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Abstract. Multiple comparison methods (MCMs) are used to investigate differences between pairs
of population means or, more generally, between subsets of population means using sam-
ple data. Although several such methods are commonly available in statistical software
packages, users may be poorly informed about the appropriate method(s) to use and/or
the correct way to interpret the results. This paper classifies the MCMs and presents
the important methods for each class. Both simulated and real data are used to compare
methods, and emphasis is placed on correct application and interpretation. We include
suggestions for choosing the best method.

Mathematica programs developed by the authors are used to compare MCMs. By tak-
ing advantage of Mathematica’s notebook structure, an interested student can use these
programs to explore the subject more deeply. The programs and examples used in the
article are available at http://www.cs.gasou.edu/faculty/rafter/MCMM/.
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1. Introduction. A common problem in the sciences and industry is to compare
several treatments to determine which, if any, produce a superior outcome. For ex-
ample, suppose a manufacturer wants to examine the effect on sales due to package
design. A reasonable way to proceed is to select a group of stores with comparable
sales volumes and randomly and independently assign each store to carry one of the
package designs to be tested. Assume several stores carry each package design and
conditions that could affect sales, such as price, shelf space, and promotional efforts,
are the same for all stores [18].

When the data gathering is finished, it may turn out that one package design is
clearly superior to the others. In this case there is no need for statistical analysis of
the data. On the other hand, the average or mean sales for each design may be close
enough that it is not easy to decide whether their differences are real or are due to
the inherent variation in sales among the stores. A common method for investigating
such differences is called analysis of variance, often abbreviated to ANOVA.
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To make things more precise, assume that there are n stores, there are k ≥ 3
package designs, and package design i is assigned to ni stores, where

∑k
i=1 ni = n.

Further, let µi be the unknown mean sales that would result if package design i is
chosen. Then we can formulate a statistical hypothesis test to look for differences
among these (population) means using the sample data from the n stores. The null
hypothesis is

(1.1) H0 : µ1 = µ2 = · · · = µk,

which represents the assertion that all of the means (treatments) are the same. In our
example, H0 states that the package designs have the same impact on sales. We will
call it the overall null hypothesis. When the researcher’s interest is in whether there
are differences among the (population) means, the alternative hypothesis is

(1.2) Ha : not all means are equal.

The statistical technique used in this case is known as single-factor ANOVA. It is also
called an F -test, because the calculation results in a number (called, in general, a
test statistic) denoted by F . Based on the value of F , the decision is made to either
reject or not reject the overall null hypothesis. When the decision is to reject the null
hypothesis, the inference made is that there is some difference among the population
means. Multiple comparison methods (MCMs) are designed to investigate differences
between specific pairs of means or linear combinations of means. This provides the
information that is of most use to the researcher.

1.1. Per-Comparison Approach. One possible approach to the multiple compar-
ison problem is to make each comparison independently using a suitable statistical
procedure. For example, a statistical hypothesis test could be used to compare each
pair of means, µi and µj , where the null and alternative hypotheses are of the form

H0 : µi = µj ,

Ha : µi 6= µj .
(1.3)

The usual statistical technique in this case is known as the t-test, so named because
the test statistic (and its probability distribution) is denoted by t. With this test, as
with any hypothesis test, there is a chance of making errors. One possible error is to
reject the null hypothesis, concluding that µi and µj are different, when in fact they
are equal and the null hypothesis is true. The other possible error is to accept the
null hypothesis, concluding that µi and µj are equal, when in fact they are different.
These errors are called Type I error and Type II error, respectively. Any rule for
deciding between H0 and Ha is assessed in terms of probabilities of the two types of
errors. If, for example, the decision is to reject H0, then the probability of a Type
I error should be very small. We denote this probability by the Greek letter α and
define it using the probability operator P , as

(1.4) α = P (reject H0 given H0 is true) .

The quantity α is also called the level of significance. By specifying a level of signifi-
cance (a commonly used value is α = 0.05) for the t-test, the researcher controls the
probability of finding an erroneous difference. When each of several hypothesis tests
is done at the same level of significance α, then α is called the per-comparison level
of significance.
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An alternative way to test for a difference between µi and µj is to calculate a
confidence interval for µi−µj . A confidence interval is formed using a point estimate,
a margin of error, and the formula

(1.5) (point estimate)± (margin of error).

The point estimate is the best guess for the value of µi − µj based on the sample
data. In our example, it would be the difference in mean sales for package designs i
and j. The margin of error reflects the accuracy of the guess based on variability in
the data. It also depends on a confidence coefficient, which is often denoted by 1−α.
The interval is calculated by subtracting the margin of error from the point estimate
to get the lower limit and adding the margin of error to the point estimate to get the
upper limit. A commonly used value for the confidence coefficient is 1 − α = 0.95,
and the interval is called a 95% confidence interval. The confidence coefficient is an
expression of how certain we are that our experimental procedure will result in an
interval that contains µi − µj .

The alternative to the t-test for a difference between µi and µj at level of signifi-
cance α is to calculate the confidence interval for µi − µj with confidence coefficient
1−α. If the interval does not contain zero (thereby ruling out that µi = µj), then the
null hypothesis is rejected and µi and µj are declared different at level of significance
α. For several confidence intervals, each with confidence coefficient 1 − α, the 1 − α
is called the per-comparison confidence coefficient.

The difficulty with the per-comparison approach to multiple comparisons is the
possible inflation of the overall probability of Type I error or (equivalently) the pos-
sible deflation of the overall confidence level. For example, consider two independent
hypothesis tests, each done at level of significance α. Then the probability that nei-
ther has a Type I error is (1−α)2. In other words, the probability of at least one Type
I error is 1− (1−α)2. In general, to test for differences between every pair of k means
would require a total of c = 1

2k(k − 1) t-tests at per-comparison level of significance
α. So the chance of finding at least one erroneous difference is αc = 1− (1−α)c. For
k ≥ 3, not only is αc larger than α, but it approaches 1 as k increases. Practically
speaking, if you insist on performing many pairwise comparisons at per-comparison
level of significance α, you are almost certain to conclude that two of the treatments
are different even though they are not.

1.2. Family. A family is a collection of inferences for which it is meaningful to
take into account some overall measure of errors. For example, the collection of all
pairwise comparisons just discussed is a family, where the overall measure of errors is
the probability of encountering at least one Type I error. This family is an example
of a finite family (containing c elements). A family may also have an infinite number
of members. For example, inferences that incorporate every contrast in the set of all
contrasts of k means would form an infinite family. A contrast is a linear combination
of two or more means where the coefficients sum to zero. They are discussed in more
detail in section 2.3.

