is altered according to a given modification case (cf.

Dietterich, T. G. (1998). Approximate statistical tests
for comparing supervised classification learning al-
gorithms.Neural Computation 1@@), 1895-1924.

Keppel, G. (1973)Design and Analysis: A Researcher’s

Figure[l):
. Handbook Englewood Cliffs: Prentice-Hall.
(8) Li=Li+ /4 ? |
Lit fo (@ —it1) dfi<t Merz, C. and P. Murphy (1996). UCI Repository of
(b) L; = { - £(2 k) if i £ machine learning databases. http://www.ics.uci.edu/
L ! ‘22 ~mlearn/MLRepository.html.

_ L;—
© Li=Li+/ 100 Hi-1) Mitchell, T. M. (1997). Machine Learning McGraw-

@ L, =L +{f;1901 :Izi Hill.
100 O'Brien, R. G. and M. K. Kaiser (1985). MANOVA

RL: These data were generated by an Al program that em- method for analyzing repeated measures designs:
ployed TD(0) Reinforcement Learning (Sutton 1988) An extensive primerPsychological Bulletin 9(2),
to learn to play Tic-Tac-Toe against a random oppo- 316-333.
nent. The performance score was the cumulative score Quinlan, J. R. (1993)Programs for machine learning
of one hundred test games against a random player, Morgan Kaufmann.
where losses, draws and wins scored -1, 0, and 1 re- .
spectively. Ten learning curves were generated by one Rasmussen, C. E., R. M. Neal, G', Hinton, D. van
training session each. Camp, M Revow, Z. Ghahramani, R. Kus?ra, and
R. Tibshirani (1996)The DELVE ManualUniver-
Tic-Tac-Toe: Tic-Tac-Toe Endgame Database (Aha 1991) sity of Toronto, Dept. of Computer Science. http://
provided by the UCI Machine Learning Repository. www.cs.utoronto.catdelve.

Learning curves were generated as with the Chess Sutton, R. S. (1988). Learning to predict by the methods
dataset. of temporal differencesvlachine Learning 39-44.
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