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Abstract- Threshold selection — a selection mechanism for quently transfered to the S-ring, a simplified elevator nhode

noisy evolutionary algorithms — is put into the broader  Positive effects of TS could be observed. In the currentipape
context of hypothesis testing. Theoretical results are pre  we will base our analysis on mathematical statistics.

sented and applied to a simple model of stochastic search This paper is organized as follows: In the next section we
and to a simplified elevator simulator. Design of experi- give an introduction into the problems that arise when selec
ments methods are used to validate the significance of the tion in uncertain (e.g. noisy) environments takes placee Th

results. basic idea of TS is presented in the following section. To
show the interconnections between the threshold value and
1 Introduction the critical value, statistical hypothesis testing is d&sed.

Before we give a summary, we show the applicability of TS
Many real world optimization problems have to deal with to optimization problems: A stochastic search model — simi-
noise. Noise arises from different sources, such as measurir to the model that was used by Goldberg in his investiga-
ments errors in experiments, the stochastic nature of the si tion of the mathematical foundations of Genetic Algorithms
ulation process, or the limited amount of samples gathered and the S-ring — a simplified elevator simulator — are inves-
from a large search space. Evolutionary algorithms (EA) cariigated [7, 13].
cope with a wide spectrum of optimization problems [16].
Common means used by evolutionary algorithms to cope witp Salection in Uncertain Environments
noise are resampling, and adaptation of the population size
Newer approaches use efficient averaging techniques, bas®dthout loss of generality we will restrict our analysis hret
on statistical tests, or local regression methods for fitress  first part of this paper to maximization problems. A candédat
timation [3, 1, 17, 6, 15]. is ‘better’ (‘worse’), if its fitness function value is ‘hig’

In the present paper we concentrate our investigations ofilower’) than the fitness function value of its competitSup-
the selection process. From our point of view the followingpose that the determination of the fitness value is stochasti
case is fundamental for the selection procedure in noisiy envcally perturbed by zero mean Gaussian noise. fLdenote
ronments:Reject or accept a new candidate, while the avail-the perturbed fitness function value, whiledlenotes the av-
able information is uncertain. Thus, two errors may occur: erage fitness function value. Obviously four situations may
An « error as the probability of accepting a worse candidate arise in the selection process: {fbetter| worse candidate
due to noise and & error, the error probability of rejecting can be{ accepted| rejected}. This situation is shown in
a better candidate. Fig. 1. The chance of accepting a good (respectively of re-

A well established technique to investigate these errdvprojecting a worse) candidate plays a central role in our invest
abilities is hypothesis testing. We state that threshdlkelcse gations. In the next section, we shall discuss the detatlseof
tion (TS) can be seen as a special case of hypothesis testinfS process.

TS is a fundamental technique, that is used also used in other

contexts and not only in the framework of evolutionary algo-3 Threshold Selection

rithms. The TS-algorithm readBetermine the (noisy) fithess

values of the parent and the offspring. Accept the offsgfing 3.1 Definitions

g?:;oéfzglrt\/cgsesrz)t(;i?\eﬁztg:rteor:tt.he parentby atleasta margLFhreshold selection is a selection method, that can redigce t

The theoretical analysis in [13], where TS was introduced fo error probability of_selec;ting aworse or rejecting a goouk-ca
EAs with noisy fitness function values, were based on théj'date' Its generalidea is relatively simple and already

progress rate theory on the sphere model and were shown 8 other context_s. Nagylaki sta_ltes that a ;imilar principle
the(1+ 1)-evolution strategy (ES). These results were subse?®"Y !mpor_tgnt In .plant. and anlmalnbrggdlngccept a new
1 candidate if its (noisy) fithess valuesignificantlybetter than
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A2 B (1_p)*(1_|%_ ) (darkest region)P.d.f. of two normal-distributed rvX ~ A/(0, 1)
a andY ~ N(2,1).