In the context of multiple comparisons, the choice of family members depends to
a great extent on the type of research being conducted: confirmatory or exploratory.
In confirmatory research, it is typical to specify a finite number of inferences prior to
the study. These inferences may be unrelated and could be treated separately. For
example, ANOVA can be used to separately test for selected differences. But, if there
is to be some joint measure of the probability of making erroneous decisions, then
these inferences should be considered jointly as a family. In exploratory research,
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the comparisons are selected after looking at the data. In order to account for this
selection, the family must include both the inferences that are actually made and
those that potentially could have been made if suggested by the data. Thus the
family may be infinite. Most research is made up of aspects of both approaches, and
the corresponding families include the comparisons that were prespecified as well as
the comparisons that were suggested by the data.

In the package design example, suppose that designs 1 and 2 are in three colors and
designs 3 and 4 are in five colors. Then a finite family could have been prespecified
to include, for example, all pairwise comparisons and a comparison of three colors
versus five colors. The latter comparison would incorporate a contrast to compare a
combination of µ1 and µ2 versus a combination of µ3 and µ4. On the other hand, if
it was decided to compare three colors versus five colors after beginning the analysis,
the family must be the infinite family that contains not only all pairwise comparisons
but all other possible contrasts involving the means.

1.3. Error Rates. The concept of error rate is most appropriately applied to hy-
pothesis testing, where it represents the probability of Type I error or equivalently the
level of significance. As discussed earlier, when a family consists of several hypoth-
esis tests and each hypothesis test is done at the same level of significance α, then
α is the per-comparison error rate (PCER), the probability of incorrectly rejecting
each of the null hypotheses that make up the family. A per-comparison confidence
level is similarly defined. A more pertinent error rate is called the familywise error
rate (FWER) or familywise level of significance. It is the probability of incorrectly
rejecting at least one of the null hypotheses that make up the family. The familywise
confidence coefficient can be similarly defined. It is the chance that the sampling will
result in confidence intervals that simultaneously contain the specified combinations
of the means in the family.

Having specified an FWER, the researcher must be careful to perform a multiple
comparison analysis that guarantees the error rate will be valid under all possible
configurations of the population means. Such an analysis will be said to protect the
FWER. Consider the family of all pairwise comparisons of a set of k means. A multiple
comparison analysis originally proposed by Fisher [11, 16] consists of first doing an
F -test. If the overall null hypothesis (1.1) is rejected, at level of significance α, then
hypothesis tests for differences between pairs of population means are done using
separate t-tests at PCER α. If the overall null hypothesis is not rejected, then the
analysis terminates. This procedure is known as Fisher’s least significant difference
(LSD) test. The familywise level of significance is α only when µ1 = µ2 = · · · = µk.
For any other configuration of the population means (in which they are somehow
different), the familywise level of significance is greater than α. Thus, the LSD test
does not protect the FWER.

A second multiple comparison analysis, also proposed by Fisher [11, 16] and
commonly called the Bonferroni test, consists of performing a t-test for each pair of
means at PCER α/

( 1
2k(k − 1)

)
. Using this test, the familywise level of significance

is at most α for any configuration of the population means. Thus, the Bonferroni test
protects the FWER. This approach to multiple comparisons using the Bonferroni test
illustrates a third type of error rate known as the per-family error rate (PFER). It is
not a probability, as the other error rates are, but represents the expected number of
errors in the family. For example, assuming the overall null hypothesis to be true, if
each of c tests is performed with probability of Type I error α/c, the expected number
of Type I errors is c × (α/c) = α. Thus, when µ1 = µ2 = · · · = µk, the PFER is α.
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For any other configuration of the means, the PFER would be less than α. It is a
straightforward and worthwhile exercise to verify (see [16, p. 8], [20, p. 12]) that

(1.6) PCER ≤ FWER ≤ PFER.

The focus of this article is on the familiar and not so familiar MCMs that protect
the FWER. They are certainly appropriate when a conclusion is reached that requires
the simultaneous correctness of several inferences. For an indication of when strategies
other than protecting the FWER might be appropriate, see Dunnett and Tamhane
[9] or Hochberg and Tamhane [16].

1.4. MCMs. Statistical procedures that are designed to take into account and
control the inflation of the overall probability of Type I error or the deflation of the
overall confidence coefficient are called MCMs. These MCMs can be categorized as
either single-step or stepwise. For single-step methods, each of the inferences is carried
out in a single step without reference to the other inferences in the family. Single-step
MCMs that protect the FWER include the Tukey procedure for equal sample sizes
(i.e., balanced designs) and the Tukey–Kramer procedure for unequal sample sizes
(i.e., unbalanced designs); the Dunnett procedure; the Scheffe procedure; procedures
based on approximations like those of Bonferroni and Šidák (pronounced “shedoc”);
and procedures appropriate when the population variances are not all equal, such as
the C procedure (for Cochran) and the T3 procedure (for Tamhane).

Stepwise procedures make comparisons in a series of steps, where the results on
the current step influence which, if any, comparisons are made on the next step. They
can be divided into two types: step-down and step-up.

A step-down procedure may begin, for example, by testing the overall null hy-
pothesis (1.1) and, if it is rejected, move to the next step. On succeeding steps a null
hypothesis is tested for a subset of means only if they were part of a larger set of
means for which a null hypothesis was rejected during an earlier step. Fisher’s LSD
test is an example of a two-step, step-down procedure. The widely used procedures
known as the Newman–Keuls and the Duncan multiple range tests are examples of
step-down procedures. These three procedures are not recommended, because they
do not protect the FWER. A procedure due to Ryan [19] that was modified first by
Einot and Gabriel [10] and then by Welsch [21] and a procedure due to Peritz are
step-down procedures that do protect the FWER.

A step-up procedure may begin, for example, by testing a pairwise hypothesis
(1.3) and, depending on the results, step up to a hypothesis involving a larger number
of means. At each succeeding step a decision is made to involve more means or to
stop. There are relatively few step-up procedures in the literature, beginning with
one described in 1977 by Welsch [21]. Two more recently proposed procedures are in
papers by Hochberg [15] and Dunnett and Tamhane [9].

1.5. Assumptions. All inferential procedures have associated assumptions to be
satisfied by the data in order to obtain valid results. The MCMs for population means,
as well as the F -test, have the same assumptions.

1. The samples are randomly and independently selected.
2. The populations are normally distributed.
3. The populations all have the same variance.

