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Abstract

We propose a general method for error estimation that displays low variance and generally low bias as well. This method
is based on “bolstering” the original empirical distribution of the data. It has a direct geometric interpretation and can be
easily applied to any classi4cation rule and any number of classes. This method can be used to improve the performance of
any error-counting estimation method, such as resubstitution and all cross-validation estimators, particularly in small-sample
settings. We point out some similarities shared by our method with a previously proposed technique, known as smoothed
error estimation. In some important cases, such as a linear classi4cation rule with a Gaussian bolstering kernel, the integrals
in the bolstered error estimate can be computed exactly. In the general case, the bolstered error estimate may be computed
by Monte-Carlo sampling; however, our experiments show that a very small number of Monte-Carlo samples is needed. This
results in a fast error estimator, which is in contrast to other resampling techniques, such as the bootstrap. We provide an
extensive simulation study comparing the proposed method with resubstitution, cross-validation, and bootstrap error estimation,
for three popular classi4cation rules (linear discriminant analysis, k-nearest-neighbor, and decision trees), using several sample
sizes, from small to moderate. The results indicate the proposed method vastly improves on resubstitution and cross-validation,
especially for small samples, in terms of bias and variance. In that respect, it is competitive with, and in many occasions
superior to, bootstrap error estimation, while being tens to hundreds of times faster. We provide a companion web site, which
contains: (1) the complete set of tables and plots regarding the simulation study, and (2) C source code used to implement
the bolstered error estimators proposed in this paper, as part of a larger library for classi4cation and error estimation, with full
documentation and examples. The companion web site can be accessed at the URL http://ee.tamu.edu/∼edward/bolster.
? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Given a classi4er designed on an i.i.d. sample, one wants
to estimate its error rate with respect to the underlying un-
known population in a way that is fast and accurate. This
is a major issue in pattern recognition that impacts not only
the classi4cation problem at hand, but also model selection
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(choice of parameters in classi4er design) and variable se-
lection (choice of interesting features). Error estimation is
especially diDcult in practical small-sample settings,where
one cannot hold out data from classi4er design for testing
[1].

Commonly used error estimators include resubstitu-
tion, cross-validation methods, and bootstrap methods
[2–7]. In this paper, we propose a general extension of
an error-estimation technique initially proposed for linear
discriminant analysis (LDA) [8]. It has advantages with
respect to the aforementioned error estimators in terms of
speed and accuracy (bias and variance). The diGerence
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in performance can be striking, especially with small
samples.

The basic idea is to “bolster” the original empirical dis-
tribution of the available data by means of suitable bolster-
ing kernels placed at each data-point location. The error can
be computed analytically in some cases, such as in the case
of linear classi4ers, or via Monte-Carlo sampling for more
general classi4er boundaries; our experiments show that a
very small number of Monte-Carlo samples is needed, which
results in a fast error estimator. In principle, the technique
can be applied in conjunction with any error-counting esti-
mation method, and has the eGect of reducing the variance
usually associated with such methods, which is especially
important in the case of the huge variance associated with
cross-validation error estimation. By selecting the param-
eters of the bolstering kernels appropriately, one can also
reduce bias. For simplicity, we focus on two-group classi4-
cation; however, the proposed method is easily extendable
to multiple-group classi4cation.

The proposed error estimation method shares some simi-
larities with the “smoothing” technique for LDA originally
proposed in [9] and further explored in [10–13]. In that case,
the basic idea is to reduce the variance of error-counting es-
timators by means of a smoothing function that plays a sim-
ilar role to the bolstering kernels. Bolstered error estimation
can be seen as smoothed estimation in a few special cases;
however, the smoothing technique does not have a direct
geometrical interpretation in general, can be cumbersome to
formulate for multiple classes [10,13], and is not easily ex-
tendable to classi4ers other than LDA [10,4]. For general
classi4ers, one has to use some estimate of the posterior
probabilities in the computation of the smoothed error esti-
mate. Not only is this problematic in small-sample settings,
but it can also lead to bad situations not encountered by bol-
stered error estimation, such as an identically zero smoothed
error estimator for 1-nearest-neighbor classi4cation [4].

We provide an extensive simulation study that com-
pares the proposed method to resubstitution, leave-one-out,
10-fold cross validation with repetition, and the 0.632
bootstrap estimator. These are well-known error estimators
often used in practice. We consider three popular classi4-
cation rules, namely, LDA [14], 3-nearest neighbors (3NN)
[4] and decision trees (CART) [5]. The simulation study
compares the performance of the error estimators in terms
of the deviation distribution (the distributions of the diGer-
ence between estimated and true errors). Average timings
are also computed to assess the speed of the various error
estimators.

This paper is organized as follows. Section 2 provides
a brief review of error estimators considered in this paper,
including smoothed error estimators. Section 3 introduces
bolstered error estimation, proposes a general method to
choose the amount of bolstering, and discusses a few partic-
ular estimators based on Gaussian bolstering kernels. Sec-
tion 4 presents the results obtained in our simulation study.
Finally, Section 5 provides concluding remarks.

