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Abstract

Given a large set of potential features, it is usually necessary to find a small subset with which to classify. The task of
finding an optimal feature set is inherently combinatoric and therefore suboptimal algorithms are typically used to find feature
sets. If feature selection is based directly on classification error, then a feature-selection algorithm must base its decision on
error estimates. This paper addresses the impact of error estimation on feature selection using two performance measures:
comparison of the true error of the optimal feature set with the true error of the feature set found by a feature-selection
algorithm, and the number of features among the truly optimal feature set that appear in the feature set found by the algorithm.
The study considers seven error estimators applied to three standard suboptimal feature-selection algorithms and exhaustive
search, and it considers three different feature-label model distributions. It draws two conclusions for the cases considered:
(1) depending on the sample size and the classification rule, feature-selection algorithms can produce feature sets whose
corresponding classifiers possess errors far in excess of the classifier corresponding to the optimal feature set; and (2) for small
samples, differences in performances among the feature-selection algorithms are less significant than performance differences
among the error estimators used to implement the algorithms. Moreover, keeping in mind that results depend on the particular
classifier-distribution pair, for the error estimators considered in this study, bootstrap and bolstered resubstitution usually
outperform cross-validation, and bolstered resubstitution usually performs as well as or better than bootstrap.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords:Classification; Feature selection; Error estimation

1. Introduction

Given a large set of potential features for classification,
it is necessary to find a small subset with which to classify.
The problem is statistically inherent in classification because

∗ Corresponding author. Tel.: +1 979 862 8896;
fax: +1 979 845 6259.

E-mail address:edward@ee.tamu.edu(E. Dougherty).
URL: http://ee.tamu.edu/∼edward/err_est_fs.

0031-3203/$30.00� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2005.03.026

typically (but not universally), the true error of a designed
classifier will fall with use of more features and, after some
optimal number of features for a given sample size, begin
to rise. For small samples the optimal number can be very
small. The task of finding an optimal feature set is inher-
ently combinatoric. According to a classical theorem, to be
assured of finding the optimal feature set of a given size,
all feature subsets of that size must be checked unless there
is distributional knowledge that mitigates the search re-
quirement, a mitigating condition not occurring in practice
[1]. There are various methods of choosing feature sets, the
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intent being to choose a set of features that provides good
classification. When there is a large number of potential
features for classification, feature selection is problematic
and the best method to use depends on the circumstances.
Evaluation of methods is generally comparative and based
on simulations[2,3].

If feature selection is based directly on classification er-
ror, and not on some auxiliary measure such as correlation,
then an algorithm searching for a good feature set must
base its decision on estimates of the error. If there is a large
data set, then one can obtain good error estimates; however,
if the sample is small, then error estimation is problematic
and the performance of the feature-selection algorithm will
be impacted by the performance of the error estimator. As
will be demonstrated in this paper, the lack of optimality
with feature selection can be impacted to a greater extent
by error estimation than by the choice of feature-selection
algorithm, and performance of a particular feature-selection
algorithm is affected by the choice of error-estimation
rule.

The role of error estimation in the choice of feature sets
for small samples has previously been addressed relative to
the absolute ranking of feature sets[4,5]. In these studies,
based on an exhaustive search, the classifiers corresponding
to all feature sets of a given size were found, their true
errors and their estimated errors based on various estima-
tion rules were calculated, and the feature sets were ranked
based on their true and estimated errors. The key issue was
ranking order. It was seen that certain error-estimation rules
gave better feature-set ranking, depending on the class-
conditional distributions, classification rule, and sample
size.

This paper does not concern ranking; rather, it concerns
the performance of feature-selection algorithms relative to
their purpose of finding good feature sets—in particular, the
impact of error estimation in this regard. Thus, we employ
two measures of merit: (1) we will compare the true error
of the optimal feature set with the true error of the feature
set found by a feature-selection algorithm; and (2) we will
see how many of the features among the truly optimal fea-
ture set appear in the feature set found by the algorithm.
In all cases we will average the results over a large col-
lection of samples, and we will categorize the results by
feature-selection algorithm, error-estimation rule, classifica-
tion rule, class-conditional distributions, and sample size.
Owing to the large number of simulations and computations,
the project has been carried out on a massively parallel Be-
owulf cluster, and owing to the large number of results, a
companion website is provided to augment the results re-
ported in the paper.