Because one or more of these assumptions may be violated for a given set of data,
it is important to be aware of how this would impact an inferential procedure. The
insensitivity of a procedure to one or more violations of its underlying assumptions is
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called its robustness. The first assumption is the least likely to be violated, because it
is under the control of the researcher. If violated, neither the MCMs nor the F -test
are robust. Most MCMs seem to be robust under moderate departures from normality
of the underlying populations in that the actual FWER will only be slightly higher
than specified. Some MCMs have been specifically developed to be used when the
population variances are not all equal.

1.6. Author-Written Procedures. The programs used to demonstrate the MCMs
were written by the authors in Mathematica. They are contained in Mathematica
notebooks, which are available on the web at

http://www.cs.gasou.edu/faculty/rafter/MCMM/.
The calculations for the examples in this paper are also contained in Mathematica
notebooks at the web site. For someone who has access to Mathematica but lacks
familiarity, the web site contains a series of eight integrated laboratory exercises that
introduce Mathematica notebooks and demonstrate the use of Mathematica for data
simulation and for statistical data analysis. All of the notebooks were developed using
Mathematica on a Power Macintosh but can be implemented in Mathematica on any
platform.

Mathematica should not be viewed as generally competing with special-purpose
statistical packages, although it can be easily used for a variety of statistical analyses
in the absence of such a package [1]. For the investigation of MCMs, its strength lies
in the notebook structure. For example, the results of several competing MCMs are
easily displayed together; changes are easily made and procedures quickly reexecuted;
new output is easily displayed along with earlier output, or it can replace earlier
output; and simulations are particularly easy to set up.

1.7. Notation. The following notation is used consistently throughout the rest
of the article. The sample means for k groups are denoted by ȳ1, ȳ2, . . . , ȳk, and the
respective sample sizes by n1, n2, . . . , nk. The estimate of the common population
variance (see assumption (3)) is denoted by s2. The symbol ν, which is often called
degrees of freedom, represents the value N − k (i.e., ν = N − k), where N is the total
number of data values for the k groups. The familywise level of significance speci-
fied by the researcher is denoted by α, and the corresponding familywise confidence
coefficient is denoted by 1− α.

Quantiles are important in the calculations for multiple comparisons, so they are
introduced here. Consider first a specific probability distribution, which describes the
variable D. Then, for any α, where 0 < α < 1, the quantile corresponding to α is the
number dα that satisfies

P (D ≤ dα) = 1− α.

For example, d0.05 represents the 95th quantile. When calculating a confidence
interval, the quantile dα corresponding to the confidence coefficient 1 − α is used to
calculate the margin of error. In the formulas that we present in this paper, we use the
convention of including the parameters of the probability distribution as subscripts
along with α in the notation for the quantile.

2. Single-Step Procedures.

2.1. Introduction. The common practice of employing an MCM only after per-
forming an F -test on the overall null hypothesis (1.1) is theoretically unnecessary.
It continues presumably because the ANOVA calculations provide numerical results
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used in the multiple comparison calculations. An experimenter who must reject the
overall null hypothesis before trying one or more of the single-step MCMs is using a
two-step procedure and may miss an important result. A brief discussion of the nega-
tive implications of using such two-step procedures is given in Hochburg and Tamhane
[16, pp. 108–109]. The MCMs discussed in this article are appropriately used without
reference to the F -test.

Using Confidence Intervals. Single-step MCMs are valid to use both for hypoth-
esis testing and to calculate confidence intervals. Consider a set of k means and the
family of all pairwise comparisons containing c = 1

2k(k − 1) hypothesis tests of the
form (1.3). Assuming the familywise level of significance is α, this family is equivalent
to a family of c confidence intervals of the form

(2.1) Lij ≤ µi − µj ≤ Uij ,

where the familywise confidence coefficient is 1 − α. The equivalence lies in the fact
that when the confidence interval contains zero (i.e., 0 lies between Lij and Uij), the
null hypothesis, H0 : µi = µj , would not be rejected, but when the interval does
not contain zero, the null hypothesis would be rejected and µi and µj declared to be
different at familywise level of significance α. In the latter case, there is an advantage
to using a confidence interval, because it provides information about the size and the
direction of the difference. With familywise confidence coefficient 1−α, the difference
µi−µj being between Lij and Uij means that, based on the data, the difference may
be as small as Lij or as large as Uij . Moreover, if Lij is positive, then µi > µj , or if
Uij is negative, then µi < µj .

The hypothesis test of the form (1.3) is known as a two-sided test, because the
form of the alternative hypothesis, Ha, is µi 6= µj . When the form of the alternative
hypothesis is either µi < µj or µi > µj , the test is said to be one-sided. The equiva-
lence of hypothesis testing with confidence intervals does not hold as just described for
one-sided hypothesis tests unless special one-sided confidence intervals are calculated.
These are discussed in section 2.4.

Comparing MCMs. The power of a hypothesis test is a measure of its ability
to identify differences. Because identifying differences is usually the reason for the
analysis, an appropriate hypothesis test with the highest power is preferred. Thus,
to compare among appropriate MCMs, one should look at their ability to identify
differences. When the analysis uses confidence intervals, the MCM having the shortest
intervals is the most powerful.

2.2. Pairwise Comparisons. In this subsection we discuss single-step MCMs for
families of pairwise comparisons. For the MCMs that assume equal population vari-
ances, the choice of the most powerful depends on the number of comparisons in the
family, and there are really only two choices. For the family of all pairwise compar-
isons use the Tukey (or Tukey–Kramer) test. For a family containing some, but not
all, of the pairwise comparisons, use one of, in order of preference, the GT2 procedure,
the Dunn–Šidák test, or the Bonferroni test when it gives shorter confidence intervals
than the Tukey (or Tukey–Kramer) test. Among the MCMs appropriate when not all
population variances are equal, the choice depends on whether the user wants to be
completely certain to protect the FWER and sample size. All of the MCMs discussed
are used for two-sided hypothesis tests.

Tukey Test (Pairs). The Tukey test is also known as both Tukey’s honestly sig-
nificant difference (HSD) test and Tukey’s wholly significant difference (WSD) test.
It is an exact test in that, for the family of all c = 1

2k(k − 1) pairwise comparisons,
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the FWER is exactly α (and the familywise confidence coefficient is exactly 1 − α).
Exact MCMs are rare. The Tukey test has been shown analytically to be optimal in
the sense that, among all procedures that give equal-width confidence intervals for all
pairwise differences with familywise confidence coefficient at least 1 − α, it gives the
shortest intervals [12]. In effect, this says that, if the family consists of all pairwise
comparisons and the Tukey test can be used, it will have shorter confidence intervals
than any of the other single-step MCMs.

