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ABSTRACT
Motivation: Ranking gene feature sets is a key issue for
both phenotype classification, for instance, tumor classifica-
tion in a DNA microarray experiment, and prediction in the
context of genetic regulatory networks. Two broad methods
are available to estimate the error (misclassification rate) of
a classifier. Resubstitution fits a single classifier to the data,
and applies this classifier in turn to each data observation.
Cross-validation (in leave-one-out form) removes each obser-
vation in turn, constructs the classifier, and then computes
whether this leave-one-out classifier correctly classifies the
deleted observation. Resubstitution typically underestimates
classifier error, severely so in many cases. Cross-validation
has the advantage of producing an effectively unbiased error
estimate, but the estimate is highly variable. In many applica-
tions it is not the misclassification rate per se that is of interest,
but rather the construction of gene sets that have the potential
to classify or predict. Hence, one needs to rank feature sets
based on their performance.
Results: A model-based approach is used to compare the
ranking performances of resubstitution and cross-validation
for classification based on real-valued feature sets and for
prediction in the context of probabilistic Boolean networks
(PBNs). For classification, a Gaussian model is considered,
along with classification via linear discriminant analysis and the
3-nearest-neighbor classification rule. Prediction is examined
in the steady-distribution of a PBN.Three metrics are proposed
to compare feature-set ranking based on error estimation with
ranking based on the true error, which is known owing to the
model-based approach. In all cases, resubstitution is competi-
tive with cross-validation relative to ranking accuracy.This is in
addition to the enormous savings in computation time afforded
by resubstitution.
Contact: edward@ee.tamu.edu
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1 INTRODUCTION
When choosing among a collection of potential feature sets for
classification (prediction), estimating the errors of designed
classifiers (predictors) is a key issue. In particular, we may
wish to order the potential feature sets according to the mis-
classification rates of their corresponding classifiers (Xiong
et al., 2001a,b; Kim et al., 2002). For this kind of rank-
ing, which falls into the category of biomarker identification,
the degree to which an error estimator preserves the true
ordering is the most critical aspect of its performance. Two
common methods for estimating misclassification rates are
resubstitution and cross-validation. In resubstitution, one
simply constructs the classifier based on all the data, and then
applies this classifier in turn to each observation. In cross-
validation, one successively holds out observations from the
data set, constructs the classifier based on the reduced data,
and then observes whether the held-out observations are cor-
rectly classified. Here, we consider the leave-one-out form of
cross-validation.

For most feature-label distributions and classification rules,
resubstitution underestimates the rate of misclassification, and
in some instances this bias can be severe, the most extreme
case being single-nearest-neighbor classification, where the
resubstitution estimate is always zero. On the other hand,
cross-validation is close-to-unbiased in the following sense:
if the procedure is repeated for different samples drawn from
a population, then the average error estimate will approxim-
ate the expected error of the designed classifiers across all
possible same-size samples. Owing to bias considerations,
cross-validation is commonly preferred over resubstitution.
However, for small samples, estimator variance needs to
be considered, and here resubstitution is superior to cross-
validation (Devroye et al., 1996). This small-sample issue is
especially relevant when working with cDNA microarrays.

In the context of microarray experiments, error estimation
per se is perhaps not the major issue; indeed, the generation
of potential feature sets to be investigated in confirmatory
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experiments is at least as crucial as error estimation. This
paper compares resubstitution and cross-validation relative to
the degree to which performance ranking based on them is in
accord with the true feature-set ranking. Two kinds of rank-
ing problems are considered, both relating to estimating a
discrete random variable on the basis of other observed ran-
dom variables. In statistical terminology, both estimations are
referred to as either classification or prediction; however, it is
not uncommon to differentiate them based on their settings,
and we will adhere to this dichotomy.

The first problem involves estimating class labels. Here,
there are classes of observations and a classifier is designed
to estimate the class to which an observation belongs. For
cancer classification, the observations are gene-expression
levels and the classes are cancer types. We will refer to
label estimation as classification and will confine ourselves
to two classes labeled 0 and 1, the ideas generalizing easily
to multi-class classification. The observations upon which the
classifier operates compose the feature set for the classifier.
The input observations are analog and the output is binary.
Owing to the fact that we need ground truth with which to
compare resubstitution and cross-validation error estimation,
we will postulate a feature-label distribution from which to
draw random samples.