To a great extent, this study has been motivated by the
large number of papers in recent years dealing with pheno-
type classification based on expression microarrays. Perhaps
the most salient characteristic of expression-based pheno-
type classification using microarray data is the vast num-
ber of potential features (genes) in comparison to the small

number of data points (microarrays), and the effect this dis-
parity has on classifier design, error estimation, and fea-
ture selection[6]. Whereas there are typically thousands of
genes on a microarray, laboratory costs and availability of
patient tissue stringently limits the number of microarrays.
The following sample sizes for cancer studies are indica-
tive of the commonplace paucity of data points: cutaneous
melanoma, 31[7]; leukemia, 37[8]; acute leukemia, 38[9];
breast cancer, 38[10], follicular lymphoma, 24[11]; uveal
melanoma, 20[12], glioma, 50 (but only 21 classic tumors
used for class prediction)[13]; ovarian carcinoma, 44[14];
lymphoma, 47[15]; and glioma, 25[16]. Even though sam-
ple sizes are slowly growing as costs decline, availability
of tissue will continue to limit sample sizes. Our simulation
analyses reflect this limitation by considering sample sizes
of 30, 50, 70, and 90.

2. Experimental set-up

For simulation studies, we consider 3 models. Model
1 is a 2-class Gaussian model, with the classes equally
likely and the class-conditional densities being spherical
unit variance Gaussians. The class means are located at
�a and −�a, where �>0 is a separation parameter and
a= (a1, a2, . . . , an) is a parameter vector with‖a‖ = 1. It
is well-known that the Bayes classifier is a hyperplane per-
pendicular to the axis joining the means, with Bayes error
�BAYES=1−�(�), where� is the standard normal cumula-
tive distribution function. Since�=�−1(1− �BAYES), one
can find� for a prescribed Bayes error. In our experiments,
we choose� so that the Bayes error is 0.1.

If a subsetL of the original features is selected, then
again one has a standard Gaussian model, but now the
separation between the classes is a function of which fea-
tures are selected. The Bayes error is a function of both
the separation and the model parameters. To be exact,

�LBAYES= 1 − �(�
√∑

k∈L a2
k
). Thus for a given number

of selected features, the ones corresponding to parame-
ters with larger amplitude will have smaller�LBAYES. The
parameter vectora = (a1, a2, . . . , an) is picked from a
sigmoidal distribution in order to favor a few of the feature
sets.

Model 2 is similar to Model 1, but instead of both co-
variance matrices for the class-conditional densities being
I , where I is the identity matrix, we let them be�1I and
�2I for class 1 and class 2, respectively, with�1 �= �2.
Since there is no closed-form formula for Bayes error in
this model, we resort to Monte Carlo methods for comput-
ing the separation parameter� for the desired Bayes errors.
We let�1 = 1 and�2 = 1.5 in our experiments, and choose
� so that Bayes error using all the features equals 0.03
or 0.04.

Model 3 is also an equally likely 2-class Gaussian model,
with means located at(�, �, . . . , �) and(−�,−�, . . . ,−�).
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Here we employ a block-like covariance matrix structure
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where all features are equally divided intoG groups. The
features from different groups are uncorrelated, and the fea-
tures from the same group possess the same correlation�
among each other. In our studies, we let both covariance
matrices be� with G = 5, � = 1 and� = 0.5, and choose
� so that the Bayes error is 0.05 (again by Monte Carlo
methods). Notice ifG equals the total number of features,
then all features are uncorrelated and this model is similar
to Model 1.

The experiments are set up in the following manner:
200 independent samples of sizeS with N features are
generated, and we select theK features, using exhaustive
search (exhst), sequential forwarding search (SFS)[17], se-
quential forwarding floating search (SFFS)[17], and the
improved branch-and-bound search method (enhBB)[18].
The criterion function is the correct recognition rate, de-
fined as 1 minus the estimated error. We consider three
classification rules: linear discriminate analysis (LDA), 3-
nearest neighbor (3NN), and classification and regression
trees (CART). We apply 7 error estimation methods: true
error (true), resubstitution (resub), leave-one-out (loo), 5-
fold cross validation (cv5), 0.632 bootstrap (bstrap), bol-
stered resubstitution (blstr) and semi-bolstered resubstitu-
tion (semib). (For a review of these methods, please refer to
Appendix A.) By “true error” we mean the computed error
for the designed classifier using the known underlying dis-
tribution of synthetic data, not the Bayes error, which the
“true error” can achieve only when the designed classifier is
optimal.
K features are found at the end of the feature search for

each sample, and two performance measures,T 1 andT 2, are
computed.T 1 is the average true error over the 200 samples.
Except in the case of Model 3,T 2 is defined as the average,
over the samples, of the number of common features when
we compare theK features found by the feature selection

to theK features found by exhaustive search and true error
estimation using the same classifier.

The second measure for Model 3, denoted byT̂ 2, is com-
puted differently. Here features within the same group are
equivalent in the sense that, with all other features fixed,
choosing any feature in the group should give the same clas-
sifying power. Furthermore, the groups are equivalent be-
tween each other in the sense that, choosing a feature from
group i gives the same classifying power as choosing one
from another groupj, given the other features are fixed and
not coming from groupi or j. Thus, the key issue is the num-
ber of distinct groups represented by theK features found by
feature selection.̂T 2 is the average, over the 200 samples,
of the number of represented groups.