Given an FWER of α, the Tukey confidence interval for µi−µj is calculated using
the formula

(2.2) ȳi − ȳj ± qα,ν,k
√
s2

n
,

where qα,ν,k represents the quantile for the Studentized range probability distribution
with parameters ν and k. The margin of error in (2.2) (the quantity to the right of the
± sign) is the same for each pairwise comparison, so the confidence intervals will all
have the same width. It depends on the total number of means k, so it is not affected
by the number of comparisons in the family. The margin of error also depends on the
common sample size, n. The one problem with the Tukey test is that it requires a
balanced design (i.e., n1 = n2 = · · · = nk = n).

Tukey–Kramer Test (Pairs). The Tukey–Kramer test is a modification of the
Tukey test for unbalanced designs. It is not exact but is minimally conservative in
that the actual FWER is often only slightly less than α [7, 14]. The confidence interval
for µi − µj is calculated using the formula

(2.3) ȳi − ȳj ± qα,ν,k

√
1
2
s2

(
1
ni

+
1
nj

)
.

It has been confirmed analytically that, for unbalanced designs, this formula provides
uniformly shorter intervals than any of the other common single-step MCMs [16,
p. 106] for the family of all pairwise comparisons.

Bonferroni Test (Pairs). The Bonferroni test can be used for either balanced or
unbalanced designs. It is not exact, being based on an approximation known as the
first-order Bonferroni inequality. As noted earlier, it is conservative in that the actual
FWER is less than α except when the overall null hypothesis (1.1) is true. For the
family of all pairwise comparisons, it will produce longer confidence intervals than the
Tukey (or Tukey–Kramer) test. Its potential usefulness is in confirmatory research
when a family of selected pairwise comparisons is specified prior to data collection.
Depending on the size of the family, it may give shorter confidence intervals than
the Tukey (or Tukey–Kramer) test. It follows that, if the statistical software for the
Bonferroni test does not permit the user to input a specific set of pairwise comparisons,
it is of no practical use.

Given an FWER of α, the confidence interval for µi − µj is calculated using the
formula

(2.4) ȳi − ȳj ± tα′,ν

√
s2

(
1
ni

+
1
nj

)
,

where α′ = 1
2 (α/c) and c is the number of pairwise comparisons in the family. The

quantile tα′,ν is from Student’s t probability distribution with parameter ν. Thus the
margin of error in (2.4) depends on the number of comparisons.
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Dunn–Šidák Test (Pairs). This test was proposed by Dunn [5] and is based on
an inequality proved by Šidák. Because the inequality is a slight improvement on the
Bonferroni inequality, the confidence intervals will always be a little shorter than those
for the Bonferroni test. If available, the Dunn–Šidák test should always be used in
place of the Bonferroni test. If a statistical software package offers the GT2 procedure,
which was developed by Hochberg based on a further improved inequality also proved
by Šidák, it should be used in place of the Dunn–Šidák test (or the Bonferroni test).
Like the Bonferroni test, the potential usefulness of the GT2 procedure (the Dunn–
Šidák test) is in confirmatory research when a family of selected pairwise comparisons
is specified prior to data collection. Depending on the size of the family, it may give
shorter confidence intervals than the Tukey (or Tukey–Kramer) test. Given an FWER
of α, the Dunn–Šidák confidence interval for µi − µj is calculated using the formula

(2.5) ȳi − ȳj ± tα′,ν

√
s2

(
1
ni

+
1
nj

)
,

where

α′ =
1
2

(
1− (1− α)1/c

)

and c is the number of pairwise comparisons in the family. The quantile tα′,ν is from
Student’s t probability distribution with parameter ν.

Scheffe Test (Pairs). The Scheffe test is discussed in more detail in section 2.2.
It can be used for the family of all pairwise comparisons but will always give longer
confidence intervals than the other tests in this subsection. Given an FWER of α,
the confidence interval for µi − µj is calculated using the formula

(2.6) ȳi − ȳj ±
√

(k − 1)Fα,k−1,ν

√
s2

(
1
ni

+
1
nj

)
,

where the quantile Fα,k−1,ν is from the F probability distribution with parameters
k − 1 and ν.

Example 1 (pairwise comparisons using single-step MCMs). Four samples of sizes
10, 10, 10, and 20, respectively, were simulated using Mathematica. The means of the
populations sampled were 5, 6, 6, and 6, respectively, and the variance was 1 for each
population. Then each of the Tukey–Kramer, the Bonferroni, the Dunn–Šidák, and
the Scheffe single-step MCMs was computed for the family of all pairwise comparisons
using α = 0.05. The Tukey–Kramer test results are reproduced in Table 1.

Based on the simulation used to generate the data, we know that µ1 < µ2 = µ3 =
µ4. The results show that the Tukey–Kramer test is not able to completely describe
this relationship. It does find that µ1 6= µ2 and µ1 6= µ4 at the familywise level of
significance, 0.05 = 5%. The output further shows, with familywise confidence level
0.95 = 95%, that µ1 − µ2 is between −2.75 and −0.11 and that µ1 − µ4 is between
−2.32 and −0.03, from which we can further conclude that µ1 < µ2 and µ1 < µ4.
These are examples of directional decisions. For the single-step MCMs, the chance of
making errors in directional decisions is included in the specified FWER along with
the chance of making errors in decisions concerning differences. That is, the chance
of finding at least one erroneous difference or erroneous direction is α.

The Bonferroni test and the Dunn–Šidák test are only able to show µ1 < µ2, and
the Scheffe test finds no statistically significant differences at the 5% familywise level
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Table 1 Multiple pairwise comparisons using the Tukey–Kramer procedure.

i j ȳi − ȳj Interval Significant difference
1 2 −1.434 −2.752 ≤ µ1 − µ2 ≤ −0.115 Yes
1 3 −0.720 −2.039 ≤ µ1 − µ3 ≤ 0.598 No
2 3 0.713 −0.606 ≤ µ2 − µ3 ≤ 2.032 No
1 4 −1.174 −2.316 ≤ µ1 − µ4 ≤ −0.032 Yes
2 4 0.259 −0.883 ≤ µ2 − µ4 ≤ 1.402 No
3 4 −0.454 −1.596 ≤ µ3 − µ4 ≤ 0.689 No
The familywise confidence level is at least 95%.
The familywise level of significance is at most 5%.

of significance. The relative power of the four MCMs is illustrated by the increasing
length of the confidence intervals for µ1 − µ2: Tukey–Kramer, 2.64; Dunn–Šidák,
2.72; Bonferroni, 2.73; Scheffe, 2.87. The complete set of commands and output for
Example 1 are available at the web site referenced earlier. The commands can be run
repeatedly to generate simulated samples from the populations used here and easily
modified to generate simulated samples from different populations. Although the
pattern of significant differences may change, the lengths of the respective confidence
intervals will always have the same ordering. As suggested by the current simulation,
differences in interval length between GT2 (not shown), Dunn–Šidák, and Bonferroni
MCMs are relatively small.

