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ABSTRACT
Motivation: In high-throughput genomic and proteomic experiments,
investigators monitor expression across a set of experimental con-
ditions. To gain an understanding of broader biological phenomena,
researchers have until recently been limited to post hoc analyses of
significant gene lists.
Method: We describe a general framework, significance analysis of
function and expression (SAFE), for conducting valid tests of gene
categories ab initio. SAFE is a two-stage, permutation-based method
that can be applied to various experimental designs, accounts for the
unknown correlation among genes and enables permutation-based
estimation of error rates.
Results: The utility and flexibility of SAFE is illustrated with a microar-
ray dataset of human lung carcinomas and gene categories based
on Gene Ontology and the Protein Family database. Significant gene
categories were observed in comparisons of (1) tumor versus normal
tissue, (2) multiple tumor subtypes and (3) survival times.
Availability: Code to implement SAFE in the statistical package R is
available from the authors.
Contact: fwright@bios.unc.edu; wbarry@bios.unc.edu; nobel@email.
unc.edu
Supplementary information: http://www.bios.unc.edu/∼fwright/
SAFE

INTRODUCTION
High-throughput biotechnologies such as microarrays and two-
dimensional (2D) gel electrophoresis enable researchers to sim-
ultaneously measure the expression of much of the genome, at
either the transcriptional (Schena et al., 1995) or translational level
(Honore et al., 2004). These technologies have found wide applic-
ation in many areas of biology and medicine, including identifying
genes differentially expressed across groups of samples or experi-
mental conditions (Schena et al., 1995), performing classification
or discrimination analysis in heterogeneous diseases such as cancer
(Bhattacharjee et al., 2001; Petricoin et al., 2002), and elucidating
the relationship between expression and covariates such as survival
or tumor grade (Beer et al., 2002).

In many applications, the experimenter seeks to identify a stat-
istically significant association between the expression profiles and
another variable related with each array, such as a sample group
assignment, an experimental factor or survival time. We will refer
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to this additional variable as the ‘response’, regardless of whether it
is observed or determined by the experimental design. The most
common method to analyze expression data proceeds in a gene-
specific manner, using a statistical model to relate the response to the
expression of each gene. An appropriate test statistic is calculated
for each gene and used to assign a parametric or permutation-based
p-value (Tusher et al., 2001; Dudoit et al., 2002b; Newton et al.,
2004). Once a test statistic has been chosen, the primary statist-
ical obstacle is accounting for multiple comparisons. Ranked lists of
genes with small p-values are typically produced and subjected to an
appropriate form of error rate control, such as the family-wise error
rate (FWER) or the false discovery rate (FDR).

While it is important to identify individual genes that are asso-
ciated with the response, most biological phenomena and human
diseases are thought to occur through the interactions of multiple
genes, via signaling pathways or other functional relationships. As
the understanding of cellular processes has grown, so too have
databases that provide biological annotation for known genes. For
example, SWISS-PROT provides a set of keywords for each gene,
based on a taxonomy that includes pathways, diseases and general
biological processes (Boeckmann et al., 2003). The InterPro and Pro-
tein Families (Pfam) databases classify genes using homology-based
domains in the protein sequence (Sonnhammer et al., 1997). More
recently, The Gene Ontology Consortium (2000) has developed a
comprehensive taxonomy of gene annotation for the separate onto-
logies viz. Biological Process, Cellular Component and Molecular
Function. Each ontology is structured as a directed acyclic graph,
with a hierarchy of terms that vary from broad levels of classi-
fication (e.g. Metabolism) down to more narrow levels (e.g. GTP
biosynthesis).

With the availability of more comprehensive annotations, the focus
of many gene-expression studies has shifted from the activity of
individual genes to that of broader functional groups. The traditional
gene-specific approach to expression analysis, however, does not
readily produce an understanding of the biological processes driving
the association between expression and response. In many cases,
researchers have informally compared lists of significant genes to
existing annotation in order to make judgments about the underlying
biology (Tusher et al., 2001). Frequently, the list of significant genes
is too long to develop a parsimonious understanding of the role of
biological function.