We consider three (total features, selected features)
pairs:(N,K) = (20,4), (20,5), and (25,4). For each pair,
we repeat the experiment forS= 30,50,70 and 90, and the
performance measuresT 1 andT 2 (or T̂ 2, in the case of
Model 3) are computed. The experiments are summarized
in Table 1.

3. Experimental results

Selected results from the experiments are shown in Ap-
pendix C,Tables 2–4. A complete description of the exper-
imental results is given on the companion website. To use
the tables, suppose we are interested in the performance for
the branch-and-bound method for selecting 4 features out
of 20, when the sample size is 30, under the LDA rule, in
Exp 2. Then we look atTable 3, under column LDA/enhBB
and row “size 30”. There we find the results for each of the
seven error estimation methods.
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Table 1
Experiments setup

Model Exp 1 Exp 2 Exp 3 Exp4

Model 1 Model 2 Model 2 Model 3

Bayes error 0.10 0.03 0.04 0.05
Classification rule LDA, 3NN and CART
Feature selection algorithm exhst, SFS, SFFS and enhBB
Error estimation method true, resub, loo, cv5, bstrap, blstr, and semib
Sample size 30 , 50 , 70 and 90
(N,K) pair (20,4), (20,5) and (25,4)
Performance measure T 1 andT 2 T 1 andT̂ 2

3.1. Significance of error estimation relative to feature
selection

The most important conclusion we draw from the experi-
ments is that, for small samples, differences in performances
among the feature selection algorithms are much less sig-
nificant than the effects of error estimation. Except for sev-
eral cases in which branch-and-bound performs very badly
(see Appendix B), performances across different feature-
selection algorithms are mostly comparable, including ex-
haustive search. We note three points in this regard.

SFFS generally outperforms SFS, which outperforms en-
hBB when doing feature selection using the true error, but
this is not necessarily the case when using error estimation.
For instance, when using 3NN, SFFS outperforms enhBB
when true error is used; however, if resubstitution is used,
enhBB outperforms SFFS, and if cross-validation or boot-
strap are used, the SFFS and enhBB perform essentially the
same.

For LDA, SFFS and SFS perform almost equivalently
to exhaustive search when the true error is used, but they
degrade relative to exhaustive search when error estimation
is employed, SFS doing worse than SFFS, and the latter
degrading little in relation to exhaustive search when using
bootstrap or bolstering.

The choice of error estimator for feature selection can
make more of a difference than choice of feature selection
algorithm in terms of the true error of the designed classi-
fier. Consider the following observations. Referring toTable
2 (Exp 1), for LDA andS = 50, if leave-one-out is used
along with a full search, then the error of the designed clas-
sifier is 0.2241, but if bolstered resubstitution is used, then
the worst result occurs with SFS, and this classifier has er-
ror 0.2172, better than an exhaustive search with leave-one-
out (and better than an exhaustive search with 5-fold cross-
validation). This is for selecting 4 features out of 20. When
selecting 5 features out of 20 for LDA andS = 50 (see
companion website), if leave-one-out is used along with an
exhaustive search, then the error of the designed classifier
is 0.2104, but if bolstered resubstitution is used, then the
worst result occurs with SFS, and this classifier has error

0.1962, again better than an exhaustive search with leave-
one-out (and better than an exhaustive search with both 5-
fold cross-validation and bootstrap). Similar phenomena oc-
cur throughout the results. In particular, there are many cases
where bolstered resubstitution and bootstrap yield better fea-
ture sets using SFFS than the feature sets obtained by cross-
validation (both loo and cv5) using an exhaustive search. For
instance, for all cases inTables 2and3, bolstered resubsti-
tution and bootstrap yield betterT 1 values using SFFS than
cross-validation using an exhaustive search, with bolstered
resubstitution outperforming bootstrap for LDA and CART
in all cases in both tables. Moreover, bolstered resubstitution
yields betterT 2 values using SFFS than cross-validation
using an exhaustive search for all cases inTables 2and3.

3.2. Some general trends

Besides observations regarding the prominence of error-
estimation choices relative to feature-selection choices,
some general trends can be discerned. As would be ex-
pected, throughout the experimental results larger samples
yield better performances ofT 1 and T 2 (T̂ 2 in Exp 4).
No matter which error estimation procedure is adopted, the
results are much worse than using the true error for all
feature selection methods, both forT 1 andT 2 (T̂ 2). The
feature-selection algorithms perform better for the blocked
covariance structure of Model 3 (Exp 4) than for Models 1
and 2. All feature-selection algorithms perform the worst
for CART, and this is especially true fore small sample size
(S = 30), no matter the error estimation method, includ-
ing using the true underlying distribution. This suggests
that one should avoid feature selection for complicated
classification rules when only small samples are available.