2. Error estimation methods

In two-group statistical pattern recognition, there is a fea-
ture vector X ∈Rp and a label Y ∈{0; 1}. The pair (X; Y )
has a joint probability distribution F, which is unknown in
practice. Hence, one has to resort to designing classi4ers
from training data, which consists of a set of n independent
observations, Sn={(X1; Y1); : : : ; (Xn; Yn)}, drawn from F. A
classi8cation rule is a mapping g : {Rp ×{0; 1}}n ×Rp →
{0; 1}. A classi4cation rule maps the training data Sn into
the designed classi8er g(Sn; ·) :Rp → {0; 1}. The true er-
ror of a designed classi4er is its error rate given the training
data set:


n[g|Sn] = P(g(Sn; X ) 
= Y ) = EF(|Y − g(Sn; X )|); (1)

where the notation EF indicates that the expectation is taken
with respect to F; in fact, one can think of (X; Y ) in the above
equation as a random test point (this interpretation being
useful in understanding error estimation). The expected error
rate over the data is given by


n[g] = EFn(
n[g|Sn]) = EFnEF(|Y − g(Sn; X )|); (2)

where Fn is the joint distribution of the training data Sn. This
is sometimes called the unconditional error of the classi4-
cation rule, for sample size n.
Were the underlying feature-label distribution F known,

the true error could be computed exactly, via (1). In practice,
one is limited to using an error estimator. Ideally, this esti-
mate should be fast to compute and as close as possible to the
true error, for the given training data. Most error estimators
used in practice implement some form of sample-mean-like
approximation using test points. The error estimator is un-
biased, with respect to the unconditional error, if the test
points come from independent samples not used to design
the classi4er.

2.1. Resubstitution

The simplest and fastest way to estimate the error of a
designed classi4er in the absence of test data is to compute
its error directly on the sample data itself:


̂resub =
1
n

n∑
i=1

|yi − g(Sn; xi)|: (3)

This resubstitution estimator, attributed to Ref. [2], is very
fast, but is usually optimistic (i.e., low-biased) as an esti-
mator of 
n[g] [4]. For some classi4cation rules, resubsti-
tution can be severely low-biased, an extreme case being
one-nearest-neighbor classi4cation, in which the resubsti-
tution estimator is identically equal to zero. Typically, the
more complex is the classi4er, the more optimistic is resub-
stitution, since complex classi4ers tend to over4t the data,
especially with small samples [15].
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2.2. Cross-validation

Cross-validation removes the optimism from resubstitu-
tion by employing test points not used in classi4er design
[5]. In k-fold cross-validation, the data set Sn is partitioned
into k folds S(i), for i = 1; : : : ; k (for simplicity, we assume
that k divides n). Each fold is left out of the design pro-
cess and used as a test set, and the estimate is the overall
proportion of error committed on all folds:


̂cvk =
1
n

k∑
i=1

n=k∑
j=1

|y(i)j − g(Sn\S(i); x(i)j )|; (4)

where (x(i)j ; y
(i)
j ) is a sample in the ith fold. The process may

be repeated: several cross-validation estimates are computed
using diGerent partitions of the data into folds, and the re-
sults are averaged. A k-fold cross-validation estimator is un-
biased as an estimator of 
n−n=k [g]. The most well-known
cross-validation method, usually attributed to Ref. [3], is
the leave-one-out estimator, whereby a single observation
is left out each time:


̂loo =
1
n

n∑
i=1

|yi − g(Sin−1; xi)|; (5)

where Sin−1 is the data set resulting from deleting data point
i from the original data set Sn. This corresponds to n-fold
cross-validation. The leave-one-out estimator is unbiased as
an estimator of 
n−1[g]. Cross-validation estimators are often
pessimistic, since they use smaller training sets to design
the classi4er. Their main drawback is their variance [16,4].
They can also be quite slow to compute when the number
of folds or samples is large.

2.3. Bootstrap

The bootstrap error estimation technique [6,7] is based on
the notion of an “empirical distribution” F∗, which serves as
a replacement to the original unknown distribution F. The
empirical distribution puts mass 1=n on each of the n avail-
able data points. A “bootstrap sample” S∗n from F∗ consists
of n equally-likely draws with replacement from the origi-
nal data Sn. Hence, some of the samples will appear multi-
ple times, whereas others will not appear at all. The actual
proportion of times a data point (xi; yi) appears in S∗n can
be written as P∗

i = 1=n
∑n

j=1 I(x∗j ;y∗j )=(xi ;yi), where IS = 1 if
the statement S is true, zero otherwise. The basic bootstrap
zero estimator [17] is written in terms of the empirical dis-
tribution as 
̂0 = EF∗(|Y − g(S∗n ; X )| : (X; Y )∈ Sn \ S∗n ). In
practice, the expectation EF∗ has to be approximated by a
Monte-Carlo estimate based on independent replicates S∗bn ,
for b=1; : : : ; B (B between 25 and 200 being recommended
[17]):


̂0 =

∑B
b=1

∑n
i=1 |yi − g(S∗bn ; xi)| IP∗bi =0∑B
b=1

∑n
i=1 IP∗bi =0

: (6)

The bootstrap zero estimator works like cross-validation:
the classi4er is designed on the bootstrap sample and tested

on the original data points that are left out. It tends to be
high-biased as an estimator of 
n[g], since the amount of
samples available for designing the classi4er is on average
only (1− e−1)n ≈ 0:632n. The estimator


̂b632 = (1− 0:632)
̂resub + 0:632
̂0 (7)

tries to correct this bias by doing a weighted average of the
bootstrap zero and resubstitution estimators. It is known as
the 0.632 bootstrap estimator [17], and has been perhaps
the most popular bootstrap estimator in data mining [18].
It has low variance, but can be extremely slow to compute.
In addition, it can fail when resubstitution is too low biased
[16].