The second problem involves estimating a random quant-
ity based on similar quantities and is called prediction. Our
interest here is predicting the expression level of a target gene
via the expression levels of related genes. The sets of pre-
dictor genes constitute the feature sets to be ranked. We will
work in the context of probabilistic Boolean networks (PBNs)
(Shmulevich et al., 2002). PBNs have been used to model
genetic regulatory networks in a binary manner (0 down-
regulated, 1 up-regulated). The intent here is to generate
synthetic data that is ‘regulatory’ in nature, so that its distribu-
tional properties reflect to some extent expression data derived
from genetic regulatory networks. Recalling the generation
of random Boolean networks (Kaufmann, 1993), we consider
random PBNs. For each randomly chosen PBN, we obtain the
steady-state distribution of its corresponding Markov chain
by running the network a large number of times, and consider
multivariate gene prediction in the steady-state distribution.
Since we have the steady-state distribution, we can compute
actual prediction errors. We can then take random samples
from the steady-state distribution, form error estimates from
these samples via both resubstitution and cross-validation, and
then compare rankings for the true and estimated errors.

To express matters more precisely, prediction in the Boolean
context means deciding whether or not a particular target
gene is expressed, an event denoted by a binary variable Y .
Available are the binary gene expressions, X1, X2, . . . , Xn, of
n other genes. Owing to the small sample sizes in microar-
ray experiments, classifiers based on feature sets of three or
fewer genes are of particular interest. Even for a small regu-
latory network, there are many such feature sets. Our interest

is in describing the best feature sets, i.e. the ones that give the
lowest prediction errors. In practice, the best feature sets are
the ones whose variables are chosen as the input variables for
the functions determining the network transitions in a PBN—
hence, the importance of ranking error estimates. Keeping
with our interest in multivariate gene interaction and regulat-
ory networks, rather than work with prediction error directly,
we will do the analysis using the coefficient of determina-
tion (CoD). The CoD gives the relative increase in prediction
accuracy for Y resulting from the observations X1, X2, . . . , Xn

in comparison with the best predictor of Y in the absence of
observations. The CoD has been used to quantify gene inter-
action, with particular interest being in ranking (Kim et al.,
2000), and it is the measure actually used in constructing
PBNs. Rankings based on the CoD are equivalent to rankings
based on misclassification error.

The results of our model-based simulations will show that
resubstitution is competitive with cross-validation in gener-
ating feature sets. Since cross-validation requires redesign of
the classifier many times and thus requires much more compu-
tation time than resubstitution, this gives a powerful argument
for the use of the latter.

2 BASIC ERROR THEORY
This section sets out the basic notions regarding error rates
(and the CoD) and discusses their estimation. Although we
will consider both classification and prediction, to avoid
redundancy we will describe matters in the context of pred-
iction, from which application to classification is straight-
forward. More complete descriptions can be found in the
literature: theory (Devroye et al., 1996) and application (Duda
et al., 2001).

Given there are n genes to predict the expression level of
the target gene, we denote the variables corresponding to the
expression levels of the predictors by X1, X2, . . . , Xn and
that of the target-gene variable by Y . Assuming there are P

samples, we letY1, Y2, . . . , YP denote the binary outcome vari-
ables indicating the expression of the target gene in sample
p = 1, 2, . . . , P , respectively. For the p-th sample, in addition
to Yp there is an n-vector Xp = (Xp1, . . . , Xpn) correspond-
ing to the outcomes of X1, X2, . . . , Xn, where Xpi = 1 means
that the i-th gene is expressed, and Xpi = 0 means that it is
not expressed in the p-th sample.

By definition, a feature set is a subset of gene-expression
levels used for prediction. Let S be the number of feature
sets and Zs = (Zs1, Zs2, . . . , Zsq) denote the s-th feature set,
where q is the number of genes whose expression levels are
being used as predictors. The expression levels constituting
a feature set form a subset of the n expression levels for the
full gene set: {Zs1, Zs2, . . . , Zsq} ⊂ {X1, X2, . . . , Xn}. A pre-
dictor is a binary-valued function, �, of the features, with
the error of � being given by the probability of erroneous
prediction, ε[�] = pr(�(Zs) �= Y ). The optimal predictor
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for the s-th feature set is given by �opt(Zs) = 1 if pr(Y =
1|Zs) > pr(Y = 0|Zs) and �opt(Zs) = 0 otherwise. Owing
to optimality, ε[�opt] ≤ ε[�] for any predictor �.