Figure 1: Decision tree visualizing the general situation cdex  decision is based on a quantitycalculated from a sample of
lection process in uncertain environments. The eventsadreldd  data using a test function or test statistic. In the follayvive
as follows: A1: f(Y) > f(X), A2t f(V) < f(X), B: f(Y) < willuse ther. v.

f(X),andB: f(Y) > f(X).
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as a test function.n andn define the number of samples

DEFINITION 1 (THRESHOLD ACCEPTANCEPROBABILITY . . .
( ) taken from the pareix; respectively offspring; at time step

Let f(X) := S, f(X;)/n be the sample average of the
perturbed values, and denote the unperturbed fitness func-
tion value. The conditional probability, that the fitnessuea
of a better candidat& is higher than the fitness value of the
parent.X by at least a threshold, Thecritical valuec; _,, for a hypothesis test is a threshold to
+ _ _ which the value of the test statistic in a sample is compared t

Pr=PU) > f(X)+ 7 [ (V) > F(X)1, (1) determine whether or not the null hypothesis is rejected. We

are seeking a valug _,, such that

4.2 Critical Value and Error Probabilities

is called athreshold acceptance probability
P{T > c¢1_, |Hgtrue} < a. 4

DEFINITION 2 (THRESHOLD REJECTION PROBABILITY)
The conditional probability, that a worse candidatehas a
lower noisy fitness value than the fitness value of pakeby
at least a threshold,

Making a decision under this circumstances may lead to two
errors: an error of the first kind occurs when the null hypoth-
esis is rejected when it is in fact true; that I%, is wrongly
rejected with an error probability. If the null hypothesigi,
Po o= P{FOV)<F(X)+ 7| F(V)< F(X)}. (2 i; not rejected when it is in fact false, an error of the se_cpnd
kind happensg denotes the corresponding error probability.
is called athreshold rejection probability

The investigation of the requirements for the determina—5 Hypothesis Testing and Threshold Selection

tion of an optimal threshold value reveals similaritiestetn 5 1 The Relationship between, 3, and P*

TS and hypothesis tests.
Let us consider the hypothedik,, that the fithess of the off-

spring is not better than the parental fitness. Furthermere w
will use the test function defined in Eq. 3. Regarding sedecti
4.1 Hypothesis and Test Statistics in uncertain environments from the point of view of hypothe-

L ] _sis tests, we obtain:
The determination of a threshold value can be interpreted in

the context of hypothesis testing as the determination of #HEOREM 5.1 _
critical value. To formulate a statistical test, the quastdf ~ Suppose thal’ = 7,, ,, c1_» = 7, and i, : f(V;) <
interest is simplified into two competing hypotheses betweée f(X:). Then we get: The conditional rejection probability

4 Hypothesis Tests



P~ and the error of the first kind are ‘complementary’ prob- 6 Applications
abilities.
_ 6.1 Example 1: A Simple Model of Stochastic Search in
Pr=P{Zmn>7fV) < (X)) =1—a. (5) Uncertain Environments

Proof This can be seen directly by combining Eq. 2and Eq.44n our first example, we analyze the influence of TS on the
selection process in a simple stochastic search model. This
model possesses many crucial features of real-world opaimi
tion problems, i. e. a small probability of generating a é&ett
offspring in an uncertain environment.

COROLLARY 5.2 (TO THEOREM5.1)
The conditional acceptance probabiliif- and the error of
the second kind are ‘complementary’ probabilities:

Pr=1-4. (6)
6.1.1 Model and Algorithm

5.2 Normal Distributed Noise DEFINITION 3 (SIMPLE STOCHASTIC SEARCH)

In the following, ®(x) denotes the normal d.f., whereas ~ Suppose that the system to be optimized is at tiineone
defines théa )-quantile of the\' (0, 1)-distribution:®(z,) =  ©Of the consecutive discrete stat€s = i, i € 7. In statei,