Recently, a number of publications and software packages have
adopted a more systematic approach to understanding the role of
biological function by constructing post hoc tests for the relative

© The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org 1943

http://www.bios.unc.edu/


W.T.Barry et al.

X
m x n

y’ 1 x n 

Observed data:

1

k
K x n

Local statistics: Global statistics:

C
m x L

p-values & error rates:

FW ER

FD R

1 x Lp’

… …uku1

m x 1 m x 1

… V

1

k

VV

K x L

1

Π

Fig. 1. Schematic for the SAFE procedure. The necessary components are illustrated above. The observed data consist of a matrix of normalized expression
estimates, X and a response vector, y. Permissible permutations of the response vector are specified in the matrix �. For each permutation, a vector of local
statistics, illustrated here for the first and k-th permutation, measures the association between the permuted response and the expression of each gene. Gene
category assignments are defined a priori and specified in matrix C. For each permutation, global statistics are computed from the local statistics and C. Based
on the matrix of global statistics across all permutations, empirical p-values are obtained for each category along with estimated error rates.

enrichment of a gene category, or keyword, within the list of signific-
ant genes (Kim and Falkow, 2003; Draghici et al., 2003; Beißbarth
and Speed, 2004; Hosack et al., 2003; Al-Shahrour et al., 2004;
Zhong et al., 2004; Zeeberg et al., 2003; Berriz et al., 2003). A
drawback to such gene-list approaches is that they rely on the initial
gene list in a fundamental way and are sensitive to the choice of both
significance criterion and error-control procedure. Moreover, they
do not consider a gene’s relative position in the ranked list. If genes
belonging to a functional category show a modest downward shift in
p-values compared to the remaining genes, this effect might not be
noticeable when examining only the category membership in the list
of significant genes. Indeed, after appropriate correction for multiple
testing, there might be no significant genes at all, so that gene-list
approaches utterly fail. Examples of such situations are presented
further below.

As currently implemented, the gene-list methods rely on standard
sampling theory, using the incorrect assumption that the genes are
uncorrelated. For categories with highly correlated genes, the true
Type I error rate may thus be substantially higher than the presumed
rate. Finally, we note that the current gene-list methods use conser-
vative error-control procedures when assessing multiple (possibly
overlapping) keyword categories. To overcome these drawbacks,
we propose a different, ab initio, approach to perform inference
about gene categories that incorporates the entire set of p-values or
their associated test statistics. Permutation is an integral part of the
approach, and is used both to control the Type I error for individual
categories and to provide refined estimates of multiple-comparison
error rates.

METHODS

A New Approach: the SAFE Framework
In order to assess the significance of multiple gene categories, we propose
a flexible, permutation-based framework, termed SAFE (for significance
analysis of function and expression). SAFE extends and builds on an approach
first employed in Virtaneva et al. (2001) for a two-sample microarray compari-
son of cancer subtypes. More recently, a method similar to Virtaneva et al.
(2001) was proposed by Mootha et al. (2003) for a comparison of diabetes
subtypes. In both methods, a two-stage approach is employed to assess the
significance of a gene category. First, gene-specific statistics are calculated
that measure the association between expression and the response of interest.
Hereafter, we will refer to these as ‘local’ statistics. Then a larger-scale
‘global’ statistic is constructed as a function of the local statistics, with the
goal of detecting a shift in the local statistics within a gene category to more
extreme values, as compared to the remaining genes. The significance of
the global statistics is assessed by repeatedly permuting the response values

and recomputing local and global statistics. In this manner, the correlation
of local statistics within each category is preserved, as is the correlation of
global statistics across categories that contain overlapping genes.

