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Abstract- Threshold selection – a selection mechanism for
noisy evolutionary algorithms – is put into the broader
context of hypothesis testing. Theoretical results are pre-
sented and applied to a simple model of stochastic search
and to a simplified elevator simulator. Design of experi-
ments methods are used to validate the significance of the
results.

1 Introduction

Many real world optimization problems have to deal with
noise. Noise arises from different sources, such as measure-
ments errors in experiments, the stochastic nature of the sim-
ulation process, or the limited amount of samples gathered
from a large search space. Evolutionary algorithms (EA) can
cope with a wide spectrum of optimization problems [16].
Common means used by evolutionary algorithms to cope with
noise are resampling, and adaptation of the population size.
Newer approaches use efficient averaging techniques, based
on statistical tests, or local regression methods for fitness es-
timation [3, 1, 17, 6, 15].

In the present paper we concentrate our investigations on
the selection process. From our point of view the following
case is fundamental for the selection procedure in noisy envi-
ronments:Reject or accept a new candidate, while the avail-
able information is uncertain. Thus, two errors may occur:
An� error as the probability of accepting a worse candidate
due to noise and a� error, the error probability of rejecting
a better candidate.

A well established technique to investigate these error prob-
abilities is hypothesis testing. We state that threshold selec-
tion (TS) can be seen as a special case of hypothesis testing.
TS is a fundamental technique, that is used also used in other
contexts and not only in the framework of evolutionary algo-
rithms. The TS-algorithm reads:Determine the (noisy) fitness
values of the parent and the offspring. Accept the offspringif
its noisy fitness exceeds that of the parent by at least a margin
of � ; otherwise retain the parent.
The theoretical analysis in [13], where TS was introduced for
EAs with noisy fitness function values, were based on the
progress rate theory on the sphere model and were shown for
the(1+1)-evolution strategy (ES). These results were subse-

quently transfered to the S-ring, a simplified elevator model.
Positive effects of TS could be observed. In the current paper
we will base our analysis on mathematical statistics.

This paper is organized as follows: In the next section we
give an introduction into the problems that arise when selec-
tion in uncertain (e.g. noisy) environments takes place. The
basic idea of TS is presented in the following section. To
show the interconnections between the threshold value and
the critical value, statistical hypothesis testing is discussed.
Before we give a summary, we show the applicability of TS
to optimization problems: A stochastic search model – simi-
lar to the model that was used by Goldberg in his investiga-
tion of the mathematical foundations of Genetic Algorithms
– and the S-ring – a simplified elevator simulator – are inves-
tigated [7, 13].

2 Selection in Uncertain Environments

Without loss of generality we will restrict our analysis in the
first part of this paper to maximization problems. A candidate
is ‘better’ (‘worse’), if its fitness function value is ‘higher’
(‘lower’) than the fitness function value of its competitor.Sup-
pose that the determination of the fitness value is stochasti-
cally perturbed by zero mean Gaussian noise. Let~f denote
the perturbed fitness function value, whilef denotes the av-
erage fitness function value. Obviously four situations may
arise in the selection process: Af betterj worseg candidate
can bef acceptedj rejectedg. This situation is shown in
Fig. 1. The chance of accepting a good (respectively of re-
jecting a worse) candidate plays a central role in our investi-
gations. In the next section, we shall discuss the details ofthe
TS process.

3 Threshold Selection

3.1 Definitions

Threshold selection is a selection method, that can reduce the
error probability of selecting a worse or rejecting a good can-
didate. Its general idea is relatively simple and already known
in other contexts. Nagylaki states that a similar principleis
very important in plant and animal breeding:Accept a new
candidate if its (noisy) fitness value issignificantlybetter than
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Figure 1: Decision tree visualizing the general situation of ase-
lection process in uncertain environments. The events are labeled
as follows:A1: f(Y ) > f(X), A2: f(Y ) � f(X), B: f(Y ) <f(X), andB: f(Y ) � f(X).
that of the parent[14].

DEFINITION 1 (THRESHOLD ACCEPTANCEPROBABILITY )
Let f(X) := Pni=1 ~f (Xi)=n be the sample average of the
perturbed values, andf denote the unperturbed fitness func-
tion value. The conditional probability, that the fitness value
of a better candidateY is higher than the fitness value of the
parentX by at least a threshold� ,P+� := Pff(Y ) > f (X) + � j f(Y ) > f(X)g; (1)

is called athreshold acceptance probability.

DEFINITION 2 (THRESHOLD REJECTIONPROBABILITY )
The conditional probability, that a worse candidateY has a
lower noisy fitness value than the fitness value of parentX by
at least a threshold� ,P�� := Pff(Y ) � f(X) + � j f(Y ) � f(X)g: (2)

is called athreshold rejection probability.