2.4. Smoothed estimation

The resubstitution estimator can be rewritten as


̂resub =
1
n

n∑
i=1

(g(Sn; xi)Iyi=0 + (1− g(Sn; xi))Iyi=1): (8)

The function g is a sharp 0-1 step function that can introduce
variance by the fact that a point near the decision boundary
can change its contribution from 0 to 1=n (and vice versa) via
a slight change in the training data, even if the corresponding
change in the decision boundary is small, and hence so is
the change in the true error. In small-sample settings, 1=n
can be large.

The idea behind smoothed estimators [9] is to replace
function g in (8) by a suitably chosen “smooth” function
taking values in the interval [0; 1], thereby reducing the
variance of the original estimator. In Refs. [9,11–13], this
idea is applied to LDA classi4cation, which is essentially a
one-dimensional problem, since the classi4er can be written
as

g(Sn; x) =

{
1 if W (x)¿ 0;

0 if W (x)6 0;

where W :Rp → R is Anderson’s W statistic [19] (for sim-
plicity, our notation omits the dependence of W on Sn). The
W statistic is given by W (x) = aT x + m, where

a= �−1(�1 − �0);

m=
1
2
(�0 + �1)

T�−1(�0 − �1):

Here, � = 1
2 (�0 + �1) is the pooled covariance matrix,

with �i and �i denoting the mean and covariance matrix
for class i, respectively, which are obtained via their usual
maximum-likelihood estimates. The parameters a and m
specify the separating hyperplane produced by LDA: a is a
vector normal to the hyperplane, and m=‖a‖ is its distance
to the origin.

While the sign of theW statistic gives the decision region
to which a point belongs, its magnitude measures robust-
ness of that decision. In fact, the signed Euclidean distance
from a point x to the separating hyperplane is Wa =W=‖a‖.
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We refer to Wa as the normalized W statistic. In addition
to measuring robustness of the classi4cation, W is not a
step function of the data, but varies in a linear fashion. To
achieve smoothing of the error count, the idea then is to use
a monotone increasing function r :R → [0; 1] applied on
W in place of the function g in (8). The function r should
be such that r(−u) = 1 − r(u); limu→−∞ r(u) = 0, and
limu→∞ r(u)= 1. The smoothed resubstitution estimator is
given by


̂sresub =
1
n

n∑
i=1

(r(W (xi))Iyi=0 + (1− r(W (xi)))Iyi=1): (9)

For instance, one may use the Gaussian function r(u) =
 !(u), where  ! is the cumulative distribution function of
a zero-mean Gaussian random variable with variance !2.
Another example is the windowed linear function r(u) = 0
on (−∞;−b); r(u) = 1 on (b;∞), and r(u) = (u + b)=2b
on [ − b; b]. Generally, a choice of function r depends on
tunable parameters, such as ! and b in the previous exam-
ples. The choice of parameter is a major issue, which aGects
the variance and bias of the resulting estimator. A few ap-
proaches have been tried, namely, arbitrary choice [9,10],
arbitrary function of the separation between classes [10],
parametric estimation assuming normal populations [11,12],
and simulation-based methods [13]. We will return to this
point when we discuss a similar issue in Section 3.

Note that the idea of smoothing can be applied to other
error-counting estimators, such as leave-one-out.

Extension of smoothing to classi4cation rules other than
LDA is not straightforward, since a suitable replacement
to the W statistic must be found, and that is not generally
available. This problem has received little attention in the
literature. In Ref. [4], and under a diGerent but equivalent
guise in [10], it is suggested that one use an estimator " of
the posterior probability P(Y = 1|X ) in such a way that the
classi4cation rule can be written as

g(Sn; x) =

{
1 if "(x)¿ 1

2 ;

0 if "(x)6 1
2 :

(10)

For example, for a kNN classi4er, an estimator of the pos-
terior probability is given by

"(x) =
1
k

n∑
i=1

y(i); (11)

where y(i) denotes the label of the ith closest observation
to the point x. A monotone increasing function r : [0; 1] →
[0; 1], such that r(u− 1=2) = 1− r(u+ 1=2); r(0) = 0, and
r(1)=1, can then be applied to ", and the smoothed resubsti-
tution estimator is given as before by (9), with W replaced
by ". However, this approach has problems. It is not clear
how to choose the estimator ", and it will not have in gen-
eral an easy geometric interpretation. In [10], it is suggested
that one estimate the actual class-conditional probabilities
from the data to arrive at ", but this method has serious is-
sues in small-sample settings. To illustrate these diDculties,
consider the case of 1NN classi4cation, for which smoothed

resubstitution completely fails with the choice of " in (11),
as the estimator is zero with probability one [4].

3. Bolstered error estimation

The feature-label empirical distribution F∗ considered in
connection with bootstrap error estimation is a distribution
for the pair (X; Y ) given by the probability mass function
P(X = xi; Y =yi)=1=n, for i=1; : : : ; n. It is easy to see that
the resubstitution estimator is given by


̂resub = EF∗(|Y − g(Sn; X )|): (12)

The empirical distribution F∗ is con4ned to the original
data points, so that no distinction is made between points
near or far from the decision boundary. If one spreads out
the probability mass put on each point by the empirical
distribution, variation is reduced in (12) because points near
the decision boundary will have more mass go to the other
side than will points far from the decision boundary. Another
way of looking at this is that more con4dence is attributed
to points far from the decision boundary than points near
it. Consider a p-variate probability density function f♦

i ,
for each i = 1; : : : ; n, which we call a bolstering kernel.
We propose the bolstered empirical distribution F♦, with
probability density function f♦ given by

f♦(x; y) =
1
n

n∑
i=1

f♦
i (x − xi)Iy=yi : (13)

This is similar to a Parzen-window probability density esti-
mate [5]. However, our sole purpose is error estimation; Eq.
(13) is not an attempt to estimate the true feature-label dis-
tribution (this would prove futile in small-sample settings,
in which lies our main interest).