«, andt, defines thga)-quantile of thei-distribution. We ~ We can probe the system to obtain a fitness vglUg;) =

are able to analyze TS with the means of hypothesis testé; d + U. § € IR* represents the distance between the ex-
Assuming stochastically independent samplgs and Y ; pectation of the fitness values of two adjacent states. The
of ' (ux , 0% ) respectivelyV (4 , o2 ) distributed variables, fandom variable (rv.)U/ possesses normal (0, s?) distri-

we can determine the corresponding threshdior given er-  bution. The goal is to take the system to a final stete= i

ror of the first kinde. The equation?{7,, , < 7|H,} = with 7 as high as possible (maximization problem) in a given
1 — o leads to T number of steps.
2 2
SRRy b S @) T
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5.3 Unknown, but Equal Variancess3 and 3. T <> .
| €
In many real world optimization problems, the variances are .
unknown, so that the test is based on empirical variances:
Let ther.v. E} 1
m 3
1 . _
Sk = ——= > (F(Xei) = F(X4))° 8)
m | =1 69 L
be the empirical variance of the sample. In this case, we ob- X,
tain: €

T :(tm,+n,72;1 7()/)

= 1)s2 + (n— 1)s2 | ©)] .
. (m )sp + (0 )gy m+ n’_ Figure 3:Simple stochastic search. Adjacent states.
n+m-—?2 m-n

If the observations are paired (two corresponding programke€t us consider the following
are run with equal sample sizes (= ») and with the same ALGORITHM 1 (SMPLE SEARCH WITH TS)

random numbers) and the variance is unknown, Eq. 9 readS'l_ Initialize: Initial state X;_, — 0.

T = T (10) 2. Generate offspring: At the t-th step, with current state
. ’ X: = 1, flip a biased coin: Set the candidate of the
with . new stateY, to ; + 1 with probabilityp and to: — 1
2= - 1 1 S (- ), (11) with probability (1 — p).
=1 3. Evaluate: Draw samples (fitness values) from the current
an estimate of the varianeg, and and the candidate states:
7= T {00~ S(Xi0) ) fm. F(X5) and f(vi.), (12)

These results provide the basis for a detailed investigatio B
of the TS mechanism. They can additionally be transferred to with the measured fitness valyiéX) := f(X) + w.
real-world optimization problems as shown in the following w is the realization of a r.v., representing normal dis-

sections. 3 tributed noise}V ~ N (0, o).



4. Select: Determine a threshold value. If 7(V;) +7 > [ p | Topt | F[R-=0] | PlR-,,.] |
f(X:), accepty; as the next stateX,, := Y;; other- 0.1 4.394 -0.262 0.00005
wise , keep the current staté’;, , := X;. 02 2773 -0.162 0.003
. ] . 0.3 1.695 -0.062 (D) | 0.018 (C)
5. Terminate: If ¢ < #.ax, increment and go to step 2. 0 0811 0.033 (B) | 0.059 (A)
REMARK 1 05 0.0 0.138 0.138

In this model,p is given; it is interpreted as the probability
of generating a better candidate. In general, the expetanen
has no control ovep, which would be some small value for
non-trivial optimization tasks.

Table 1: Simple stochastic search. The noise levekqualsi .o,
the distance is 0.5. Labels (A) to (D) refer to the results of the
corresponding simulations shown in Fig. 4.

THEOREMG6.1
ALGORITHM 1 can be represented by a Markov chdif; }
with the following properties:
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6.1.2 Search Rate and Optimat Figure 4:Simple stochastic search. Simulations performed to ana-

) lyze the influence of TS on the search rate.
The measurement of the local behavior of an EA can be based

on the expected distance change in the object parameter.spac

This leads to the following definition: Assume there is a very small success probabilityThen
the search can be misled, although the algorithm selecys onl
DEFINITION 4 (SEARCH RATE) ‘better’ candidates. We can conclude from Eqg. 16, that a
Let R be the number of advance in the state numtiarone  decreasing success probabiligy {\, 0) leads to a negative
step: search rate. Based on Eq. 17, we calculated the optimahthres
R:= X1 — Xt (14)  old value for 5 different success probabilities to illustrthe

influence of TS on the search rate, cp. Tab 1. Corresponding

i i X ion . .
Thesearch rateis defined as the expectatio values of the search rate are shown in the third column. TS