A predictor �̂s is designed using the sample data
{(zs1, y1), (zs2, y2, ), . . . , (zsP , yP )} corresponding to the s-th
feature set and its error is given by εs = ε[�̂s] = pr(�̂s(Zs) �=
Y ). The feature sets can then be ranked by the values of εs , s =
1, 2, . . . , S. For predictor design (training), we use the plug-in
rule, which has been used in a number of circumstances for
gene-expression prediction. For this rule, the designed pre-
dictor is defined in the same manner as the Bayes (optimal)
predictor from the distribution except that pr(Y = 1|Zs) and
pr(Y = 0|Zs) are replaced by their frequency-based estimates
(missing data and ties are resolved by using the majority label
in the sample). In our simulations we can directly compute εs

because we have the joint distribution of Zs and Y .
In practice, the joint distribution of Zs and Y is unknown

and we resort to error estimation. The resubstitution error
estimate, εsR , for the s-th feature set is found by designing
the predictor �̂s and taking the fraction of errors made by
applying �̂s on the sample data, an error occurring when
�̂s(zsp) �= yp, for p = 1, 2, . . . , P . The cross-validation
(leave-one-out) error estimate for the s-th feature set is found
by the following procedure. Design the predictor �̂s1 on
the data set {(zs2, y2), (zs3, y3, ), . . . , (zsP , yP )} formed by
leaving out the data point (zs1, y1) and define an error to
occur if �̂s1(zs1) �= y1; design the predictor �̂s2 on the
data set {(zs1, y1), (zs3, y3, ), . . . , (zsP , yP )} formed by leav-
ing out the data point (zs2, y2) and define an error to occur if
�̂s2(zs2) �= y2; and continue doing this for all P data points.
The cross-validation error, εsC , is the fraction of errors made
in this procedure.

The CoD measures the relative increase in prediction accur-
acy from using the feature set in comparison with the estimate
of the target in the absence of predictors. Without predictors, Y
is predicted to be the majority label m among Y1, Y2, . . . , YP .
The true error of this predictor is given by ε0 = pr(Y �=
m) = pr(Y = 1 − m). The true CoD for the s-th feature set is
defined as

CoDs = ε0 − εs

ε0
.

For estimating the CoD in a practical situation, where the true
underlying probabilities are not known, both ε0 and εs have
to be estimated using only the data. If π̂ is the fraction of the
sample for which Y = 1, then the empirical error is ε̂0 =
min(π̂ , 1 − π̂). The empirical CoDs for resubstitution and
cross-validation using the s-th feature set are defined similarly
to CoDs , with ε̂0 in place of ε0, and with εsR and εsC in
place of εs , respectively. They are denoted by CoDsR and
CoDsC , respectively. Feature sets with low error rates are
those with high CoDs. Owing to the fact that estimates are
being used, it is possible to have ε̂0 < εsR , in which case
we define CoDsR = 0. In addition, if ε̂0 = 0, then we set

CoDsR = 1 if εsR = 0, and CoDsR = 0 otherwise (analogous
remarks apply to CoDsC).

3 MODELS
This section describes the models we will use for studying
ranking based on resubstitution and cross-validation for both
classification and prediction, as described in the Introduction
section.

3.1 Gaussian model
We consider the standard Gaussian model, where the classes
are equally likely and the class-conditional densities are spher-
ical unit-variance Gaussians. The class means are located at
δa and −δa, where δ > 0 is a separation parameter and
a = (a1, a2, . . . , an) is a parameter vector. Without loss of
generality, we assume that ‖a‖ = 1. It is well known that the
Bayes classifier is a hyperplane perpendicular to the axis join-
ing the means, with Bayes error εBAYES = 1 − �(δ), where
� is the standard normal cumulative distribution function. In
particular, it follows that δ = �−1(1−εBAYES), which allows
one to find δ for a prescribed Bayes error.

The Bayes error increases with decreased class separation,
and vice versa. If δ = 0, then εBAYES = 1

2 , which corres-
ponds to total overlap between classes. On the other hand, if
δ = ∞, then εBAYES = 0, which corresponds to complete sep-
aration between classes. A plot of εBAYES versus δ is shown
in Figure 1.