Procedures for Unequal Variances. There are MCMs that do not require equal
population variances and are appropriate for unbalanced designs. The GH procedure
due to Games and Howell [13] and the C procedure (for Cochran) due to Dunnett
[8] use the Studentized range distribution, where the calculation for the parameter
(known as the degrees of freedom) includes sample variances. The T3 (for Tamhane)
also due to Dunnett [8] uses the Studentized maximum modulus distribution, where
the degrees of freedom calculation includes sample variances. The GH procedure is
sometimes slightly liberal (the actual FWER is higher than the α specified by the
user). In other words, for some data sets, the GH procedure does not protect the
FWER. Simulation studies suggest that this may occur, for example, for unequal
sample sizes and equal population variances. For one such simulation, the actual
FWER was slightly over 0.08 when the user-specified FWER was 0.05. On the other
hand, for some data sets, the GH procedure does protect the FWER but is slightly
conservative (the actual FWER is lower than the α specified by the user). Simulation
studies suggest that this occurs as the population variances diverge. For still other
data sets the GH procedure does protect the FWER at the user-specified value of
α. At least one source recommends that all sample sizes should be six or more when
using the GH procedure.

The two other choices of single-step MCMs that do not require equal population
variances, the C and T3 procedures, always protect the FWER. If a researcher is
concerned that the GH procedure might be slightly liberal for a given data set, then
either the C procedure or the T3 procedure could be used. In this circumstance, the
T3 procedure is more powerful than the C procedure for small sample sizes, with
the opposite being true for large sample sizes. On the other hand, the researcher
may not be concerned about using the GH procedure, either because the population
variances are known to be different or because a slight increase in the actual FWER
is not a problem. In this circumstance, the GH procedure should be used, because it
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is more powerful than both the C and T3 procedures. That is, for any data set, the
GH procedure will always have shorter confidence intervals than both the C and T3
procedures.

2.3. Procedures for Contrasts. A contrast is a linear combination whose co-
efficients sum to zero. For example, consider the sample means ȳ1, ȳ2, ȳ3, and ȳ4.
Because ȳ2 − ȳ4 can be written as

(0) · ȳ1 + (1) · ȳ2 + (0) · ȳ3 + (−1) · ȳ4

and the sum of the coefficients of this linear combination is zero, ȳ2− ȳ4 is a contrast.
Similarly, all pairwise differences in means are contrasts. Contrasts are used to make
more sophisticated comparisons as well. For example, in the package design example,
as suggested earlier, suppose that designs 1 and 2 are in three colors and designs 3
and 4 are in five colors. Then the following null hypothesis may be used to test for
the effect of color:

H0 :
1
2

(µ1 + µ2)− 1
2

(µ3 + µ4) = 0.

The linear combination to the left of the equal sign is a contrast. The alternative
hypothesis is

Ha :
1
2

(µ1 + µ2)− 1
2

(µ3 + µ4) 6= 0,

and a confidence interval is of the form

L ≤ 1
2

(µ1 + µ2)− 1
2

(µ3 + µ4) ≤ U.

If zero is not between L and U , then the null hypothesis is rejected, and we would
conclude that color is a significant factor.

An important analytical result involving contrasts is sometimes not completely
understood. It is that rejection of the overall null hypothesis (1.1) using an F -test at
level of significance α implies that at least one contrast is significant at familywise level
of significance α. This may be misinterpreted as implying that the significant con-
trast(s) is a pairwise difference. In fact, for some data sets the significant contrast(s)
will involve more than two means.

In this subsection we discuss using the single-step MCMs for a family of con-
trasts, not all of which are pairwise. Among the MCMs that assume equal population
variances, the choice of the most powerful depends on the number of contrasts in the
family and on the number of means in the contrasts. Among the MCMs appropriate
when not all population variances are equal, the choice of the most powerful depends
on the number of means in the contrasts and on sample sizes.

Scheffe Test (Contrasts). The Scheffe test is also known both as Scheffe’s fully
significant difference (FSD) test and as Scheffe’s globally significant difference (GSD)
test. It is exact in that, for the (infinite) family involving all contrasts of k means, the
FWER is exactly α. It is also optimal for this family in that, among all simultaneous
confidence procedures with familywise confidence coefficient at least 1 − α, it gives
the shortest intervals on average. The Scheffe test should be used when comparisons
are selected after looking at the data and they include contrasts, not all of which are
pairwise. It should also be considered when a large number of contrasts, not all of
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which are pairwise, is specified prior to collecting the data. When the family only
involves contrasts of at most three means, the extension of the Tukey test, discussed
below, may be more powerful.

Given an FWER of α, the confidence interval for the contrast

(2.7)
k∑

i=1

ciµi

is calculated using the formula

(2.8)
k∑

i=1

ciȳi ±
√

(k − 1)Fα,k−1,ν

√√√√s2
k∑

i=1

ci2

ni
,

where the quantile Fα,k−1,ν is from the F distribution with parameters k − 1 and ν.
The margin of error in (2.8) does not depend on the number of contrasts but does
depend on the number of means in the contrast.

Tukey and Tukey–Kramer Tests (Contrasts). The Tukey and Tukey–Kramer tests
presented in section 2.2 can be generalized to the family of all contrasts of k means.
For the Tukey test, the confidence interval for the contrast (2.7) is calculated using
the formula

(2.9)
k∑

i=1

ciȳi ± qα,ν,k
√

1
n
s2

k∑

i=1

|ci|
2
.

For the Tukey–Kramer test, the confidence interval for the contrast is calculated using
the formula

(2.10)
k∑

i=1

ciȳi ± qα,ν,k
√

1
2
s2

∑k
i=1
∑k
j=1 ci

+cj
−
√

1
ni

+ 1
nj

1
2

∑k
i=1 |ci|

,

where ci
+ = max(ci, 0) and cj

− = −min(cj , 0). The quantile qα,ν,k, is from the
Studentized range distribution with parameters ν and k. For both intervals the margin
of error is not influenced by the number of contrasts. The confidence intervals will be
shorter than Scheffe’s intervals for contrasts involving two means and may be shorter
for contrasts involving three means.