3.3. Comparison of error-estimation methods

Consistent with the results reported in straight feature
ranking [5], for feature selection, bootstrap and bolstered
resubstitution usually outperform cross-validation, with bol-
stering usually performing as well as or better than bootstrap;
however, we must take care and consider individual results,
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Table 2
Selected performance measures results for Exp 1

LDA 3NN CART

exhst SFS SFFS enhBB exhst SFS SFFS enhBB exhst SFS SFFS enhBB

T1 for N = 20,K = 4, S = 30,50,70
Size True 0.1667 0.1757 0.1737 0.2272 0.1867 0.1889 0.1882 0.2014 0.2421 0.2515 0.2503 0.2922
30 resub 0.2494 0.2594 0.2551 0.2492 0.3094 0.3015 0.3018 0.2993 0.3741 0.3658 0.3664 0.3468

loo 0.2452 0.2670 0.2569 0.2794 0.2770 0.2753 0.2755 0.2768 0.3404 0.3353 0.3359 0.3384
cv5 0.2490 0.2636 0.2558 0.2933 0.2682 0.2754 0.2851 0.2841 0.3275 0.3354 0.3289 0.3541
bstrap 0.2418 0.2517 0.2347 0.2935 0.2608 0.2599 0.2613 0.2586 0.3174 0.3218 0.3214 0.3195
blstr 0.2161 0.2325 0.2184 0.2488 0.2570 0.2595 0.2672 0.2696 0.3023 0.3042 0.3036 0.3408
semib 0.2214 0.2367 0.2243 0.2421 0.2635 0.2668 0.2654 0.2822 0.2958 0.3016 0.3013 0.3344

Size True 0.1683 0.1706 0.1699 0.1826 0.1954 0.1981 0.1972 0.2091 0.2390 0.2485 0.2466 0.2828
50 resub 0.2261 0.2440 0.2339 0.2211 0.2969 0.2951 0.2949 0.2877 0.3746 0.3674 0.3668 0.3245

loo 0.2241 0.2431 0.2320 0.2397 0.2645 0.2614 0.2641 0.2669 0.3222 0.3320 0.3315 0.3286
cv5 0.2240 0.2459 0.2365 0.2588 0.2585 0.2732 0.2652 0.2754 0.3160 0.3218 0.3186 0.3453
bstrap 0.2164 0.2292 0.2178 0.2267 0.2511 0.2532 0.2573 0.2527 0.3085 0.3059 0.3055 0.3108
blstr 0.1956 0.2172 0.1957 0.1981 0.2532 0.2531 0.2500 0.2533 0.2802 0.2893 0.2888 0.3329
semib 0.2019 0.2199 0.2038 0.2031 0.2522 0.2565 0.2587 0.2678 0.2836 0.2891 0.2890 0.3258

Size True 0.1654 0.1667 0.1660 0.1704 0.1929 0.1955 0.1945 0.2039 0.2321 0.2407 0.2394 0.2705
70 resub 0.2033 0.2251 0.2127 0.1975 0.2756 0.2743 0.2738 0.2764 0.3564 0.3481 0.3490 0.3122

loo 0.2018 0.2263 0.2122 0.2103 0.2447 0.2487 0.2500 0.2552 0.3127 0.3261 0.3252 0.3120
cv5 0.2040 0.2226 0.2099 0.2286 0.2467 0.2546 0.2519 0.2631 0.3037 0.3049 0.3087 0.3374
bstrap 0.1941 0.2149 0.1963 0.1998 0.2379 0.2416 0.2415 0.2394 0.2872 0.2889 0.2905 0.2956
blstr 0.1806 0.2081 0.1826 0.1795 0.2340 0.2326 0.2357 0.2403 0.2657 0.2724 0.2728 0.3232
semib 0.1868 0.2115 0.1900 0.1866 0.2342 0.2350 0.2400 0.2543 0.2669 0.2707 0.2736 0.3150

T2 for N = 20,K = 4, S = 30,50,70
Size True 4.0000 3.0900 3.2900 1.9550 4.0000 3.4650 3.5300 3.0800 4.0000 1.9400 1.9100 1.3700
30 resub 1.5700 1.4400 1.4850 1.6700 1.4700 1.5500 1.5350 1.5950 0.9100 0.8500 0.8250 1.1300

loo 1.6650 1.3650 1.4900 1.3050 1.8300 1.8400 1.8250 1.8450 0.9850 1.0350 1.0300 1.0200
cv5 1.6000 1.3450 1.5100 1.0800 1.9050 1.8200 1.7450 1.7150 1.0650 1.1450 1.1100 0.8800
bstrap 1.7850 1.5650 1.8650 1.1000 2.0700 2.0850 2.0500 2.0900 1.1550 1.1900 1.1450 1.1600
blstr 2.1000 1.7850 2.0900 1.6750 2.1000 2.0500 2.0200 1.8950 1.2050 1.2700 1.2050 1.0950
semib 2.0350 1.7250 1.9550 1.7400 2.0450 1.9600 1.9450 1.7700 1.3450 1.2500 1.2600 0.9600