If a subset L of the original variables is selected, then again
one has a standard Gaussian model as before, but now the
separation between the classes is a function of which variables
are selected. More specifically, one has

εL
BAYES = 1 − �

δ

√∑
k∈L

a2
k

 .

The Bayes error is a function of both the separation and the
model parameters. If L contains all the original variables, then
εL

BAYES reduces to εBAYES. To minimize εL
BAYES for a given

number of selected variables, one should pick the variables
corresponding to the largest parameters.

3.2 Probabilistic Boolean networks
A PBN is defined by a set of binary-valued nodes
{X1, X2, . . . , Xn} and a list F = {F1, F2, . . . , Fn} of sets
Fi = {f (i)

1 , f (i)
2 , . . . , f (i)

l(i)} of Boolean functions. Each node
Xi ∈ {0, 1} represents the state (expression) of gene i, where
Xi = 1 means that gene i is expressed and Xi = 0 means that
it is not expressed. The set Fi contains the possible rules of
regulatory interactions for gene i. For j = 1, 2, . . . , l(i), f

(i)
j

is a possible Boolean function determining the value of Xi

in terms of some other gene states. The functions are called
predictors. All genes (nodes) are updated synchronously and
repeatedly in accordance with the functions assigned to them.
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Fig. 1. Bayes error versus class separation in the Gaussian model.

A realization of a PBN at a given time is determined by a
vector f of Boolean functions. If there are N possible real-
izations, then there are N vector functions f1, f2, . . . , fN of
the form fk = (f

(1)
k1

, f (2)
k2

, . . . , f (n)
kn

), for k = 1, 2, . . . , N ,

1 ≤ ki ≤ l(i), and f
(i)
ki

∈ Fi (i = 1, 2, . . . , n). The network
function fk acts as a transition mapping representing a possible
realization of the entire PBN. Each predictor function usually
has many fictitious variables, which means there are only a
few input genes that actually regulate Xi at any given time. At
each time point, the expression vector X = (X1, X2, . . . , Xn)

is called a gene activity pattern.
Not only must the PBN transition between gene activity pat-

terns, it must transition between network functions. A binary
random variable �, with pr(� = 1) = α, governs whether
or not there is a change of network function at each time
instance. There is a network-function change if and only if
� = 1. � is independent of the state of the network. Given
a network change (� = 1), there are selection probabilit-
ies c1, c2, . . . , cN determining which of the network functions
f1, f2, . . . , fN will govern the network until the next switch.

The PBN model also allows for random perturbations. For
each gene, there is a small probability β that it will flip its
value, from 0 to 1 or from 1 to 0. Hence, there is a binary
random variable 	, independent of the network state and �,
with pr(	 = 0) = (1−β)n, such that when 	 = 0 the transi-
tion from one state to another occurs as usual via a network
function, and when 	 = 1 the state will change due to random
bit permutation.

A PBN induces a homogeneous Markov chain whose
states are pairs (X, f). The chain is ergodic and possesses
a steady-state distribution. The steady-state distribution for
the expression values is the marginal distribution of X (of the
genes) relative to the steady-state distribution for the Markov
chain.

4 RANKING OF GENE FEATURES
Ranking feature sets by estimations of their errors or CoDs
should agree as much as possible to ranking by the true errors
or true CoDs. Our question is whether resubstitution is as effi-
cient in ranking the top feature sets as is cross-validation. We
emphasize that our only interest is in ranking the best feature
sets for classification; we have no interest in distinguishing
among features sets that yield poor classifiers. In describing
our ranking metrics, we stay with the convention we have
adopted previously and describe matters in terms of CoDs,
with the same definitions applying to error ranking, except
with reverse ordering.

We consider three metrics for success. Suppose there are K

feature sets that exceed a given threshold. Rank these feature
sets according to their true CoDs, so that the feature sets are
called Zs(1) ≥ Zs(2) ≥ · · · ≥ Zs(K). Thus the feature set
Zs(1) has the highest true CoD, while Zs(K) has the lowest
true CoD among all feature sets whose true CoD exceeds the
threshold. If there are no ties, the rank of Zs(1) = 1 and
the rank of Zs(K) = K . In case of ties, the rank is equal
to the mean of the ranks. Ranking based on the estimates is
done analogously. We then have three ranks for a feature set:
k (true), k∗

R (resubstitution) and k∗
C (cross-validation).