The investigation of the requirements for the determina-
tion of an optimal threshold value reveals similarities between
TS and hypothesis tests.

4 Hypothesis Tests

4.1 Hypothesis and Test Statistics

The determination of a threshold value can be interpreted in
the context of hypothesis testing as the determination of a
critical value. To formulate a statistical test, the question of
interest is simplified into two competing hypotheses between

which we have a choice: the null hypothesis, denotedH0,
is tested against the alternative hypothesis, denotedH1. The
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Figure 2: Error of the first (light region) and of the second kind
(darkest region):P.d.f. of two normal-distributed r.v.X � N (0; 1)
andY � N (2; 1).
decision is based on a quantityT calculated from a sample of
data using a test function or test statistic. In the following we
will use the r. v.Zm;n := 1n nXi=1 ~f (Yt;i) � 1m mXi=1 ~f (Xt;i) (3)

as a test function.m andn define the number of samples
taken from the parentXt respectively offspringYt at time stept.
4.2 Critical Value and Error Probabilities

Thecritical value1�� for a hypothesis test is a threshold to
which the value of the test statistic in a sample is compared to
determine whether or not the null hypothesis is rejected. We
are seeking a value1��, such thatPfT > 1�� jH0 trueg � �: (4)

Making a decision under this circumstances may lead to two
errors: an error of the first kind occurs when the null hypoth-
esis is rejected when it is in fact true; that is,H0 is wrongly
rejected with an error probability�. If the null hypothesisH0
is not rejected when it is in fact false, an error of the second
kind happens.� denotes the corresponding error probability.

5 Hypothesis Testing and Threshold Selection

5.1 The Relationship between�, �, andP��
Let us consider the hypothesisH0, that the fitness of the off-
spring is not better than the parental fitness. Furthermore we
will use the test function defined in Eq. 3. Regarding selection
in uncertain environments from the point of view of hypothe-
sis tests, we obtain:

THEOREM 5.1
Suppose thatT = Zm;n, 1�� = � , andH0 : f(Yt) �f(Xt). Then we get: The conditional rejection probability
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P�� and the error of the first kind are ‘complementary’ prob-
abilities.P�� = PfZm;n > � j f(Yt) � f(Xt)g = 1� �: (5)

Proof This can be seen directly by combining Eq. 2 and Eq.4.

COROLLARY 5.2 (TO THEOREM 5.1)
The conditional acceptance probabilityP+� and the error of
the second kind are ‘complementary’ probabilities:P+� = 1� �: (6)

5.2 Normal Distributed Noise

In the following,�(x) denotes the normal d.f., whereasz�
defines the(�)-quantile of theN (0; 1)-distribution:�(z�) =�, andt� defines the(�)-quantile of thet-distribution. We
are able to analyze TS with the means of hypothesis tests:
Assuming stochastically independent samplesXt;i andYt;i
ofN (�X ; �2X) respectivelyN (�Y ; �2Y ) distributed variables,
we can determine the corresponding threshold� for given er-
ror of the first kind�. The equationPfZm;n � � jH0g =1� � leads to � = z1�� �r�2Xm + �2Yn : (7)

5.3 Unknown, but Equal Variances�2X and �2Y
In many real world optimization problems, the variances are
unknown, so that the test is based on empirical variances:
Let the r.v.S2X := 1m � 1 mXi=1( ~f (Xt;i)� f (Xt))2 (8)

be the empirical variance of the sample. In this case, we ob-
tain: � =(tm+n�2;1��)�s(m � 1)s2x + (n � 1)s2yn+m� 2 rm + nm � n : (9)

If the observations are paired (two corresponding programs
are run with equal sample sizes (m = n) and with the same
random numbers) and the variance is unknown, Eq. 9 reads:� = tn�1;1�� � sdpn ; (10)

with s2d = 1n� 1 nXi=1(zi � d)2; (11)

an estimate of the variance�2d, andd =Pmi=1 n ~f (Yt;i) � ~f (Xt;i)o =m.

These results provide the basis for a detailed investigation
of the TS mechanism. They can additionally be transferred to
real-world optimization problems as shown in the following
sections.

6 Applications

6.1 Example 1: A Simple Model of Stochastic Search in
Uncertain Environments

In our first example, we analyze the influence of TS on the
selection process in a simple stochastic search model. This
model possesses many crucial features of real-world optimiza-
tion problems, i. e. a small probability of generating a better
offspring in an uncertain environment.