The SAFE procedure is described in detail below and presented in Figure 1.
It generalizes and extends the methods of Virtaneva et al. (2001) and Mootha
et al. (2003) in critical respects. SAFE encompasses a wide variety of exper-
imental designs and response vectors, and incorporates appropriate methods
of error rate estimation directly into the permutation scheme. The proced-
ure also leads naturally to informative plots for visualizing gene category
significance.

Observed data Consider an experiment in which the expression ofmgenes
is measured in each of n samples. The available data are in the form of an m×n

matrix X, where the element xij is the normalized expression estimate of gene
i in sample j . The i-th row of X, denoted xi , is the expression profile of gene
i. The term gene is used here to generically identify a row of X, although
for some platforms expression estimates for a single gene might appear in
multiple rows. We assume that suitable normalization and other preprocessing
of the data (cf. Dudoit et al., 2002a; Li and Wong, 2001) has been performed.
Each sample j is associated with an additional response variable yj . As noted
above, yj may be a treatment assignment or a numerical response such as
tumor grade or survival time; y = (y1, . . . , yn) will be referred to as the
response vector.

Prior to SAFE analysis, a collection of functional categories of interest is
identified. For the l-th category, let cil = 1 if gene i belongs to category l,
and cil = 0 if gene i falls outside the category. Let cl be the m × 1 vector
of these indicators. The set of all such indicators is represented as an m × L

matrix C, where L is the number of categories under examination.

Statistics and permutation SAFE requires the user to specify two stat-
istics. The first is a local statistic U(xi , y), which measures the association
between the expression profile of gene i and the response vector. In a study
where yj ∈ {0, 1} denotes one of two experimental conditions, U might be
an ordinary t-statistic for comparing {xij :yj = 0} and {xij :yj = 1}. As genes
in the same category might exhibit changes in either direction, a two-sided
local statistic such as |t | is also a natural choice.

The second, global statistic V assesses how the distribution of local stat-
istics within a category differs from local statistics outside the category. For a
given category l and local statistics u1, . . . , um, V ({ui}, cl ) measures the dif-
ference between the local statistics of genes in category l, namely {ui :cil = 1},
and the local statistics of genes in the complement of the category, namely
{ui :cil = 0}. Typically little is known about the joint density of the local
statistics. For this reason we favor rank-invariant choices for V , such as the
Wilcoxon rank sum (Virtaneva et al., 2001) or Kolmogorov–Smirnov statistic
(Mootha et al., 2003), as likely to retain reasonable power under a variety of
circumstances.

The significance of the global statistic for each functional category is
assessed through a group � = {π1, . . . , πK } of permissible permutations
of the response vector. The permutations in � reflect the underlying
experimental design, including pairing of samples, blocking or other
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sampling-based constraints. For many experimental designs, all n! permuta-
tions are permissible, although fewer distinct permutations of the response
vector may exist (as in the two-sample problem). For datasets of even mod-
est size, it may not be computationally feasible to use all permutations, and
the elements of � are chosen as a random sample from all permissible per-
mutations. The elements of � are represented as permutations of the integers
{1, . . . , n}, so that � is an n × K matrix. Let π1 be the identity permutation,
corresponding to the observed order of the response vector.

For each gene and each permutation πk ∈ �, let uik = U(xi , y ∗ πk)

be the value of U when the response is permuted according to πk . Here
y ∗ π = (yπ(1), . . . , yπ(n)) is a reordering of the components of y according
to π . Let V be the K × L matrix with entries vkl = V ({uik}, cl ), the global
statistic for the l-th functional category under permutation πk . Empirical p-
values are computed for each category as pl = K−1 ∑K

k=1 I {vkl ≥ v1l}, with
I {·} denoting the indicator function.

Error estimation and plots Except where noted, we report the nominal
empirical p-value for a significant category, uncorrected for multiple compar-
isons. To account for multiplicity in gene category tests, standard estimates of
the FWER (Westfall and Young, 1989) or the FDR (Yekutieli and Benjamini,
1999) are computed for the set of categories that fall within a given rejection
region. The matrix of global statistics is converted into a K × L matrix of
permuted p-values with elements

pkl = 1

K

K∑
h=1

I {vhl ≥ vkl}.