The bolstered resubstitution estimator is obtained by re-
placing F∗ by F♦ in (12):


̂♦resub = EF♦(|Y − g(Sn; X )|): (14)

The following result gives an alternative computational
expression.

Proposition 3.1. Let Aj={x∈Rp|g(Sn; x)=j}, for j=0; 1,
be the decision regions for the designed classi8er. We have
that


̂♦resub =
1
n

n∑
i=1

(∫
A1

f♦
i (x − xi) dxIyi=0

+
∫
A0

f♦
i (x − xi) dxIyi=1

)
: (15)

Proof. From (14), we have that


̂♦resub =
∫

|y − g(Sn; x)| dF♦(x; y)

=
1∑
y=0

∫
Rp

|y − g(Sn; x)|f♦(x; y) dx
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Fig. 1. Bolstered resubstitution for LDA, assuming uniform circular
bolstering kernels. The area of each shaded region divided by
the area of the associated circle is the error contribution made
by a point. The bolstered resubstitution error is the sum of all
contributions divided by the number of points (the data set in this
example is part of the simulation study in Section 4).

=
1
n

1∑
y=0

n∑
i=1

∫
Rp

|y − g(Sn; x)|f♦
i (x − xi)Iy=yi dx

=
1
n

n∑
i=1

(∫
Rp
g(Sn; x)f

♦
i (x − xi) dx Iyi=0

+
∫
Rp
(1− g(Sn; x))f

♦
i (x − xi) dx Iyi=1

)
:

But g(Sn; x) is zero over A0 and is 1 over A1, from which
(15) follows.

Eq. (15) extends a similar expression that was proposed
in Ref. [8] in the context of LDA. The integrals in (15) are
the error contributions made by the data points, according
to whether yi =0 or 1. The bolstered resubstitution is equal
to the sum of all error contributions divided by the number
of points. See Fig. 1 for an illustration, where the bolstering
kernels are given by uniform circular distributions.

When the classi4er is linear (the decision boundary is
a hyperplane), then it is usually possible to 4nd analytical
expressions for the integrals in (15); we present examples
of this in conjunction with LDA later. Otherwise, one has
to apply Monte-Carlo integration:


̂♦resub ≈
1
n

n∑
i=1

(
M∑
j=1

Ixij∈A1 Iyi=0 +
M∑
j=1

Ixij∈A0 Iyi=1

)
; (16)

where {xij}j=1; :::;M are samples drawn from the distribution
f♦
i . The experiments in Section 4 indicate that a small num-

berM ofMonte-Carlo samples is needed (in our simulations,
a valueM=10 was adequate, and increasingM beyond that
did not substantially reduce the variance of the estimator).

Bolstering can be applied to any error-counting error es-
timation method. For example, consider leave-one-out es-
timation. Recall that Sin−1 denotes the data set resulting
from deleting data point i from the original data set Sn. Let
Aij = {x∈Rp|g(Sin−1; x) = j}, for j = 0; 1, be the decision
regions for the classi4er designed from Sin−1. The bolstered
leave-one-out estimator can be computed via


̂♦loo =
1
n

n∑
i=1

(∫
Ai1

f♦
i (x − xi) dxIyi=0

+
∫
Ai0

f♦
i (x − xi) dxIyi=1

)
: (17)

When the integrals cannot be computed exactly, a
Monte-Carlo expression similar to (16) can be employed
instead.

3.1. Choosing the amount of bolstering

Although more general bolstering kernels may be con-
sidered, in keeping with the principle of not making com-
plicated inferences from a limited amount of data, in this
paper we only consider zero-mean, spherical bolstering ker-
nels f♦

i , with covariance matrices of the form !2i Ip. In each
case there is a family of bolstered estimators, correspond-
ing to the choices of the standard deviations !1; : : : ; !n. The
choice of these parameters determines the variance and bias
properties of the corresponding bolstered estimator. If !i=0,
for i = 1; : : : ; n, then there is no bolstering and the bol-
stered estimator reduces to the original estimator. As a gen-
eral rule, larger !i’s, i.e., “wider” bolstering kernels, lead
to lower-variance estimators, but after a certain point this
advantage becomes oGset by increasing bias.

The choice of the standard deviations is a critical issue.
We have mentioned in Section 2.4 that several approaches
have been attempted to solve a similar problem in smoothed
error estimation. In Ref. [8], a simulation-based approach
is employed to 4nd a single value !i = ! for bolstered
resubstitution. We propose here a simple non-parametric
sample-based method to choose these parameters that is ap-
plicable in small-sample settings. This method is partly in-
spired by the distance argument used in Ref. [17], in con-
nection with the 0.632 bootstrap estimator.

When bolstering resubstitution, the aim is to select the
parameters so that the bolstered resubstitution estimator is
nearly unbiased. As mentioned previously, one can think of
(X; Y ) in (1) or (2) as a random test point. Given that Y =y,
this test point is at a “true mean distance” &(y) from the data
points belonging to class y. This distance is determined by
the underlying class-conditional distribution F(X |Y = y).
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One reason why plain resubstitution is optimistically biased
is that the test points in (3) are all at distance zero from
the training data. Since bolstered estimators spread the test
points, the task is to 4nd the amount of spreading that makes
the test points to be as close as possible to the true mean
distance to the training data points.