6.1.1 Model and Algorithm

DEFINITION 3 (SIMPLE STOCHASTIC SEARCH)
Suppose that the system to be optimized is at timet in one
of the consecutive discrete statesXt = i, i 2 ZZ. In statei,
we can probe the system to obtain a fitness value~f (Xt) =i � Æ + U . Æ 2 IR+ represents the distance between the ex-
pectation of the fitness values of two adjacent states. The
random variable (r.v.)U possesses normalN (0; �2� ) distri-
bution. The goal is to take the system to a final stateXt = i
with i as high as possible (maximization problem) in a given
number of steps.

i i+1i−1

δ

σε

X t

Figure 3:Simple stochastic search. Adjacent states.

Let us consider the following

ALGORITHM 1 (SIMPLE SEARCH WITH TS)
1. Initialize: Initial stateXt=0 = 0.

2. Generate offspring: At the t-th step, with current stateXt = i, flip a biased coin: Set the candidate of the
new stateYt to i + 1 with probabilityp and to i � 1
with probability(1� p).

3. Evaluate: Draw samples (fitness values) from the current
and the candidate states:~f(Xt;j) and ~f (Yt;k); (12)

with the measured fitness value~f (X) := f(X) + w.w is the realization of a r.v., representing normal dis-
tributed noise,W � N (0; �2� ).3



4. Select: Determine a threshold value� . If f (Yt) + � >f (Xt), acceptYt as the next state:Xt+1 := Yt; other-
wise , keep the current state:Xt+1 := Xt.

5. Terminate: If t < tmax, incrementt and go to step 2.

REMARK 1
In this model,p is given; it is interpreted as the probability
of generating a better candidate. In general, the experimenter
has no control overp, which would be some small value for
non-trivial optimization tasks.

THEOREM 6.1
ALGORITHM 1 can be represented by a Markov chainfXtg
with the following properties:

1. X0 = 0.

2. PfXt+1 = i + 1jXt = ig = p �P+�
3. PfXt+1 = i � 1jXt = ig = (1 � p) � (1� P�� )
4. PfXt+1 = ijXt = ig = p � (1� P+� ) + (1� p) � P�� ,

with P�� := �0� Æ � �qm+nmn ��1A : (13)

6.1.2 Search Rate and Optimal�
The measurement of the local behavior of an EA can be based
on the expected distance change in the object parameter space.
This leads to the following definition:

DEFINITION 4 (SEARCH RATE)
LetR be the number of advance in the state numbert in one
step: R := Xt+1 �Xt: (14)

Thesearch rateis defined as the expectationE[R(Æ; ��; p; t)℄; (15)

to be abbreviatedE[R℄.
THEOREM 6.2
LetE[R� ℄ be the search rate as defined in Eq. 15. Then Eq. 13
leads to E[R� ℄ = p � P+� � (1� p) � (1� P�� ): (16)

COROLLARY 6.3 (TO THEOREM 6.2)
In this example (simple stochastic search model) it is pos-
sible to determine the optimal�opt value with regard to the
search rate, if the fitness function is disturbed with normal-
distributed noise: �opt = �2�Æ log 1� pp : (17)

p �opt E[R�=0℄ E[R�opt℄
0.1 4.394 -0.262 0.00005
0.2 2.773 -0.162 0.003
0.3 1.695 -0.062 (D) 0.018 (C)
0.4 0.811 0.038 (B) 0.059 (A)
0.5 0.0 0.138 0.138

Table 1: Simple stochastic search. The noise level�� equals1:0,
the distanceÆ is 0:5. Labels (A) to (D) refer to the results of the
corresponding simulations shown in Fig. 4.
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Figure 4:Simple stochastic search. Simulations performed to ana-
lyze the influence of TS on the search rate.

Assume there is a very small success probabilityp. Then
the search can be misled, although the algorithm selects only
‘better’ candidates. We can conclude from Eq. 16, that a
decreasing success probability (p & 0) leads to a negative
search rate. Based on Eq. 17, we calculated the optimal thresh-
old value for 5 different success probabilities to illustrate the
influence of TS on the search rate, cp. Tab 1. Corresponding
values of the search rate are shown in the third column. TS
can enhance the search rate and even avoid that the search
rate becomes negative. This can be seen from the values in
the last column.

Fig. 4 reveals that simulations lead to the same results. For
two differentp-values, the influence of TS on the search rate
is shown. The search rate becomesnegative, if p is set to0:3 and no TS is used (D). The situation can be improved,
if we introduce TS: The search rate becomes positive (C). A
comparison of (A), where a zero threshold was used, and (B),
where the optimal threshold value was used, shows that TS
can improve an already positive search rate. These results are
in correspondence with the theoretical results in Tab. 1.