For a rejection region, [0, p], the Westfall–Young estimate of the FWER is

F̂WERWY (p) = max
l:pl≤p

[
1

K

K∑
k=1

I

(
min

h:ph≥pl

pkh ≤ pl

)]
and the Yekutieli–Benjamini estimate of the FDR is

F̂DRYB(p) = min
l:pl≥p

[
1

K − 1

K∑
k=2

(
V̂k(pl)

V̂k(pl) + Ŝ(pl)

)]

where V̂k(p) = ∑L
l=1 I (pkl ≤ p) and Ŝ(p) = V̂1(p) −[[1/(K − 1)] ∑K

k=2
∑L

l=1 I (pkl ≤ p)
]
. Non-resampling based error estim-

ates, such as q-values (Storey and Tibshirani, 2003), and the FDR step-up
procedure (Benjamini and Hochberg, 1995) can be readily applied to {pl}.
Note that the permutation approach ensures that the Type I error is con-
trolled for individual categories, even if the component genes exhibit highly
correlated expression. Furthermore, permutation enables control of multiple-
testing error rates without the need to adopt overly conservative procedures.
For example, permutation-based control of the FWER exploits positive cor-
relation among the global statistics for categories with overlapping genes,
while a Bonferroni threshold in this case will be highly conservative. In our
examples using the GO ontologies, the dependence between some categories
(nodes) is very strong, as these categories may contain identical or nearly
identical sets of genes.

The association of gene expression to the response can be presented across
a category in the form of a SAFE-plot. For category l, the SAFE-plot displays
the empirical cumulative distribution function of the ranked local statistics
{ui :cil = 1} against that of all genes. SAFE-plots thus display the realtive
magnitude and direction of the differential expression for each gene in the
given category. For hierarchically structured annotations such as GO, it is
also useful to display SAFE results across a directed acyclic graph of the
ontology thereby, revealing the relationships among significant categories.

Examples
To demonstrate the applicability and flexibility of SAFE, gene category
analyses were conducted for several responses in a study of human lung
carcinomas by Bhattacharjee et al. (2001). A total of 202 lung specimens
were assayed with U95Av2 oligonucleotide arrays (Affymetrix, Santa Clara,
CA). The data consisted of 16 normal tissues and 186 tumors, subclassified as

Table 1. A list of significant gene categories for each response

Category ID and name Size p-value F̂DR

Normal versus cancer
GO:0016460, ‘Myosin II’ 10 0.0004 0.066
GO:0000786, ‘Nucleosome’ 19 0.0004 0.066
Pfam:PMP22_Claudin 11 0.0005 0.066

ANOVA among subtypes
GO:0007010, ‘Cytoskeleton org. and biogen.’ 128 0.0003 0.064
GO:0007017, ‘Microtubule-based process’ 67 0.0005 0.064
GO:0006996, ‘Organelle org. and biogen.’ 153 0.0005 0.064
GO:0016043, ‘Cell org. and biogenesis’ 283 0.0007 0.064
GO:0009117, ‘Nucleotide metabolism’ 82 0.0008 0.064
GO:0007028, ‘Cytoplasm org. and biogen.’ 175 0.0011 0.087
GO:0006164, ‘Purine nucleotide biosynth.’ 45 0.0016 0.099

Survival of adenocarcinomas
GO:0005643, ‘Nuclear pore’ 30 0.0002 0.034
GO:0046930, ‘Pore complex’ 30 0.0002 0.034

The FDR is estimated for all 635 gene categories.

adenocarcinomas (n = 139), pulmonary carcinoids (n = 20), small-cell lung
carcinomas (n = 6) and squamous cell lung carcinoma (n = 21). Additional
clinical information, including survival times, were available for 125 of the
adenocarcinomas. Our significance analyses focused on three comparisons:
(1) a two-sample comparison of normal versus cancerous samples, (2) an
ANOVA model comparing cancer subtypes and (3) a survival analysis within
the adenocarcinoma subgroup. The functional categories were derived from
Pfam and GO. We highlight a few instances in which the results are supported
by previous biological findings. These results are intended to serve as a proof
of principle for SAFE, rather than a comprehensive reanalysis of the data.