The true mean distance can be estimated by its
sample-based estimate:

d̂(y) =

∑n
i=1 minj �=i {‖xi − xj‖}Iyi=y∑n

i=1 Iyi=y
: (18)

The estimate d̂(y) is the mean minimum distance between
points belonging to class y.

Letf♦;1
i be a unit-variance bolstering kernel, and letDi be

the random variable equal to the distance of a point randomly
selected from f♦;1

i to the origin. Let FDi (x) be the cdf of
Di. In the case of the bolstering kernel f♦

i with variance
!2i Ip, all distances get multiplied by !i. We propose to 4nd
the value of !y for class y, such that the median distance of
a test point to the origin is equal to the estimated true mean
distance d̂(y), so that half of the test points will be farther
from the center than d̂(y), and the other half will be nearer.
Hence, !y is the solution of the equation !yF−1

Di (1=2)=d̂(y).
Note that

*p; i = F
−1
Di (1=2) (19)

can be viewed as a constant “correction” factor, which can
be computed and stored oG-line. The subscript p indicates
explicitly that the correction factor is a function of the di-
mensionality. The estimated standard deviations for the bol-
stering kernels are thus given by

!i =
d̂(yi)
*p; i

for i = 1; : : : ; n:

Clearly, as the number of samples in the training data in-
creases, the standard deviations !i decrease, and there is less
bias correction introduced by the bolstered resubstitution.
This is in accordance with the fact that resubstitution tends
to be less optimistically biased as the sample size increases.

In situations where resubstitution is heavily low-biased
due to over4tting classi4cation rules, it may not be a
good idea to spread incorrectly classi4ed data points be-
cause that increases optimism of the error estimate, i.e.,
low-biasedness. Bias is reduced if one assigns !i = 0 (no
bolstering) to incorrectly classi4ed points. This increases
variance because there is less bolstering. We call this vari-
ation a semi-bolstered resubstitution estimator. We have
found empirically (see Section 4) that for 3NN and CART,
which are over4tting rules, especially with very small sam-
ples, the bias-variance trade-oG (as measured by the RMS)
may be favorable to semi-bolstered resubstitution.

Let us consider now the leave-one-out estimator. In this
case, no bias-correction is necessary or desired; the aim is
solely reducing the variance of the estimator. Considering
the distance argument, we see that each point left out in the
design of the classi4er g is an independent sample and is

already at the right distance to the design data set (this is
the reason for the unbiasedness of leave-one-out as estima-
tor of 
n−1[g]). Therefore, we propose to use the minimum
distance d(xi; Sin−1) of each point to the rest of the data set
as the basis for selecting the standard deviation of the corre-
sponding bolstering kernel f♦

i . As before, we want half of
the test points to be farther from the center than d(xi; Sin−1),
and the other half to be nearer. Therefore, the standard de-
viations are distinct for each data point, and given by

!i =
d(xi; Sin−1)

*p; i
for i = 1; : : : ; n;

where *p; i is the correction factor in (19).

3.2. Gaussian-bolstered error estimation

In this paper we consider bolstering kernels that are spher-
ical p-variate normal distributions:

f♦
i (x) =

1
(2+)p=2! pi

exp
(
−‖x‖2

2!2i

)
:

For a general classi4er, the integrals in (15) and (17) have
to be computed by Monte-Carlo sampling. For a linear clas-
si4er, however, analytical expressions are possible. The fol-
lowing result illustrates this for the case of resubstitution
and LDA.

Proposition 3.2. For LDA, the Gaussian-bolstered resub-
stitution error estimator is given by


̂♦resub =
1
n

n∑
i=1

( !i (Wa(xi))Iyi=0

+ !i (−Wa(xi))Iyi=1); (20)

where  !i is the cumulative distribution function of a
zero-mean Gaussian random variable with variance !2i ,
and Wa is the normalized W statistic.

Proof. Suppose that xi ∈A0. By exploiting the symmetry of
the problem, we may assume, without loss of generality, the
geometry depicted in Fig. 2, where xi is the origin. We have
that∫
A0

f♦
i (x − xi) dx

=
∫
A0

f♦
i (x) dx =

∫
A0

1
(2+)p=2!pi

exp
(
−‖x‖2

2!2i

)
dx

=
∫ h

−∞

1
(2+)1=2!i

exp

(
− x

2
(1)

2!2i

)
dx(1)

×
∫ ∞

−∞
(1=(2+)1=2!i) exp(−x2(2)=2!2i ) dx(2) · · ·︸ ︷︷ ︸

1



U. Braga-Neto, E. Dougherty / Pattern Recognition 37 (2004) 1267–1281 1273

Fig. 2. Diagram for calculation of
∫
A0
f♦
i (x− xi) dx (see proof of

Proposition 3.2).

×
∫ ∞

−∞
(1=(2+)1=2!i) exp(−x2(p)=2!2i ) dx(p)︸ ︷︷ ︸

1

= !i (h):

Clearly,
∫
A1
f♦
i (x−xi) dx=1− !i (h)= !i (−h). If x∈A1

instead, then the signs of h are interchanged. Now, the nor-
malizedW statistic at point xi is given byWa(xi)=(−1)(j+1)h
for xi ∈Aj; j = 0; 1. It follows that

∫
Aj
f♦
i (x − xi) dx =

 !i ((−1)(j+1)Wa(xi)), for xi ∈Rp; j=0; 1. By replacing this
into (15), one obtains (20).

A similar expression to (20) applies to the Gaussian-
bolstered leave-one-out.