B[RS, ov, p,1)], (15)  can enhance the se_arch ra_te and even avoid that the sear_ch
rate becomes negative. This can be seen from the values in
to be abbreviated?[ R]. the last column.
Fig. 4 reveals that simulations lead to the same results. For
THEOREM6.2 two differentp-values, the influence of TS on the search rate
Let F[R.] be the search rate as defined in Eq. 15. Then Eg. 13s shown. The search rate beconmegative if p is set to
leads to 0.3 and no TS is used (D). The situation can be improved,
if we introduce TS: The search rate becomes positive (C). A
E[R)=p-PF—(—p)-(0-P7) (16)  comparison of (A), where a zero threshold was used, and (B),
where the optimal threshold value was used, shows that TS
COROLLARY 6.3 (TO THEOREM6.2) can improve an already positive search rate. These resalts a

In this example (simple stochastic search model) it is poSy, ¢orrespondence with the theoretical results in Tab. 1.
sible to determine the optima},. value with regard to the

search rate, if the fitness function is disturbed with normal

6.2 Example 2: Application to the S-ring Model
distributed noise: p pp g

6.2.1 The S-Ring as a Simplified Elevator Model

Topt = 5~ log T (A7) inthe following we will analyze aS-ring mode} that is a
simplified version of the elevator group control problem,[12



13]. The S-ring has only a few parameters: the number of elmodel[5, 4, 8, 9, 11, 10]. It seems reasonable to use DOE
evator carss,,,, the number of customeks, and the passen- methods on account of the exponential growth in the num-
ger arrival rates,. Therefore, the rules of operation are very ber of factor levels as the number of factors grows. Based on
simple, so that this model is easily reproducible and slgétab these methods, we investigate the S-ring mbhdehe princi-

for benchmark testing. However, there are important simila pal aim is to minimize the number of waiting customers, so
ities with real elevator systems. The S-ring and real etevat we consider a minimization problem. A prototype S-ring
systems are discrete-state stochastic dynamical systéths,

high-dimensional state space and a very complex behavior. ol Comma Plus TS

Both are found to show suboptimal performance when driven

with simple ‘greedy’ policies. They exhibit a charactedst i - 6 . 6 . E
< 4 < - - < 4 Q < 4

instability (commonly called ‘bunching’ in case of elevetp
The policyr, that maps system states to decisions, was rep- !
resented by a linear discriminator (perceptron) [13]. An EA g | B
was used to optimize the poliey. ;
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The analysis of many real-world optimization problems re-
quires a different methodology than the analysis of the-optiFigure 6:Box plot. Different selection schemes. Comma-selection,
mization of a fitness functiofi, becausg remains unknown plus-selection, and TS, cp. Tab. 2.

or can only be determined approximately. We use an ap-
proach that is similar to the concept discussed in [8]: From

the complex real-world situation we proceed to a simulation

model. In a second step we model the relationship between
the inputs and outputs of this model through a regression_ 8 c
model (meta-model). The analysis of the meta-model is based: |
on DOE methods. Let the terfactor denote a parameter
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(A)Selection: comma- plus- TS-strategy :

strategy strategy &1 R \

(B)SeleCtive Presy 4.0 6.0 9.0 0 Comma 1Plus 2TS " 0 Comma 1Plus 2TS

sure:

(S(iiizopulatlon 2.0 1 70 Figure 7: Plot of the means of the responses. The labels on the
x-axis represent different selection mechanisnComma,1: Plus,
and2: TS. B and(C represent the selective strength 6, 9), resp.