Raw CEL files for the 202 U95Av2 arrays were obtained from
http://www.pnas.org. Expression estimates and absent/present calls were
obtained from dChip v1.3 software (http://www.dchip.org) using the PM-
MM model from Li and Wong (2001). In keeping with the terminology above,
each U95Av2 probeset is referred to as a gene. Arrays were normalized by
quadratic scaling to an artificial array of median expressions for each gene
(Yoon et al., 2002). Genes were filtered out when called absent in more than
half the samples of every tissue type, resulting in 7299 expressed genes.

As an exploration of the data, each SAFE analysis involved func-
tional categories derived from GO and Pfam. Annotations for the U95Av2
array are available from http://www.affymetrix.com. GO gene categor-
ies sets were generated from the hierarchical structure of an ontology
(Zeeberg et al., 2003). Every GO term is represented by a node in a dir-
ected acyclic graph, and the functional category is defined as containing
genes annotated either directly to that node or to any descendant node in
the ontology. Perl scripts were used to extract the structure of the ontologies
from the GO website (http://www.geneontology.org/) and assign categor-
ies. A total of 3860 GO nodes and 1811 Pfam domains were linked to the
7299 expressed genes. In order to retain power after correcting for multiple
hypotheses, only categories of a sufficient size were considered. GO biolo-
gical process and molecular function nodes containing at least 40 expressed
genes were tested, along with cellular component nodes and Pfam domains
annotated to at least 10 expressed genes (resulting in 207, 132, 120 and 176
categories, respectively).

For each response vector, an appropriate local statistic was chosen, the
Wilcoxon rank sum were used as the global statistic and K = 10 000 per-
mutations was randomly generated. For each category, the empirical p-value
was computed along with the Benjamini–Yekutieli FDR and Westfall–Young
FWER estimates of the corresponding rejection region (Westfall and Young,
1989; Yekutieli and Benjamini, 1999). All categories with an estimated FDR
≤ 0.1 are reported as significant in Table 1 (complete results for all 635
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categories are provided in Supplementary Table 1). It should be noted that
because categories from three GO ontologies and Pfam were considered sim-
ultaniously in this exploratory analysis, the total number of categories is
far greater than previous studies have reported (Zeeberg et al., 2003; Zhong
et al., 2004; Berriz et al., 2003; Mootha et al., 2003); thus a stricter penalty for
multiple testing is exacted. To demonstrate the results that would be achieved
by examining only a single category set, separate error rate estimates are
provided in Supplementary Table 1 for each ontology and Pfam.

RESULTS

Two-sample comparison
Differential expression was examined across normal and tumor
samples using the absolute value of the Welch t-statistic as the local
statistic. Observed values of the local statistic ranged from 0 to 18.4.
In a gene-specific analysis based on 10 000 permutations of the array
assignments, 1235 genes achieved the minimum gene-specific empir-
ical p-value 0.0001 and 4319 had p ≤ 0.05 (|t | ≥ 2.26). With such
dramatic differences between normal and tumor tissues generating
a long gene list, obtaining useful biological conclusions require a
broader perspective.