Size True 4.0000 3.2250 3.3500 2.6250 4.0000 3.3850 3.4850 3.0150 4.0000 2.2650 2.2800 1.6150
50 resub 1.7750 1.4700 1.6300 1.8450 1.6600 1.6800 1.6550 1.7000 0.9300 0.9500 0.9600 1.3950

loo 1.7850 1.4650 1.6800 1.5950 1.9800 2.0700 2.0350 1.9750 1.2650 1.1550 1.1450 1.2500
cv5 1.7950 1.3850 1.5950 1.2700 2.1800 1.9350 2.0150 1.9400 1.2750 1.1650 1.2550 1.0250
bstrap 1.9200 1.6600 1.8900 1.7750 2.2900 2.2650 2.1400 2.2300 1.3800 1.4250 1.4100 1.3400
blstr 2.3000 1.7950 2.2850 2.2300 2.2650 2.1850 2.2900 2.2200 1.6350 1.4950 1.4150 1.1650
semib 2.1700 1.7700 2.0650 2.1850 2.2450 2.2000 2.1650 2.0450 1.6700 1.4750 1.5650 1.1500

Size True 4.0000 3.2800 3.4400 2.8450 4.0000 3.3250 3.3350 3.0350 4.0000 2.5950 2.6150 1.9500
70 resub 2.0550 1.6350 1.8500 2.1400 1.8550 1.8050 1.8100 1.7750 1.1200 1.0950 1.1000 1.5350

loo 2.0100 1.5750 1.8300 1.9350 2.2850 2.1100 2.1100 2.0450 1.4900 1.2150 1.2150 1.5250
cv5 1.9450 1.5850 1.9400 1.6250 2.2250 2.0000 2.1000 1.9600 1.5000 1.5200 1.3700 1.2050
bstrap 2.1750 1.7350 2.1400 2.1050 2.3900 2.3250 2.3450 2.3000 1.8650 1.7850 1.7200 1.6300
blstr 2.4800 1.8550 2.4450 2.5400 2.4300 2.4300 2.3550 2.2700 1.9950 1.8300 1.8400 1.3150
semib 2.3100 1.7800 2.2150 2.4200 2.4500 2.4100 2.2850 2.0500 2.0300 1.9200 1.8950 1.3850
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Table 3
Selected performance measures results for Exp 2

LDA 3NN CART

exhst SFS SFFS enhBB exhst SFS SFFS enhBB exhst SFS SFFS enhBB

T1 for N = 20,K = 4, S = 30,50,70
Size True 0.1440 0.1508 0.1494 0.2054 0.1525 0.1559 0.1549 0.1759 0.1848 0.2089 0.2046 0.2518
30 resub 0.2256 0.2387 0.2345 0.2262 0.2620 0.2667 0.2678 0.2543 0.3110 0.3101 0.3100 0.3047

loo 0.2224 0.2403 0.2294 0.2534 0.2301 0.2351 0.2364 0.2444 0.2923 0.2888 0.2898 0.2908
cv5 0.2289 0.2367 0.2304 0.2755 0.2298 0.2314 0.2375 0.2524 0.2823 0.2875 0.2846 0.2967
bstrap 0.2190 0.2235 0.2129 0.2632 0.2216 0.2192 0.2201 0.2226 0.2731 0.2810 0.2779 0.2799
blstr 0.1923 0.2053 0.1918 0.2236 0.2140 0.2241 0.2270 0.2347 0.2486 0.2600 0.2626 0.2857
semib 0.1955 0.2151 0.2016 0.2210 0.2195 0.2228 0.2230 0.2451 0.2474 0.2658 0.2621 0.2920

Size True 0.1407 0.1431 0.1425 0.1540 0.1484 0.1515 0.1504 0.1660 0.1749 0.1904 0.1878 0.2289
50 resub 0.1896 0.2069 0.1981 0.1849 0.2353 0.2326 0.2307 0.2367 0.3080 0.2966 0.2963 0.2648

loo 0.1865 0.2083 0.1972 0.2034 0.2063 0.2147 0.2152 0.2222 0.2627 0.2712 0.2719 0.2672
cv5 0.1907 0.2126 0.1991 0.2269 0.2026 0.2106 0.2124 0.2314 0.2555 0.2595 0.2632 0.2792
bstrap 0.1802 0.1928 0.1825 0.1970 0.1956 0.1995 0.2026 0.2027 0.2434 0.2478 0.2500 0.2581
blstr 0.1625 0.1830 0.1638 0.1663 0.1929 0.1970 0.1990 0.2103 0.2223 0.2295 0.2308 0.2722
semib 0.1693 0.1893 0.1713 0.1707 0.1985 0.2024 0.2057 0.2193 0.2230 0.2296 0.2289 0.2699