6.2 Example 2: Application to the S-ring Model

6.2.1 The S-Ring as a Simplified Elevator Model

In the following we will analyze a ‘S-ring model’, that is a
simplified version of the elevator group control problem [12,
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13]. The S-ring has only a few parameters: the number of el-
evator carssm, the number of customerssn, and the passen-
ger arrival rates�. Therefore, the rules of operation are very
simple, so that this model is easily reproducible and suitable
for benchmark testing. However, there are important similar-
ities with real elevator systems. The S-ring and real elevator
systems are discrete-state stochastic dynamical systems,with
high-dimensional state space and a very complex behavior.
Both are found to show suboptimal performance when driven
with simple ‘greedy’ policies. They exhibit a characteristic
instability (commonly called ‘bunching’ in case of elevators).
The policy�, that maps system states to decisions, was rep-
resented by a linear discriminator (perceptron) [13]. An EA
was used to optimize the policy�.

6.2.2 DOE-Methodology

The analysis of many real-world optimization problems re-
quires a different methodology than the analysis of the opti-
mization of a fitness functionf , becausef remains unknown
or can only be determined approximately. We use an ap-
proach that is similar to the concept discussed in [8]: From
the complex real-world situation we proceed to a simulation
model. In a second step we model the relationship between
the inputs and outputs of this model through a regression
model (meta-model). The analysis of the meta-model is based
on DOE methods. Let the termfactor denote a parameter

Factor low value medium
value

high value

(A)Selection: comma-
strategy

plus-
strategy

TS-strategy

(B)Selective Pres-
sure:

4.0 6.0 9.0

(C)Population
Size:

2.0 4 7.0

Table 2:EA–parameter and factorial designs
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Figure 5:Diagnostic plot.

or input variable of our model. DOE methods can be de-
fined asselecting the combinations of factor levels that will
be actually simulated when experimenting with the simulation

model[5, 4, 8, 9, 11, 10]. It seems reasonable to use DOE
methods on account of the exponential growth in the num-
ber of factor levels as the number of factors grows. Based on
these methods, we investigate the S-ring model1. The princi-
pal aim is to minimize the number of waiting customers, so
we consider a minimization problem. A prototype S-ring
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Figure 6:Box plot. Different selection schemes. Comma-selection,
plus-selection, and TS, cp. Tab. 2.
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Figure 7: Plot of the means of the responses. The labels on thex-axis represent different selection mechanism.0: Comma,1: Plus,
and2: TS.B andC represent the selective strength(4; 6; 9), resp.
the population size(2; 4; 7), cp. Tab. 2.

with the following parameter settings was used as a test case:
customerssn = 6, serverssm = 2, and arrival rates� = 0:3.
The number of fitness function evaluations was set to105, and
every candidate was reevaluated 5 times. Eq. 10 was used to
determine the threshold. The TS-scheme was compared to
a comma-strategy and a plus-strategy. Global intermediate
recombination was used in every simulation run.50 exper-
iments were performed for every ES-parameter setting. The
population size and the selective pressure (defined as the ratio�=�) were varied. The corresponding settings are shown in
Tab. 2.

6.2.3 Validation and Results

Before we are able to present the results of our simulations,
the underlying simulation model has to be validated. The nor-

1The applicability of DOE methods to EAs is discussed in detail in [2].
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mal Q–Q plot in Fig. 5 shows that the values are approxi-
mately standard normal. This is an important assumption for
the applicability of the F-test, that was used in the regression
analysis to determine the significance of the effects and of
the interactions. Further statistical analysis reveals that the
effects of the main factors are highly significant.

The results are visualized in two different ways. Box plots,
shown in Fig. 6, give an excellent impression how the change
of a factor influences the results. Comparing the comma-
selection plot and the plus-selection plot to the TS selection
plot, we can conclude that TS improves the result. In addition
to the box plots, it may be also important to check for inter-
action effects (Fig. 7): Obviously TS performs better than the
other selection methods.

7 Summary and Outlook

The connection between TS and hypothesis tests was shown.
A formulae for the determination of the optimal� value in a
simple search model and a formulae for the determination of
the threshold value for the error of the first kind� and the (es-
timated) variances2d were derived. Theoretical results were
applied to a simplified elevator group control task problem.
TS performs significantly better than other selection methods.

This work will be extended in the following way: To re-
duce the number of fitness function evaluations it might be
sufficient to determine the noise level only at the beginning
and after a certain number of time steps, instead of in ev-
ery generation. Furthermore, we will investigate the situation
shown in Fig. 1 from the viewpoint of Bayesian statistics.
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