Among the four sets of functional categories applied in SAFE,
three categories had p ≤ 0.0005 and met the significance criterion
for inclusion in Table 1: the cellular component nodes ‘Myosin II’
(GO:0016460), ‘Nucleosome’ (GO:0000786) and the Pfam domain
‘PMP22 Claudin’. SAFE-plots display the relative extent and dir-
ection of differential expression observed for the sets of genes in
these categories (Fig. 2). Of the ten expressed genes annotated to
‘Myosin II,’ nine were substantially underexpressed in the tumor
samples compared to normal (p = 0.0004). In contrast, the GO term
Nucleosome had 16 of 19 genes overexpressed in the tumor samples
(p = 0.0004). Of the 11 genes annotated to ‘PMP22 claudin,’ 4
were substantially overexpressed in cancer and 6 were substantially
underexpressed, (p = 0.0005). These results demonstrate the vari-
ous directions of differential expression that can be detected in a
two-sample SAFE analysis. Further, since no overlap in genes was
observed among the three categories, we consider these to be separate
findings (Supplementary Figure 1A).

The roles of myosin-related and cell-motility genes have long
been studied in cancer and metastasis. A novel myosin family gene,
MYO18B, was recently shown to be inactivated in ∼50% of lung
cancers (Nishioka et al., 2002). The nucleosome genes we observed
to be overexpressed in cancer were primarily histone family genes;
acetylation of histones has been linked to MYO18B inactivation and
lung cancer (Tani et al., 2004). Overexpression of claudin-4, as
observed here, has been linked to metastatic breast and pancreatic
cancers (Michl et al., 2003; Nichols et al., 2004). By examining

Fig. 2. SAFE-plots for significant categories in normal versus tumor. Welch
t-statistics were computed for all expressed genes. The shaded region repres-
ents the range of local statistics that fall in the 5% tail area of the empirically
derived null distribution (|t | ≥ 2.26). The empirical cumulative distribution
function for a gene category is plotted (solid line) against the ranks of all genes
(dashed line). Tick marks above each plot display the location of genes within
a category. Several genes are represented by more than one U95Av2 probeset.
Probesets are labeled by their gene symbol when known and by the probeset
ID otherwise. Significant gene categories can show consistent (A) under-
expression, (B) overexpression in tumor versus normal or (C) bidirectional
differential expression. (D) The unranked empirical cumulative distribution
functions (labeled) are plotted against that of all genes (solid curve).
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Fig. 3. SAFE results for ANOVA comparisons of tumor subtypes
are displayed for (A) 207 GO biological processes containing at
least 40 expressed genes. The graph displays the inheritance structure of
GO terms. Nodes can have multiple parents, and for lateral or upward
edges, arrows are drawn to indicate the child node. The area of each node
is proportional to the number of genes belonging to the node. Nodes are
colored by statistical significance of SAFE analysis: blue (p < 0.001) green
(0.001 ≤ p < 0.01), or red (0.01 ≤ p < 0.1). Two distinct subgraphs contain-
ing all significant nodes (blue or green) are expanded in: (B) nodes under
‘Nucleotide metabolism’ (GO:0009117) and (C) nodes under ‘Cell organiz-
ation’ (GO:0016043) and biogenesis). A larger version of the full directed
graph is shown in Supplementary Figure 4.

entire gene categories instead of individual genes, we are able to
identify a manageable number of gene categories warranting further
hypothesis and study.

ANOVA
The standard ANOVA F -statistic was used as a local statistic to
compare gene expression among the four cancer subtype; F ranged
from 0 to 421. A total of 2689 genes achieved the minimum pos-
sible empirical p-value (p = 0.0001). The substantial differences
in expression profiles between cancer subtypes provided the basis
for successful discrimination in the original report (Bhattacharjee
et al., 2001). Here we employ SAFE to establish which functional
categories consistently differ in expression across cancer subtypes.

Seven biological process nodes (having p-values ≤ 0.0016) met
the criterion of FDR ≤ 0.1 for inclusion in Table 1. It is apparent
from examining the SAFE results across the hierarchical structure of
the ontology (Fig. 3) that significant categories fall into two dis-
tinct families: ‘Cell organization and biogenesis’ (GO:0009117),
and ‘Nucleotide metabolism’ (GO:0016043). Figure 3B also illus-
trates that a broader category can be more significant than any of
the nodes beneath it, due to the aggregation of gene effects across

different descendants. These results add biological interpretability
to the cluster analyses and gene-specific analyses from the original
report.