Size true 0.1388 0.1404 0.1397 0.1437 0.1457 0.1482 0.1471 0.1590 0.1710 0.1832 0.1815 0.2156
70 resub 0.1754 0.1992 0.1892 0.1752 0.2152 0.2210 0.2222 0.2140 0.2849 0.2792 0.2802 0.2494

loo 0.1756 0.1951 0.1824 0.1847 0.1960 0.2007 0.2017 0.2052 0.2413 0.2463 0.2476 0.2511
cv5 0.1750 0.1970 0.1881 0.1994 0.1961 0.1964 0.2001 0.2130 0.2333 0.2427 0.2444 0.2736
bstrap 0.1680 0.1864 0.1692 0.1693 0.1847 0.1874 0.1891 0.1858 0.2271 0.2319 0.2310 0.2354
blstr 0.1536 0.1769 0.1531 0.1495 0.1835 0.1854 0.1903 0.1947 0.2060 0.2161 0.2136 0.2632
semib 0.1583 0.1812 0.1591 0.1549 0.1843 0.1880 0.1865 0.1999 0.2074 0.2151 0.2169 0.2573

T2 for N = 20,K = 4, S = 30,50,70
Size True 4.0000 3.1500 3.2650 1.9550 4.0000 3.3300 3.4400 2.7800 4.0000 1.7050 1.8350 1.1750
30 resub 1.5300 1.3600 1.4800 1.5650 1.4550 1.3400 1.3500 1.5450 0.8500 0.8800 0.9000 1.0050

loo 1.6150 1.3000 1.4700 1.2400 1.7600 1.7000 1.6850 1.6200 0.9000 0.8750 0.8800 0.9650
cv5 1.5100 1.3750 1.5100 0.9700 1.7700 1.7100 1.6600 1.5100 0.9350 0.8800 0.8950 0.9350
bstrap 1.7150 1.5500 1.7650 1.1500 1.9350 1.9100 1.9700 1.9800 1.0200 0.8850 0.9200 0.9000
blstr 2.1550 1.7900 2.1250 1.7300 1.9350 1.7950 1.7900 1.7150 1.2650 1.0200 1.0400 1.0300
semib 2.0550 1.6250 1.9650 1.7250 1.9300 1.8400 1.8550 1.6650 1.2400 0.9950 1.0350 0.9750

Size True 4.0000 3.2350 3.3200 2.7300 4.0000 3.3000 3.3600 2.8600 4.0000 2.1950 2.2850 1.6050
50 resub 1.9500 1.6100 1.7700 2.0250 1.6650 1.6550 1.6650 1.6050 1.0150 1.0000 1.0050 1.3450

loo 1.9950 1.5500 1.7750 1.7700 1.9900 1.7750 1.7650 1.7000 1.2600 1.0800 1.0750 1.2300
cv5 1.9350 1.5350 1.7450 1.3600 2.0700 1.9300 1.8850 1.6500 1.3100 1.2000 1.2150 1.0100
bstrap 2.1050 1.7750 1.9850 1.8900 2.1550 2.1150 2.1050 2.0500 1.3900 1.3750 1.2800 1.2400
blstr 2.3950 1.9650 2.3500 2.4350 2.1500 2.2150 2.1500 2.0000 1.5250 1.5250 1.5000 1.2300
semib 2.2700 1.8450 2.2500 2.3150 2.1700 2.0150 1.9150 1.8350 1.5300 1.4300 1.4100 1.1600

Size True 4.0000 3.3150 3.4350 2.9450 4.0000 3.2500 3.3550 2.8150 4.0000 2.3850 2.4500 1.7350
70 resub 2.0850 1.6900 1.8650 2.0650 1.7200 1.7050 1.6700 1.8350 1.0350 1.1450 1.1200 1.4000

loo 2.0700 1.7750 1.9900 1.9650 2.0500 2.0400 2.0150 2.0250 1.4350 1.3700 1.3400 1.4200
cv5 2.0800 1.6850 1.8800 1.6500 2.0650 2.0400 2.0200 1.9100 1.4700 1.4050 1.3850 1.0600
bstrap 2.2250 1.8700 2.1900 2.2400 2.2600 2.2550 2.2500 2.2800 1.5400 1.5650 1.4650 1.5650
blstr 2.5400 2.0300 2.5800 2.7000 2.3250 2.2900 2.1800 2.1800 1.9250 1.7300 1.7100 1.2700
semib 2.4350 2.0300 2.4600 2.5150 2.3400 2.2200 2.2400 2.0100 1.8050 1.7200 1.7300 1.3250
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Table 4
Selected performance measures results for Exp 4