Note that  !(0) = 1=2, which corresponds to the error
contribution of a point on the decision boundary. As !i → 0,
for i = 1; : : : ; n, then all functions  !i collapse to indicator
step functions and the Gaussian-bolstered error estimator
reduces to the original estimator. On the other hand, if !i →
∞, for i = 1; : : : ; n, then the functions  !i become constant
and equal to 1

2 , so that the bolstered estimator is identically
equal to 1

2 , regardless of the data. This estimator has zero
variance, but is of course not useful.

For LDA and in the case where !i = !, for i = 1; : : : ; n,
the Gaussian-bolstered resubstitution estimator reduces to
the smoothed estimator in (9), with r(u) =  !(u=‖a‖).
The actual values of !i in a practical situation are com-

puted according to the distance-based scheme outlined in
the previous subsection. In the present Gaussian case, the
distance variables Di are distributed as a chi random vari-
able D with p degrees of freedom. The density function of
D is given by [20]:

fD(x) =
21−p=2xp−1e−x

2=2

-(p=2)
; (21)

where - is the gamma function. For p=2, this becomes the
well-known Rayleigh density. The cdf FD can be computed
by numerical integration of (21), and the inverse at point

1=2 can be found by a simple binary search procedure (using
the fact that FD is monotonically increasing), which yields
the correction factor *p. For instance, the values of the cor-
rection factor up to 4ve dimensions are: *1 = 0:674; *2 =
1:177; *3 = 1:538; *4 = 1:832; *5 = 2:086.

4. Experimental results

In this section, we report results obtained from a large sim-
ulation study based on synthetic data, which measures the
performance of resubstitution (resub), leave-one-out (loo),
10-fold cross-validation with 10 repetitions (cv10r) and the
0.632 bootstrap (b632) against a few Gaussian-bolstered
error estimators, namely, bolstered resubstitution (bre-
sub), semi-bolstered resubstitution (sresub), and bolstered
leave-one-out (bloo), for three popular classi4cation rules,
LDA, 3NN, and CART. For the computation of cv10r,
we use strati8ed cross-validation, whereby the classes are
represented in each fold in the same proportion as in the
original data (there is evidence that this improves the es-
timator [18]). For computation of the bootstrap estimator,
we use a variance-reducing technique called balanced boot-
strap resampling [21], where each sample is made to appear
exactly B times in the computation (e.g., if it appears twice
in one bootstrap sample, it has to be absent in some other
bootstrap sample). The number of bootstrap samples is
B = 100, which makes the number of designed classi4ers
be the same as for cv10r. For LDA, the bolstered estimators
are computed using the analytical formulas developed in
Section 3; for 3NN and CART, Monte-Carlo sampling is
used. We have found that only M = 10 Monte-Carlo sam-
ples per bolstering kernel is adequate, and increasing M to
a much larger value, M = 200, reduces the variance of the
estimators only slightly. To improve the performance and
minimize over4t in CART, the tree is not fully grown, but
splitting stops when there are six points or fewer in a node.
The simulations were performed on a 2:5 GHz Pentium 4
computer, running Windows 2000 and Cygwin (a UNIX
environment for Windows). The C code developed to im-
plement all the error estimators and classi4cation rules,
with full documentation and examples, can be downloaded
from the companion website.

Our experiments assess the empirical distribution of

n[g|Sn] − 
̂, for each error estimator 
̂. This deviation dis-
tribution (see also Ref. [16]) indicates how far from the
actual error value the estimated value is; in our study, it
is derived from 1000 independent training data sets drawn
from several models. The use of synthetic data is central
to the analysis because it allows us to the compute true
errors needed to construct the deviation distributions. We
also present average timings for computation of the several
error estimators considered in the simulation.

We consider here a catalog of 72 experimental condi-
tions, each involving a thousand replications using dif-
ferent sample training data drawn from an underlying
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Table 1
Twelve basic experiments used in the simulation study

Exp. Rule p & !1 !2 Bayes err.

1 LDA 2 0.59 1.00 1.00 0.202
2 LDA 2 0.59 1.00 4.00 0.103
3 LDA 5 0.37 1.00 1.00 0.204
4 LDA 5 0.37 1.00 2.16 0.103

5 3NN 2 1.20 1.00 1.00 0.204
6 3NN 2 1.20 1.00 5.20 0.103
7 3NN 5 0.77 1.00 1.00 0.204
8 3NN 5 0.77 1.00 2.35 0.105

9 CART 2 1.20 1.00 1.00 0.204
10 CART 2 1.20 1.00 5.20 0.103
11 CART 5 0.77 1.00 1.00 0.204
12 CART 5 0.77 1.00 2.35 0.105

model. The model assumed for LDA consists of Gaus-
sian class-conditional densities, with spherical covariances
and means located at (&; : : : ; &) and (−&; : : : ;−&), where
&¿ 0 is a separation parameter that controls the Bayes
error. The model used for 3NN and CART corresponds
to class-conditional densities given by a mixture of Gaus-
sians, with spherical covariances and means at opposing
vertices of a hypercube centered at the origin and side 2&;
e.g., in 4ve dimensions, the class-conditional density for
class 1 has means at (&; &; &; &; &) and (−&;−&;−&; &;−&),
whereas the class-conditional density for class 2 has means
at (&;−&; &;−&; &) and (−&; &;−&; &;−&). In all cases, we
assume equal prior probabilities for each class.