Survival analysis
Censored survival data were available for 125 subjects with adenocar-
cinomas, with 71 observed deaths and 54 censored observations. The
association between a gene’s expression and survival was assessed
with a univariate Cox proportional hazard model. The local statistic
was the absolute value of the gene’s regression coefficient divided by
its standard error, |β̂|/SE(β̂). The resulting Z-like statistics ranged
from 0 to 3.98. The data provide an example where standard gene-
specific approaches fail to provide useful conclusions. While 496
expressed genes had a gene-specific p-value <0.05 (|z| ≥ 1.96), none
was significant after multiple-testing correction (all FDR and FWER
estimates were >0.2). We then applied the SAFE approach, which
is sensitive to the aggregate effect of genes with related biological
functions.

After accounting for multiple testing, two related GO cellu-
lar component nodes were significant (Table 1): ‘Nuclear pore’
(GO:0005643) and ‘Pore complex’ (GO:0046930). However, the two
nodes contain an identical set of 30 genes and should be considered
a single finding (p = 0.0002). Supplementary Figure 2A displays
the set of linked genes and their respective direction of association
with survival. Likewise, the parental node, Nuclear membrane, was
marginally significant (p = 0.0012, F̂DR = 0.106) but shared 30 of
51 genes with the other nodes. An additional SAFE-plot for the genes
unique to ‘Nuclear membrane’ (GO: Supplementary Figure 2B)
indicates that only the nuclear pore genes are associated with survival.

Although the original report (Bhattacharjee et al., 2001) found a
relationship between survival and a cluster-defined adenocarcinoma
subclass (p = 0.005), our result is stronger, remarkably specific in
its biological implications and offers new directions for exploration.
We note that the role of nuclear transport in cancer (Kau et al., 2004)
and cancer aggressiveness (Agudo et al., 2004) has been the subject
of recent attention.

DISCUSSION
High-throughput biotechnologies have generated great interest in the
elucidation of biological pathways and regulatory gene networks, and
much effort has been made toward understanding these phenomena
using gene-expression data. The various approaches can be depicted
in a broad spectrum with two extremes: one computational and stat-
istical, the other experimental. At the computational extreme, data
from multiple gene-expression studies may be used to automatically
construct networks of genes with highly correlated expression pat-
terns. These patterns can in turn be used to annotate genes and predict
function in a probabilistic manner (Zhou et al., 2002; Troyanskaya
et al., 2003). However, these approaches are unable to test the asso-
ciation of functional categories with new experimental conditions
or disease states. At the other extreme, detailed pathways are being
developed for the direct interaction of genes at the translational level
(Kanehisa, 1997), based on careful study of model organisms. These
pathways may provide useful functional annotation, but currently
cannot be used to model or predict disease states or the response of a
tissue to experimental perturbation. Thus there remains a great need
for approaches that efficiently test a large number of hypotheses for
the relationship between gene expression and biological function in
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the context of a given experiment. We propose SAFE as such a pro-
cedure, to be used repeatedly as a workhorse to investigate possible
functional relationships.

The implementation of SAFE considered here differs considerably
from standard gene-list methods. However, the gene-list methods
may be thought of as essentially special cases of the SAFE frame-
work. Both approaches compare the genes within a category against
those in its complement, in contrast to other methods that assess
significance by directly combining gene-specific effects (Goeman
et al., 2004). The presence or absence of a gene on a list can be
viewed as the outcome of a binary local statistic. The global statistic
for the gene-list methods is the sum of these local statistics, i.e. the
total number of genes in a category appearing on the list. The SAFE
framework (Fig. 1) makes it clear that other choices of local and
global statistics are possible, with possible improvements in power.
Using rank-based global statistics, SAFE can detect gene categories
with a high proportion of marginally significant genes that fail to
appear on the significant gene list.