LDA 3NN CART

exhst SFS SFFS enhBB exhst SFS SFFS enhBB exhst SFS SFFS enhBB

T1 for N = 20,K = 4, S = 30,50,70
Size True 0.1211 0.1289 0.1266 0.1590 0.1322 0.1384 0.1376 0.1377 0.1987 0.2190 0.2160 0.2339
30 resub 0.1740 0.1741 0.1729 0.1648 0.2009 0.1900 0.1897 0.1850 0.2638 0.2695 0.2692 0.2594

loo 0.1611 0.1731 0.1722 0.1825 0.1719 0.1735 0.1728 0.1781 0.2473 0.2583 0.2583 0.2574
cv5 0.1643 0.1708 0.1685 0.1717 0.1731 0.1742 0.1776 0.1782 0.2487 0.2551 0.2551 0.2542
bstrap 0.1513 0.1656 0.1508 0.1723 0.1621 0.1671 0.1685 0.1727 0.2470 0.2525 0.2516 0.2552
blstr 0.1458 0.1634 0.1483 0.1691 0.1669 0.1737 0.1721 0.1732 0.2390 0.2465 0.2461 0.2542
semib 0.1470 0.1628 0.1518 0.1656 0.1667 0.1737 0.1727 0.1712 0.2393 0.2470 0.2462 0.2515

Size True 0.1205 0.1260 0.1249 0.1297 0.1335 0.1397 0.1381 0.1357 0.1872 0.2061 0.2044 0.2191
50 resub 0.1430 0.1553 0.1514 0.1439 0.1764 0.1786 0.1778 0.1767 0.2528 0.2503 0.2511 0.2364

loo 0.1404 0.1560 0.1522 0.1559 0.1632 0.1680 0.1674 0.1681 0.2314 0.2392 0.2394 0.2388
cv5 0.1409 0.1549 0.1493 0.1604 0.1630 0.1680 0.1654 0.1709 0.2329 0.2352 0.2371 0.2433
bstrap 0.1339 0.1491 0.1399 0.1555 0.1574 0.1616 0.1618 0.1650 0.2292 0.2333 0.2340 0.2403
blstr 0.1391 0.1492 0.1404 0.1456 0.1611 0.1649 0.1636 0.1638 0.2227 0.2258 0.2271 0.2390
semib 0.1386 0.1521 0.1416 0.1453 0.1622 0.1647 0.1650 0.1687 0.2223 0.2281 0.2262 0.2382

Size True 0.1199 0.1240 0.1236 0.1219 0.1340 0.1407 0.1395 0.1358 0.1809 0.1976 0.1966 0.2114
70 resub 0.1370 0.1446 0.1440 0.1355 0.1691 0.1755 0.1752 0.1741 0.2415 0.2402 0.2408 0.2298

loo 0.1347 0.1454 0.1413 0.1442 0.1589 0.1680 0.1668 0.1651 0.2228 0.2302 0.2301 0.2357
cv5 0.1381 0.1454 0.1431 0.1476 0.1593 0.1680 0.1644 0.1655 0.2240 0.2312 0.2299 0.2376
bstrap 0.1346 0.1434 0.1353 0.1455 0.1552 0.1607 0.1610 0.1632 0.2192 0.2227 0.2229 0.2280
blstr 0.1325 0.1432 0.1354 0.1407 0.1563 0.1603 0.1609 0.1604 0.2115 0.2159 0.2160 0.2346
semib 0.1354 0.1431 0.1389 0.1414 0.1590 0.1619 0.1625 0.1652 0.2101 0.2179 0.2152 0.2355

T2 for N = 20,K = 4, S = 30,50,70
Size True 4.0000 3.9950 3.9900 3.3200 4.0000 3.9950 4.0000 3.9550 3.7350 3.3700 3.4300 3.1750
30 resub 2.9500 3.2250 2.9950 3.2100 2.7000 2.9800 2.9900 3.0400 2.1100 2.4600 2.4400 2.6150

loo 3.3500 3.3200 3.1600 2.9550 3.2850 3.1750 3.1750 3.1200 2.8700 2.6300 2.6250 2.4450
cv5 3.2650 3.3350 3.2400 3.1650 3.3000 3.2050 3.1450 3.1650 3.1050 2.9950 3.0000 3.1300
bstrap 3.6600 3.5550 3.6200 3.1350 3.4700 3.3350 3.3050 3.1850 3.1100 3.1650 3.1150 3.1850
blstr 3.4250 3.4550 3.3950 3.2250 3.3350 3.1600 3.2450 3.2250 3.1300 3.0900 3.0500 3.1500
semib 3.4300 3.4300 3.2950 3.2850 3.4000 3.1500 3.2200 3.2750 3.1900 3.0250 3.0000 3.0900

Size True 4.0000 4.0000 4.0000 3.8800 4.0000 4.0000 4.0000 3.9800 3.9150 3.5650 3.6350 3.3100
50 resub 3.5950 3.4450 3.4200 3.6000 3.3250 3.2100 3.2300 3.2100 2.5850 2.8550 2.8300 3.1100

loo 3.6750 3.5150 3.4300 3.2800 3.5100 3.3400 3.3350 3.3050 3.3000 3.0350 3.0250 2.8450
cv5 3.6250 3.5100 3.4750 3.2000 3.5150 3.3500 3.4250 3.2950 3.2950 3.1900 3.1850 3.1300
bstrap 3.8350 3.6550 3.7000 3.2800 3.6450 3.5000 3.4900 3.3500 3.3350 3.3050 3.2700 3.1450
blstr 3.5700 3.6550 3.5550 3.4050 3.4700 3.3950 3.4650 3.4300 3.1900 3.2200 3.2000 3.1700
semib 3.6150 3.5350 3.5400 3.4450 3.4900 3.4300 3.3900 3.2700 3.2100 3.1050 3.1700 3.1700