Bonferroni and Dunn–Šidák Test (Contrasts). Both tests are presented in sec-
tion 2.2. They are useful for a confirmatory experiment where a family of contrasts is
specified prior to collecting the data. Given an FWER of α, the Bonferroni confidence
interval for the contrast (2.7) is calculated using the formula

(2.11)
k∑

i=1

ciȳi ± tα′,ν

√√√√s2
k∑

i=1

ci2

ni
,

where α′ = 1
2 (α/c), and the Dunn–Šidák confidence interval for the contrast (2.7) is

also calculated using formula (2.11), where

α′ =
1
2

(
1− (1− α)1/c

)
.



MULTIPLE COMPARISON METHODS FOR MEANS 271

Table 2 Selected multiple comparisons using the Scheffe procedure.

Interval Significant difference
−2.102 ≤ µ1 − µ2 ≤ 0.913 No
−0.482 ≤ −µ3 + µ4 ≤ 2.533 No

0.216 ≤ −µ3 + µ5 ≤ 3.231 Yes
−0.809 ≤ −µ4 + µ5 ≤ 2.206 No

1.374 ≤ − 1
2µ1 − 1

2µ2 + µ3 ≤ 3.985 Yes
2.400 ≤ − 1

2µ1 − 1
2µ2 + µ4 ≤ 5.011 Yes

−0.095 ≤ − 1
2µ3 − 1

2µ4 + µ5 ≤ 2.516 No
2.663 ≤ −µ1 + 1

3µ3 + 1
3µ4 + 1

3µ5 ≤ 5.124 Yes
2.068 ≤ −µ2 + 1

3µ3 + 1
3µ4 + 1

3µ5 ≤ 4.530 Yes
2.623 ≤ − 1

2µ1 − 1
2µ2 + 1

3µ3 + 1
3µ4 + 1

3µ5 ≤ 4.569 Yes
The familywise confidence level is 99%.
The familywise level of significance is 1%.

For both formulas, c is the number of contrasts in the family, and the quantile tα′,ν
is from Student’s t probability distribution with parameter ν. The margin of error in
both cases is influenced by the number of specified contrasts. Thus, for small families,
the confidence intervals may be shorter than for either the Scheffe test or the Tukey
test. The Dunn–Šidák confidence intervals will always be slightly shorter than those
from the Bonferroni test. Whenever the Dunn–Šidák test is available, it should be
used in place of the Bonferroni test.

Example 2 (multiple comparisons with contrasts using single-step MCMs). Five
samples of size 10 were simulated using Mathematica. The means of the popula-
tions sampled were 5, 6, 8, 9, and 10, respectively, and the variance was 1 for each
population. Then each of the Scheffe, the Tukey, the Bonferroni, and the Dunn–
Šidák single-step MCMs was run to test for significance of the contrasts in a family
of contrasts at the 1% familywise level of significance. The Scheffe test results are
reproduced in Table 2. Complete input and output for all of the MCMs in Example
2 are available at the web site given earlier.

The significant differences identified by the Tukey test are identical to those iden-
tified by the Scheffe test. The Bonferroni and Dunn–Šidák tests both identified one
additional significant difference (for the contrast, − 1

2µ3− 1
2µ4 +µ5). Table 3 contains

the lengths of the confidence intervals in this example. Because the Dunn–Šidák test
shows the most differences and has the shortest intervals, it is the most powerful for
this problem. Notice that the Bonferroni intervals are only marginally longer than the
Dunn–Šidák intervals. The Bonferroni test is more popular with textbook authors,
because it is only marginally less powerful and the calculations are easier. Notice that
Tukey intervals are shortest for contrasts involving two means. For contrasts involv-
ing three means, the Scheffe intervals are slightly shorter than the Tukey intervals. In
a different problem, this could be reversed. For contrasts involving more than three
means, Scheffe intervals are shorter than Tukey intervals. The Tukey intervals do not
necessarily have constant length, as they happen to in this example.

Procedures for Unequal Variances. The GH, C, and T3 procedures discussed
in section 2.1 are useful for families of contrasts involving two or three means. For
families including contrasts involving more means, a procedure due to Brown and
Forsythe [3] is often more powerful. It is an extension of the Scheffe procedure. Like
the Scheffe test, it is very conservative for pairwise comparisons.
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Table 3 Length of confidence intervals for each of four single-step MCMs.

Contrast Scheffe Tukey Bonferroni Dunn–Šidák
2 means 3.015 2.688 2.734 2.733
3 means 2.611 2.688 2.368 2.367
4 means 2.462 2.688 2.232 2.231
5 means 1.946 2.688 1.765 1.764

2.4. Many-to-One Comparisons. The common form of many-to-one compar-
isons arises when the means for different experimental treatments are compared to
the mean for a control treatment that is designated prior to data collection. The
family contains k − 1 pairwise comparisons, where the control mean is in each com-
parison. Often, the goal is to identify the experimental treatments with significantly
“better” outcome than the control. This requires a one-sided hypothesis test. If the
goal is to identify treatments with either significantly “better” or significantly “worse”
outcomes, then a two-sided hypothesis test is required.

A second application of many-to-one comparisons arises when the means for dif-
ferent experimental treatments are compared to the mean for the (unknown) “best”
treatment. The MCM for this approach is due in large part to Hsu [17]. When the
problem is to select the best treatment from several being tested, a natural solution is
to choose the treatment with the largest sample mean. But this solution does not take
into account the possibility that a “nonbest” treatment could have the largest sam-
ple mean. The Hsu procedure will identify treatments that are significantly different
from the best treatment. These would be classified as nonbest treatments. Treat-
ments that are not significantly different from the best treatment may be thought of
as close to best. A computer program developed by Gupta and Hsu for this MCM
is called RSMCB (rank and selection and multiple comparisons with the best) and is
included in at least one statistical software package.

Dunnett Test. The Dunnett test [6] is an exact test for the family of many-to-
one comparisons when the control is designated prior to data collection. Because
the control group is of such importance, it should have a larger sample size than the
other groups. The following rule of thumb tends to optimize the procedure. If each
of the k − 1 experimental groups has n values, then the control group should have
approximately n

√
k − 1 values. If the experimental groups have different sample sizes,

the mean sample size is multiplied by
√
k − 1 to decide on a sample size for the control

group. The two-sided test is of the form

H0 : µi = µc,

Ha : µi 6= µc,
(2.12)

where µi is the mean of an experimental population and µc is the mean of the control
population. A significant difference is shown when the confidence interval for µi − µc
does not contain zero. For a lower one-sided test with corresponding alternative
hypothesis Ha : µi − µc < 0, a significant difference is shown when the upper one-
sided confidence limit is less than zero. For an upper one-sided test with corresponding
alternative hypothesis Ha : µi − µc > 0, a significant difference is shown when the
lower one-sided confidence limit is greater than zero.
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Table 4 Multiple pairwise comparisons with a control using the Dunnett procedure.

i c Confidence intervals Significant difference
1 4 µ1 − µ4 ≤ −0.256 Yes
2 4 µ2 − µ4 ≤ 1.178 No
3 4 µ3 − µ4 ≤ 0.465 No
The familywise confidence coefficient is 95%.
The familywise level of significance is 5%.