To illustrate this point, consider the association of the node
‘Nuclear pore’ (GO:0005643) to survival among adenocarcinomas
(Table 1, SAFE p-value 0.0002). The result is highly significant
and the collective shift in ranked statistics quite obvious (Supple-
mentary Figure 2A). However, among 496 genes with parametric
gene-specific p-values <0.05, there are only four genes belonging
to Nuclear pore. Even using the anticonservative hypergeometric
test for list membership gives p = 0.1431, illustrating the improved
power of SAFE over gene-list methods for this category.

Gene-list methods typically rely on standard sampling theory to
test the significance of a functional category and assume that the
local statistics are independent. Thus the null distributions for gene-
list global statistics are assumed to be hypergeometric (Draghici
et al., 2003; Beißbarth and Speed, 2004; Al-Shahrour et al., 2004;
Hosack et al., 2003; Zeeberg et al., 2003; Zhong et al., 2004; Ber-
riz et al., 2003) or approximations thereof (Kim and Falkow, 2003).
These latter differences are minor when one considers that the inde-
pendence assumption is clearly violated for some categories. For
example, we note that the 67 genes in the GO cellular component
node ‘Cytosolic ribosome’ (GO:0005830) had an average pairwise
correlation of 0.406 across the adenocarcinoma samples. For these
samples, a randomly chosen set of 67 genes is very unlikely to
have such a high correlation (p = 0.0001 for |r| > 0.406 in 10 000
randomly sampled gene sets). The p-values used by SAFE are
based on permutations of the response vector that keep the gene-
expression values intact, thereby preserving the correlation among
genes. Permutation-based p-values have been proposed in some of
the gene-list methods (Al-Shahrour et al., 2004; Zhong et al., 2004;
Berriz et al., 2003), but in a completely different manner. These
approaches are equivalent to permuting the rows of the category mat-
rix C, while maintaining the observed test statistics and significant
gene-list. As intended, these methods account for the correlations
among overlapping categories, but fail to address the possibility of
inflated Type I errors resulting from dependent local statistics.

As implemented above, SAFE calculates permutation-based p-
values using a separate null permutation distribution for each cat-
egory (i.e. column of V ), rather than pooling all the values in V into a
single null distribution. In contrast, Mootha et al. (2003) used pooling
to compute a FWER-adjusted p-value for the largest Kolmogorov–
Smirnov statistic, after scaling the statistics based upon differing
category sizes. However, such standardization methods ignore the

unknown correlation among local statistics and can therefore pro-
duce unequal null distributions among the categories. The inadequate
standardization of global statistics provides a strong rationale against
pooling in SAFE. Indeed, examining the permutation distributions
of Wilcoxon statistic standardized for category size (Supplementary
Figure 3) reveals many instances in the example data where the global
statistics remain improperly scaled. In this circumstance, a p-value
generated from the pooled null distribution will not control the Type
I error of a given category properly, and can differ from the nominal
p-value by a factor ≥10 (Supplementary Figure 3). Although pooling
within SAFE meets the technical requirements for weak control of
the FWER (Westfall and Young, 1989), inadequate standardization
will reduce power for most categories.

In the examples we have used ‘hard’ category assignments: a gene
belongs to a category or it does not. Recent publications have pro-
moted more probabilistic approaches to gene function (Fraser and
Marcotte, 2004; Troyanskaya et al., 2003) that are appropriate for
unknown genes or those with less certain annotation. This suggests
an extension of SAFE to ‘soft’ categories, in which the degree of
membership in a category is reflected by a score on the interval [0, 1].
Soft categories can be easily incorporated into the SAFE framework,
requiring that only an appropriate global statistic be chosen to weight
the local statistics by their respective scores. Soft categories would
also allow one to appropriately downweight the local statistics of a
gene represented in multiple rows of X, whereas current methods
cannot flexibly handle such redundancy. Extensions such as these
will further extend the power and potential of SAFE as a generic
method to test for relationships between biological function and gene
expression.
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