Table 2:EA—parameter and factorial designs the population siz¢2, 4, 7), cp. Tab. 2.

with the following parameter settings was used as a test case
customers:,, — 6, serverss,,, — 2, and arrival rate, — 0.3.

The number of fitness function evaluations was sebfg and
every candidate was reevaluated 5 times. Eq. 10 was used to
determine the threshold. The TS-scheme was compared to
a comma-strategy and a plus-strategy. Global intermediate
recombination was used in every simulation rui. exper-
iments were performed for every ES-parameter setting. The
population size and the selective pressure (defined asttbe ra
A/p) were varied. The corresponding settings are shown in
Tab. 2.

Normal Q-Q Plot

2.45
|

Sample Quantiles

2.35

Theoretical Quantiles

Figure 5:Diagnostic plot. 6.2.3 Validation and Results

or input variable of our model. DOE methods can be deBefore we are able to present the results of our simulations,
fined asselecting the combinations of factor levels that will the underlying simulation model has to be validated. The nor
be actually simulated when experimenting with the simatati

1The applicability of DOE methods to EAs is discussed in déigP].



mal Q-Q plot in Fig. 5 shows that the values are approxi- [5] G. E. P. Box, G. Hunter, William, and J. S. Hunter.
mately standard normal. This is an important assumption for ~ Statistics for experimenterdiiley series in probabilty
the applicability of the F-test, that was used in the regoess and mathematical statistics: Applied probability and
analysis to determine the significance of the effects and of  statistics. Wiley, 1978.
the mterac'uons.. Further SIaUSt.IcaI ar)alysls reveats the [6] J. Branke, C. Schmidt, and H. Schmeck. Efficient fit-
effects of the main factors are highly significant. A . .
! o : ness estimation in noisy environments. In L. S. et al.,
The results are visualized in two different ways. Box plots, ) ) i :
- . . i editor, Genetic and Evolutionary Computation Confer-
shown in Fig. 6, give an excellent impression how the change ,
- . ence (GECCO’01)Morgan Kaufmann, 2001.
of a factor influences the results. Comparing the comma-
selection plot and the plus-selection plot to the TS sadacti [7] D. E. Goldberg. Genetic Algorithms in Search, Op-
plot, we can conclude that TS improves the result. In addlitio timization, and Machine Learning Addison-Wesley,
to the box plots, it may be also important to check for inter- 1989.
action effects (Fig. 7): Obviously TS performs better thae t

other selection methods [8] J. Kleijnen. Statistical Tools for Simulation Practition-

ers. Marcel Dekker, New York, 1987.

7 Summary and Outlook [9] J. Kleijnen. Validation of models: Statistical technoiep
and data availability. In P. Farrington, H. Nembhard,
The connection between TS and hypothesis tests was shown. D. Sturrock, and G. Evans, editoiRjoceedings of the
A formulae for the determination of the optimalalue in a 1999 Winter Simulation Conferencpages 647-654,
simple search model and a formulae for the determination of 1999,
the threshold value for the error of the first kiménd the (es-
timated) variance? were derived. Theoretical results were ; . . .
applied)to a simpﬁfied elevator group control task problem. SIS of simulation models. In A. H. et al, editétoceed-
TS performs significantly better than other selection mésho ings of EUROSIM 20022001.

This work will be extended in the following way: To re- [11] A. M. Law and W. D. Kelton Simulation Modelling and
duce the number of fithess function evaluations it might be Analysis McGraw-Hill Series in Industrial Egineering
sufficient to determine the noise level only at the beginning and Management Science. McGraw-Hill, New York, 3
and after a certain number of time steps, instead of in ev- edition, 2000.
ery generation. Furthermore, we will investigate the siture
shown in Fig. 1 from the viewpoint of Bayesian statistics.

[10] J. Kleijnen. Experimental designs for sensitivity Brna

[12] S. Markon.Studies on Applications of Neural Networks
in the Elevator SystemPhD thesis, Kyoto University,
1995.
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