The two-sided confidence interval for µi − µc is calculated using the formula

(2.13) ȳi − ȳc ± |T |α,k−1,ν,[ρi,j ]

√
s2

(
1
ni

+
1
nc

)
;

the upper one-sided confidence limit is calculated using

(2.14) ȳi − ȳc + Tα,k−1,ν,[ρi,j ]

√
s2

(
1
ni

+
1
nc

)
;

and the lower one-sided confidence limit is calculated using

(2.15) ȳi − ȳc − Tα,k−1,ν,[ρi,j ]

√
s2

(
1
ni

+
1
nc

)
.

Because the comparisons in the family all contain the control mean, the correlation
coefficient for the ith mean versus the control and the jth mean versus the control,
denoted by ρi,j , must be considered for all i 6= j. When the sample sizes are all
equal, ρi,j = 0.5 for all i 6= j, and tables are available for the quantiles |T |α,k−1,ν,[ρi,j ]
and Tα,k−1,ν,[ρi,j ]. When the sample size for the control group is different, but the
experimental groups all have the same sample size, then the correlation coefficients
are constant. The general formula is

ρi,j =
√

ninj
(ni + nc)(nj + nc)

.

In this case, calculation of the quantiles |T |α,k−1,ν,[ρi,j ] and Tα,k−1,ν,[ρi,j ] requires
repeated evaluation of a double integral of a product involving k − 1 terms.

Example 3 (Dunnett test). In Example 1, four samples of sizes 10, 10, 10, and
20, respectively, were simulated. The means of the populations sampled were 5, 6, 6,
and 6, respectively, and the variance was 1 for each population. Assuming that the
fourth sample is from the control population, a one-sided Dunnett test was done for
the family of three pairwise comparisons to determine which of the other populations
has a mean lower than the control mean. The results are reproduced in Table 4.
Complete input and output for Example 3 are available at the web site. We conclude
at the 5% familywise level of significance that µ1 < µ4.

3. Step-Down Procedures. Two well-known step-down procedures are the
Newman–Keuls (sometimes called the Student–Newman–Keuls) test and the Duncan
multiple range test (the most liberal of all MCMs). As they were originally presented
and commonly used, these tests do not protect the FWER. The four procedures pre-
sented in this section do protect the specified FWER.
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There is good reason to consider multiple-step procedures, because they are often
more powerful than their single-step counterparts. However, there are also some
drawbacks that may severely limit their usefulness. First, they can usually only be
used for hypothesis testing. For most of these procedures it is not known how to obtain
corresponding simultaneous confidence intervals. Second, they can only be used for
finite families, and the inferences usually cannot be extended to a larger family than
was initially specified [16]. Third, the impact of directional decisions is not known.
Recall from Example 1 that for single-step MCMs, the chance of making errors in
directional decisions is included in the specified FWER along with the chance of
making errors in decisions concerning differences. For most step-down procedures, it
is not known whether the chance of making errors in directional decisions is similarly
included in the specified FWER. There is the possibility that directional decisions
would increase the actual FWER.

The development of the first two procedures, called the multiple F step-down test
and the multipleQ step-down test, is attributed to various authors, and the procedures
may be called by different names depending on the reference consulted. Initially, Ryan
[19] proposed a modification to the Newman–Keuls procedure to protect the FWER.
The proposal was modified first by Einot and Gabriel [10] and then by Welsch [21]. In
some implementations the multiple F step-down test is named the REGWF procedure,
and the multiple Q step-down test is named the REGWQ procedure.

The procedures begin by testing all k means. If significance is found, then all
subsets consisting of k− 1 means are tested. In general, if a set consisting of p means
is significant, then all of its subsets of size p − 1 are tested. If a set of p means
is not significant, then none of its subsets is tested. All such subsets are assumed
to be nonsignificant. The procedure ultimately identifies the maximal nonsignificant
subsets of the k means, where a set is maximal nonsignificant if it is not significant
and not a proper subset of another nonsignificant set. All of the means that occupy
the same maximal nonsignificant subset are not significantly different, and means
that do not occupy the same maximal nonsignificant subset are significantly different.
Significance or nonsignificance of any subset of the means can be ascertained from the
lists of maximal nonsignificant subsets.

3.1. Multiple F Step-Down Test. To test for significance in a set P consisting of
p means, the test statistic is

FP =
1

(p− 1)s2

(∑

i∈P
niȳ

2
i −

(∑
i∈P ȳi

)2
∑
i∈P ni

)
.

The test is significant at familywise level of significance α if FP ≥ Fαp,p−1,ν , where
the quantile Fαp,p−1,ν is calculated from the F distribution with parameters p−1 and
ν and where

(3.1) αp = 1− (1− α)p/k, 2 ≤ p ≤ k − 2, αk−1 = αk = α.

3.2. Multiple Q Step-Down Test. To test for significance in a set P consisting
of p means when sample sizes are equal, the test statistic is

QP =
max ȳ −min ȳ

s/
√
n

,

where max ȳ and min ȳ are, respectively, the largest and smallest means in P . The test
is significant at familywise level of significance α if QP ≥ qαp,ν,p, where the quantile
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Table 5 Multiple pairwise comparisons using the PeritzQ procedure.

i j |ȳi − ȳj | Significant difference
3 7 202 Yes
1 7 265 Yes
1 6 222 Yes
The maximal nonsignificant subsets are
{{1,1,1,1,1,0,0},{0,1,1,1,1,1,0},{0,1,0,1,1,1,1}}

qαp,ν,p is calculated from the Studentized range distribution with parameters p and ν
and where αp is defined in (3.1). In case the sample sizes are not all equal, the test
statistic is

QP = max





|ȳi − ȳj |√
1
2s

2
(

1
ni

+ 1
nj

)




,

where the maximum is taken for all possible pairs of means in P .
The other two procedures presented here are refinements of the multiple F step-

down test and the multiple Q step-down test. An algorithm developed by Begun and
Gabriel [2] is used to incorporate a method due to Peritz that looks for additional
differences. Thus the PeritzF test is at least as powerful as the multiple F step-down
test, and the PeritzQ test is at least as powerful as the multiple Q step-down test.
The Peritz tests are not as commonly available in statistical software packages.