We consider 12 experiments and six sample sizes, vary-
ing from 20 to 120 in increments of 20, which make up the
total of 72 experimental conditions. The twelve experiments
correspond to a choice among the three classi4cation rules,
using low or moderate dimensionality, and equal or distinct
covariance matrices; see Table 1. Here, p is the dimension-
ality, and the separation parameter & and the standard de-
viations !1 and !2 are adjusted so that the optimal Bayes
error is about 0.1 in half of the cases, and about 0.2 in the
other half. We point out that these are diDcult models, with
considerable overlapping between the classes (even in the
cases where the Bayes error is 0.1, owing to a large discrep-
ancy in variance between the classes, not linear separation).
Due to space constraints, we present here a selection of re-
sults covering representative experiments and sample sizes.
Please see the companion website for the full results of the
complete set of experiments.

Tables 2 and 3 display the statistics of the empirical
distribution of 
n[g|Sn] − 
̂, for each error estimator 
̂, de-
rived from the 1000 independent draws of the observations
Sn, for three representative experiments and sample sizes
n=20 and n=80. Also displayed are the sample mean and
sample standard deviation of the true error 
n[g|Sn], which

is obtained exactly in the LDA case, and by Monte-Carlo
computation in the 3NN and CART cases.

Figs. 3 and 4 display the box plots of the empirical devi-
ation distribution, for n = 20 and n = 80, respectively. For
each column (estimator), the box has its bottom at the lower
quartile and the top at the upper quartile. The location of the
median is indicated by a line across the box. There are also
dashed lines (“whiskers”) extending from each end of the
box to show the extent of the rest of the data. The ends of
the whiskers on each side of the box lie at 1.5 times the in-
terquartile range. Crosses mark the position of outliers, i.e.,
data with values beyond the ends of the whiskers.

Figs. 5 and 6 display plots of the empirical deviation dis-
tribution, for n=20 and 80, respectively, obtained by 4tting
a beta density to the raw data. For clarity of presentation,
we leave out the cross-validation estimators (the complete
plots, using color to facilitate visualization, can be accessed
on the companion website).

The simulation results lead to several conclusions. Resub-
stitution, leave-one-out, and 10-fold cross-validation with
repetition are as a general rule outperformed by the 0.632
bootstrap and the bolstered estimators. The latter are very
competitive with the bootstrap. For LDA, the best esti-
mator overall is without question the bolstered resubstitu-
tion. For 3NN and CART, classi4ers known to over4t in
small-sample settings (note that n=20 with p=5 is an ex-
treme small-sample situation), the situation is not so clear.
For 3NN, we can see that bolstered resubstitution fails in
correcting the bias of resubstitution for p=5, despite having
small variance (however, it is still the best overall estimator
for 3NN in Experiment 5). In that case, the semi-bolstered
resubstitution is a very competitive alternative. For CART,
the bootstrap and bolstered resubstitution estimators are af-
fected by the extreme low-biasedness of resubstitution. In
this case, bolstered resubstitution performs better than in the
3NN case, but the best overall estimator is the semi-bolstered
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Table 2
Statistics of empirical deviation distribution for three representative experiments, in the case n = 20

Resub Loo cv10r b632 Bresub Sresub Bloo

Experiment 1
LDA, p = 2; & = 0:59; !1 = 1:00; !2 = 1:00
Mean[
n[g|Sn]] = 0:224; Var[
n[g|Sn]] = 0:001

Mean −0.046 0.001 0.000 −0.002 −0.008 0.036 0.025
Variance 0.008 0.010 0.010 0.008 0.005 0.008 0.008
RMS 0.101 0.101 0.98 0.092 0.074 0.098 0.090

Experiment 7
3NN, p = 5; & = 0:77; !1 = 1:00; !2 = 1:00
Mean[
n[g|Sn]] = 0:331; Var[
n[g|Sn]] = 0:002

Mean −0.156 0.070 0.035 0.013 −0.083 −0.004 0.105
Variance 0.007 0.016 0.013 0.005 0.003 0.006 0.007
RMS 0.176 0.145 0.120 0.072 0.099 0.080 0.134

Experiment 12
CART, p = 5; & = 0:77; !1 = 1:00; !2 = 2:35
Mean[
n[g|Sn]] = 0:373; Var[
n[g|Sn]] = 0:003

Mean −0.321 0.042 0.025 −0.069 −0.079 −0.067 0.036
Variance 0.003 0.026 0.018 0.005 0.003 0.004 0.009
RMS 0.325 0.168 0.138 0.099 0.098 0.090 0.102

Table 3
Statistics of empirical deviation distribution for three representative experiments, in the case n = 80

Resub Loo cv10r b632 Bresub Sresub Bloo

Experiment 1
LDA, p = 2; & = 0:59; !1 = 1:00; !2 = 1:00
Mean[
n[g|Sn]] = 0:207; Var[
n[g|Sn]] = 0:000

Mean −0.010 −0.000 0.001 −0.001 0.000 0.029 0.006
Variance 0.002 0.002 0.002 0.002 0.001 0.002 0.002
RMS 0.045 0.045 0.044 0.042 0.039 0.053 0.042

Experiment 7
3NN, p = 5; & = 0:77; !1 = 1:00; !2 = 1:00
Mean[
n[g|Sn]] = 0:288; Var[
n[g|Sn]] = 0:000
Mean −0.140 0.009 0.006 −0.022 −0.069 −0.002 0.039
Variance 0.002 0.003 0.003 0.001 0.001 0.002 0.001
RMS 0.145 0.060 0.055 0.044 0.074 0.039 0.053

Experiment 12
CART, p = 5; & = 0:77; !1 = 1:00; !2 = 2:35
Mean[
n[g|Sn]] = 0:277; Var[
n[g|Sn]] = 0:001

Mean −0.226 0.009 0.011 −0.056 −0.031 −0.016 0.025
Variance 0.001 0.005 0.003 0.001 0.001 0.001 0.002
RMS 0.229 0.071 0.057 0.068 0.043 0.035 0.050



1276 U. Braga-Neto, E. Dougherty / Pattern Recognition 37 (2004) 1267–1281

Experiment 2 Experiment 3

Experiment 6Experiment 5Experiment 4

Experiment 1

Experiment 7 Experiment 8 Experiment 9

Experiment 12Experiment 11Experiment 10
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Fig. 3. Box plots of empirical deviation distribution for n = 20.

resubstitution. The bolstered leave-one-out is generally more
variable than the bolstered resubstitution estimators, but it
displays less bias. It can be seen that increasing the sample
size improves the performance of all the estimators consid-
erably, but the general relative trends discussed above still
hold.