We consider three summary measures.

(1) For any given target gene, suppose that there are K ≥ 1
feature sets whose CoD exceeds a threshold t such
that 0 < t < 1, the threshold being required so that
only well-performing feature sets are considered. Then
for that target gene the first summary statistics using
resubstitution and cross-validation are, respectively,

R1 =
∑K

k=1 |k − k∗
R|

K
;

C1 =
∑K

k=1 |k − k∗
C |

K
.

(1)

(2) We consider the top feature sets as measured by the true
CoD. To do this, we consider only those target genes
that have K ≥ 20 features sets with true CoD exceeding
the threshold t , and the summary statistics measure how
far off the rankings are for just the top 20 feature sets:
for resubstitution and cross-validation, respectively,

R2 =
∑20

k=1 |k − k∗
R|

20
;

C2 =
∑20

k=1 |k − k∗
C |

20
.

(2)

(3) Lastly, we compare the top 20 lists irrespective of
order. We again consider only those target genes that
have K ≥ 20 features sets with true CoD exceed-
ing the threshold t . The summary statistics are the
number of feature sets among the top 20 feature sets
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that also appear in the top 20 using resubstitution and
cross-validation, respectively,

R3 =
20∑

k=1

I (k∗
R ≤ 20);

C3 =
20∑

k=1

I (k∗
C ≤ 20).

(3)

where I is the indicator function [i.e. I (v) = 1 if v is
true, otherwise I (v) = 0]. Note that for this measure,
higher scores are better.

5 EXPERIMENTAL RESULTS
Let us begin by discussing a few details about the simulation.
For the Gaussian model, we let the total number of variables be
20 and consider feature sets of size 3. We choose the separation
parameter δ so that the Bayes error in the original space is
0.1, and pick the parameter vector a = (a1, a2, . . . , an) from
a sigmoidal distribution in order to favor a few of the feature
sets and make the rest unimportant.

We generate 200 independent samples of size 30 from the
Gaussian model. In each of the 200 classification experi-
ments, there are C20

3 = 1140 feature sets, which are used with
two classification rules, namely, linear discriminant analysis
(LDA) and 3-nearest-neighbor (3NN) classification. For each
error threshold, and for each of the 200 experiments, the 1140
error triples (εs , εsR , εsC) are ranked and the ranking statistics
computed, resulting in a total of 200 ranking statistics pairs
(R1, C1), (R2, C2) and (R3, C3).

For the PBN model, generation of random PBNs involves
random generation of its constituent Boolean networks, which
means random generation of the network functions. Although
one can randomize the number of network functions and the
number of essential variables for each component of a network
function, we will fix the number of network functions at N and
the number of essential variables at T . Each network function
is of the form fk = (f

(1)
k1

, f (2)
k2

, . . . , f (n)
kn

), for k = 1, 2, . . . , N ,
and for i = 1, 2, . . . , n, where n is the total number of genes.
The component function f

(i)
ki

is generated in two steps: (1) ran-
domly select T genes from among {X1, X2, . . . , Xn} to be the
variables for f

(i)
ki

; and (2) using these variables as entries in

a truth table, uniformly randomly assign the 2T values of the
truth table. In our simulations, we set n = 20, N = 5 and
T = 3, the latter being typical of the PBNs that have been
generated in practice. We let the network functions have equal
probability, ck = 0.2, and we set α = 0.001 and β = 0.00001.

There are 100 PBNs in our simulation, the large number
being used to get a good sampling of PBNs. For each PBN,
there is a total of 200 prediction experiments (20 genes ×
10 samples). For each experiment, there are C19

3 = 969 fea-
ture sets. For each CoD threshold, and for each of the 20 000

experiments, the 969 CoD triples (CoDs , CoDsR , CoDsC)

are ranked and the ranking statistics computed, resulting in
a total of 20 000 ranking statistics pairs (R1, C1), (R2, C2)

and (R3, C3).
The results of the experiments are shown in Figure 2, with

the ranking-measure means graphed as functions of the error
(CoD) threshold for feature sets considered. For instance, the
bottom row displays the curves for the means of the 20 000
values for R1, C1, R2, C2, R3 and C3 as functions of the CoD
threshold. The solid and dashed lines give the resubstitution
and cross-validation measures, respectively. For instance, for
(R2, C2) in the second row, the value 0.25 on the horizontal
axis means that we are considering the ranking measure for
all feature sets having error less than or equal to 0.25, and
for those features sets, R2 ≈ C2 ≈ 13. The error range for
3NN (middle row) is higher than for LDA (top row) because
the small samples have resulted in poorer training for 3NN
than for LDA. For PBN CoDs (bottom row), we only con-
sider up to CoD = 0.85 because for higher CoDs there are
too few feature sets satisfying the threshold requirement to
obtain good estimates of the ranking-measure means (note that
CoD = 0.85 is very high, in practice CoD = 0.7 indicating
strong multivariate gene interaction).