Example 4 (step-down procedures). Data taken from an article by Duncan [4]
is used to illustrate the step-down procedures. There were seven random samples
of sizes 3, 2, 5, 5, 3, 2, and 3 with respective sample means of 680, 734, 743, 851,
873, 902, and 945. The results of the PeritzQ test are reproduced in Table 5. The
commands and output for all four step-down tests in Example 4 are available on the
web site.

In addition to indicating the pairs of means that differ significantly, the output
also indicates the maximal nonsignificant subsets. For example, the list {0,1,0,1,1,1,1}
describes a maximal nonsignificant subset of five means. It indicates that a significant
difference cannot be shown among µ2, µ4, µ5, µ6, and µ7. Significant differences at
the 5% familywise level of significance are shown between µ1 and µ6, between µ1
and µ7, and between µ3 and µ7. None of these pairs occurs together in the maximal
nonsignificant subsets. The results from the multiple Q test are identical to the
PeritzQ results. Both the PeritzF test and the multiple F test identify two significant
differences (between µ3 and µ7 and between µ1 and µ7). Simulation studies suggest
that the choice of the most powerful test between the PeritzQ test and the PeritzF
test or between the multiple Q step-down test and the multiple F step-down test will
depend on the family and the data.

4. Choosing and Using Procedures. Given the variety of statistical software
packages available to perform multiple comparisons, a user need not be concerned
about doing the calculations. But the user should have the knowledge necessary to
correctly choose the appropriate MCMs and correctly interpret the computer output.
When choosing among the MCMs that protect the specified FWER, a user should be
aware of several considerations.
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4.1. The Family. Depending on the type of comparisons in the family, one method
may be more appropriate to use than others. For example, Tukey’s test is most useful
for the family of all pairwise comparisons; Scheffe’s test is most useful when the family
consists of a great many (or infinitely many) contrasts, not all of which are pairwise;
the GT2, Dunn–Šidák, and Bonferroni tests are most useful when smaller numbers
of pairwise comparisons and/or other contrasts are prespecified; the Dunnett test is
used for the family of comparisons of k − 1 experimental means to a control mean;
and the GH, C, T3, and Brown–Forsythe procedures are used when the population
variances are not all equal.

4.2. Exploratory and Confirmatory. The comparisons to be made may be
planned before looking at the data, or they may be selected after looking at the
data. Terms such as data-snooping and post hoc selection have been used to describe
the latter practice. When the comparisons to be made are specified before looking
at the data, the selection of the appropriate MCM should be based on the family.
For example, if a set of contrasts, which may include selected pairwise comparisons,
is specified, then the GT2 (Dunn–Šidák or Bonferroni) and Scheffe tests should be
tried. On the other hand, if prior to viewing the data the intention is to investigate all
pairwise differences, then the Tukey or Tukey–Kramer test and perhaps the stepwise
procedures should be tried. The user must keep in mind that directional decisions
and confidence intervals may not be possible with the stepwise procedures.

If a specific set of comparisons is developed after looking at the data, then a pro-
cedure for the family from which the comparisons are selected should be chosen. For
example, if the selected comparisons are pairwise, then the family would be all pair-
wise comparisons or, if appropriate, the family of comparisons of several experimental
means to a control mean. If the set of comparisons includes more general contrasts,
then the family would include all possible contrasts of a set of k means (an infinite
family).

In case some of the comparisons are prespecified and some are suggested by the
data, it is appropriate to perform the prespecified comparisons using FWER α1 (say)
and the post hoc comparisons using FWER α2 (say) on the family from which these
comparisons are selected. Then the overall FWER would be at most α1 + α2.

4.3. Error Rate. Some methods are exact, so that the actual FWER equals the
value specified by the researcher. These include the Tukey, Scheffe, and Dunnett tests.
Others are based on approximations and are conservative in that the actual FWER
is less than the value specified. These include the Tukey–Kramer, GT2, Bonferroni,
Dunn–Šidák, C, T3, and Brown–Forsythe tests. Still others, like the GH test, may at
times be liberal. That is, depending on the data, the actual FWER may be greater
than the value specified. Exact methods or those that are minimally conservative are
usually the best choice.

4.4. Assumptions. An MCM may or may not be robust in the presence of a vio-
lation of one or more of its underlying assumptions. No MCM is robust to violations
of randomness or independence. Most MCMs seem to be robust to moderate depar-
tures from normality of the underlying populations in that the actual FWER will
only be slightly higher than that specified. However, this increase in actual error rate
may be magnified as the number of comparisons increases. For balanced designs the
appropriate MCMs appear to be robust to the effect of unequal population variances.
This, however, may not be the case for unbalanced designs. For example, under some
configurations of sample sizes and population variances, the Tukey–Kramer test may
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have a severely inflated actual FWER. There are alternative procedures to use when
the variances are not all equal.

4.5. Power. After all of the pertinent considerations, it may happen that two
(or more) MCMs are appropriate for a family, but it may not be clear if one is
more powerful than the other. If both MCMs are run at the same FWER and show
the same differences, then one or the other may be used. On the other hand, if
one shows more differences, then using the strategy of always choosing the more
powerful has the associated risk of an inflated FWER. Choosing some differences
from one procedure and other differences from the other will likely double the FWER.
Finally, choosing to report the results of the MCM that shows a difference of particular
importance will also inflate the FWER. This is especially not recommended if the
study is confirmatory. For a confirmatory study where one difference is particularly
important, consulting the literature or using other criteria to choose an MCM that
appears to give the best chance to show this difference is advised [20, Chapter 3].

4.6. Simulation. Much of what is known about the commonly used MCMs has
been learned through simulation. For example, data sets may be randomly generated
based on different configurations of the underlying population means. In a minimum
range configuration, the first half of the means are equal and the second half of the
means are equal but different from the first half. In a maximum range configuration,
the first mean is lowest, the last mean is highest, and the middle means are equal
and half-way between the lowest and highest means. In an equally spaced configu-
ration, each succeeding mean is a fixed increment higher than its preceding mean.
Using Mathematica, after a few hours, any interested user can begin research into
the behavior of these MCMs for a variety of population distributions and a variety of
configurations of the population means, population variances, and sample sizes. As
an illustration, we have included on the web site (as Example 5) an investigation of
robustness for the Tukey–Kramer test.
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