Among the bolstered error estimators considered, we rec-
ommend bolstered resubstitution as the most eGective. It has
the least variance among all estimators considered, includ-
ing the bootstrap. For LDA or other linear classi4ers, bol-
stered resubstitution should undoubtedly be the error esti-
mator of choice. For more over4tting rules, and in extremely
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Fig. 4. Box plots of empirical deviation distribution for n = 80.

small-sample settings, semi-bolstered resubstitution may be
a better alternative, in terms of bias (even though it is more
variable); this proved to be the case especially with 3NN
and p= 5. If bias is the most important criterion in a given
application, then bolstered leave-one-out is a very eDcient
estimator, being often less biased than plain leave-one-out

and 10-fold cross validation with repetition, and in all cases
being less variable than those cross-validation estimators.

Our results show that bolstered resubstitution is very com-
petitive with the 0.632 bootstrap estimator in terms of vari-
ance and overall RMS error, with the added bene4t that its
computational cost is much lower than for the bootstrap.
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Fig. 5. Empirical deviation distribution for n= 20. Key: •= resubstitution, = bootstrap, ◦= bolstered resubstitution, �= semi-bolstered
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Table 4
Average timings in milliseconds for three representative experiments

n Resub Loo cv10r b632 Bresub Sresub Bloo

Experiment 1
LDA, p = 2; & = 0:59; !1 = 1:00; !2 = 1:00

20 0.0 0.4 2.2 3.6 0.0 0.0 0.4
40 0.1 1.2 3.7 6.3 0.0 0.0 1.3
60 0.1 2.7 5.1 8.9 0.1 0.0 2.7
80 0.0 4.6 6.5 11.7 0.1 0.1 4.7
100 0.1 7.0 7.7 14.4 0.1 0.2 7.1
120 0.0 9.9 9.4 17.2 0.2 0.2 9.9

Experiment 7
3NN, p = 5; & = 0:77; !1 = 1:00; !2 = 1:00

20 0.0 0.0 0.6 5.2 0.7 0.7 0.6
40 0.1 0.1 1.6 13.5 2.0 1.5 1.7
60 0.2 0.3 2.7 23.8 3.1 2.7 3.3
80 0.4 0.5 5.0 40.3 4.7 4.8 4.7
100 0.6 0.8 7.0 56.0 6.7 6.1 7.0
120 0.6 0.8 8.6 76.8 8.7 8.5 9.4

Experiment 12
CART, p = 5; & = 0:77; !1 = 1:00; !2 = 2:35

20 0.0 1.2 5.5 6.0 0.3 0.2 1.5
40 0.0 9.4 20.2 19.7 0.5 0.5 9.7
60 0.0 31.8 45.1 44.4 0.6 0.7 32.7
80 0.0 77.3 80.7 81.7 1.0 0.9 78.8
100 0.0 154.4 127.0 131.5 1.2 1.1 156.1
120 0.0 274.8 187.2 197.0 1.5 1.3 278.1

Table 4 reports the average computation timings in millisec-
onds of a single run of the various error estimators, for three
representative experiments. Resubstitution is the fastest esti-
mator. Leave-one-out is fast for a small number of samples,
but its performance quickly degrades with increasing num-
bers of samples. The 10-fold cross-validation with repetition
and the bootstrap 0.632 estimator are the slowest estimators.
Bolstered resubstitution is tens to hundreds of times faster
than the bootstrap estimator. In a large experiment with thou-
sands of variables, where hundreds of thousands of variable
subsets may have to be considered for feature extraction, re-
peated cross-validation and bootstrap estimation, as well as
leave-one-out if many samples are considered at a time, are
problematic (perhaps prohibitive) in terms of computation
time.

5. Conclusions

We have proposed in this paper an error estimation tech-
nique that is fast and accurate, and is particularly useful in
small-sample settings. It improves error estimation by bol-
stering the empirical distribution of the data, which is ac-

complished by bolstering kernels applied on the training data
set. This leads to error estimators that have low variance,
and generally low bias as well. The amount of bolstering is
automatically selected by means of a simple nonparametric
technique. Results from an extensive simulation study show
that bolstered resubstitution is a very attractive choice as an
error estimator in small-sample settings. In our simulations,
bolstered resubstitution was vastly superior to plain resubsti-
tution and cross-validation, and was very competitive with
the 0.632 bootstrap estimator, while being tens to hundreds
of times faster. For over4tting classi4cation rules, partic-
ularly 3NN in our study, the semi-bolstered resubstitution
may be a better alternative in terms of lower bias. If bias
is the most important criterion, then bolstered leave-one-out
becomes a good alternative, especially with over4tting rules
such as 3NN and CART. Forthcoming studies will elucidate
further properties of the proposed bolstered error estimators.
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