Figure 2 shows that, in the case of LDA, ranking accur-
acy based on resubstitution and cross-validation is virtually
equal for all three measures for feature sets with true error
below 0.2. For 3NN, cross-validation outperforms resub-
stitution for higher error rates (which are not of interest)
but performance is virtually identical once in the range of
error 0.26, with resubstitution actually slightly outperform-
ing cross-validation below 0.25. For prediction in the PBN
model, R1 ≈ C1 for CoDs above 0.5, with resubstitution
outperforming cross-validation slightly for all CoD values.
Similar comments apply to (R2, C2) and (R3, C3).

6 CONCLUDING REMARKS
In microarray experiments, estimation of misclassification
rates is perhaps not the major issue; indeed, the generation of
potential feature sets to be investigated in confirmatory exper-
iments is at least as crucial as estimation of misclassification
rates per se. While resubstitution may be an inappropriate
method for estimating error rates, a priori it is not clear that
it is less appropriate than cross-validation for the purpose of
ranking feature sets.

We have tested this question by generating data via a clas-
sification model and a gene-regulatory network prediction
model. Our results show that resubstitution performs as well as
cross-validation in terms of the metrics we considered, namely
various versions of the ranking of top feature sets. Because
resubstitution requires far less computation, the results indic-
ate a powerful reason to consider the use of resubstitution
for generating potential feature sets to be investigated in
confirmatory experiments.
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Fig. 2. Means of ranking statistics versus true error (resp. COD) threshold. Top row: Gaussian model, LDA. Middle row: Gaussian model,
3NN. Bottom row: PBN model. The solid line corresponds to resubstitution, while the dashed line corresponds to leave-one-out.

ACKNOWLEDGEMENTS
The research of R.H. and E.R.D. was supported by
the National Human Genome Research Institute. U.B.-N.
research was supported by a contract from the National Cancer
Institute (N01-CN15102). D.V.N. research was supported by a
grant from the National Cancer Institute (CA-90301). R.J.C.
research was supported by a grant from the National Can-
cer Institute (CA-57030), and by the Texas A&M Center for
Environmental and Rural Health via a grant from the National
Institute of Environmental Health Sciences (P30-ES09106).

REFERENCES
Devroye,L., Gyorfi,L. and Lugosi,G. (1996) A Probabilistic Theory

of Pattern Recognition. Springer-Verlag, New York.
Duda,R.O., Hart,P.E. and Stork,D.G. (2001) Pattern Recognition,

2nd edn. John Wiley, New York.

Kaufmann,S.A. (1993) Origins of Order: Self-organization and
Selection in Evolution. Oxford University Press, New York.

Kim,S., Dougherty,E.R., Bittner,M.L., Chen,Y., Sivakumar,K.,
Meltzer,P. and Trent,J.M. (2000) A general framework for the
analysis of multivariate gene interaction via expression arrays.
J. Biomed. Optics, 4, 411–424.

Kim,S., Dougherty,E.R., Barrera,J., Chen,Y., Bittner,M.L. and
Trent,J.M. (2002) Strong feature sets from small samples. J. Com-
put. Biol., 9, 127–146.

Shmulevich,I., Dougherty,E.R., Kim,S. and Zhang,W. (2002)
Probabilistic Boolean networks: a rule-based uncertainty
model for gene regulatory networks. Bioinformatics, 18,
261–274.

Xiong,M., Li,W., Zhao,J., Jin,L. and Boerwinkle,E. (2001a) Feature
(gene) selection in gene expression-based tumor classification.
Mol. Genet. Metab., 73, 239–247.

Xiong,M., Fang,X. and Zhao,J. (2001b) Biomarker identification by
feature wrappers. Genome Res., 11, 1878–1887.

258