Size True 4.0000 4.0000 4.0000 3.9700 4.0000 4.0000 4.0000 3.9900 3.9650 3.7650 3.7250 3.4800
70 resub 3.7250 3.6250 3.5000 3.7550 3.5650 3.2900 3.3150 3.3250 2.8900 3.0300 3.0300 3.1650

loo 3.7800 3.6100 3.6100 3.5100 3.6150 3.3300 3.3850 3.3800 3.3500 3.1800 3.1800 3.0700
cv5 3.7350 3.5800 3.5150 3.4050 3.6700 3.3850 3.4700 3.4000 3.4450 3.2900 3.2800 3.1400
bstrap 3.8450 3.7150 3.7700 3.4700 3.7500 3.5800 3.6150 3.4150 3.4500 3.3800 3.3600 3.2750
blstr 3.7350 3.7200 3.6850 3.4550 3.6800 3.5700 3.6050 3.5250 3.3650 3.2100 3.2600 3.1050
semib 3.7150 3.6800 3.5650 3.4350 3.5550 3.5200 3.5450 3.3850 3.4000 3.2500 3.2700 3.1750
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because, specific results, and sometimes even trends in the
results, must be examined for each particular classification-
distribution combination. Considering Exp 1 in some detail,
we note several phenomena.

For LDA and S = 50, with exhaustive search, SFS, or
SFFS, resubstitution and cross-validation estimators perform
about the same with respect to error. Bootstrap does better
and bolstering does even better. However, for branch and
bound, resubstitution and bootstrap both outperform cross-
validation and are comparable. Moreover, the advantage of
bolstering over bootstrap is even greater. Most of these ob-
servations are mirrored in theT 2 statistic.

Now look at LDA and S = 30. The overall situation
is different. For exhaustive search, resubstitution, cross-
validation, and bootstrap all perform about the same, with
bolstering substantially better. For SFS, there is a slight
ordering, cross-validation being the worst, resubstitution
being slightly better, bootstrap being still slightly better,
and bolstering having a more substantial advantage over
bootstrap. For SFFS, the results are similar toS = 50. For
enhBB, there is generally worse performance, especially
for the computationally intensive cv5 and bootstrap, with
loo being slightly better. The striking difference is that
resubstitution and bolstering perform about the same, with
both being much better than bootstrap.

For 3NN and all sample sizes, there appears to be a more
consistent trend based on bothT 1 andT 2 than for LDA:
bootstrap and bolstering perform about the same and are
better than cross-validation, and resubstitution is by far the
worst.

For CART and all sample sizes, we again witness the
main trend from best to worst: bolstering, bootstrap, cross-
validation, and finally resubstitution, which is far worse than
any of the others.

4. Conclusion

Feature selection is unavoidable when there is a large
number of features from which to choose. Our experiments
indicate SFS and SFFS (and even branch and bound) can
perform close to optimal (full search with true error) when
the true error is employed in feature selection, but in practice
knowledge of the true error is impossible. With large sam-
ples, most error estimation procedures work quite well so
that one has good estimates of the true error; however, this
is not the case with small samples, as are common in situ-
ations where data are expensive or difficult to obtain owing
to a limitation on their availability, as is often the case with
patient samples. Depending on the sample size and the clas-
sification rule, in particular its complexity, feature-selection
algorithms can produce feature sets whose corresponding
classifiers possess errors far in excess of the classifier cor-
responding to the optimal feature set. Moreover, and most
importantly in application since one may have no alterna-
tive to a small sample, our experiments show that, for small

samples, differences in performances among the feature se-
lection algorithms are less significant than performance dif-
ferences among the error estimators used to implement the
feature-selection algorithm. Keeping in mind that specific
results, and sometimes even trends in the results, depend on
the particular classifier-distribution pair, for the error esti-
mators considered in this study, bootstrap and bolstered re-
substitution usually outperform cross-validation. Moreover,
bolstered resubstitution usually performs as well as or better
than bootstrap, and with much less computation time.

Appendix A

We shall present a short review of the error estimation
methods we used in this paper.

A.1. Classifier error

In two-group statistical pattern recognition, there is afea-
ture vectorX ∈ Rp and alabel Y ∈ {0,1}. The pair(X, Y )
has a joint probability distributionF, which is unknown in
practice. Hence, one has to resort to designing classifiers
from training data, which consists of a set ofn independent
observations,Sn={(X1, Y1), . . . , (Xn, Yn)}, drawn fromF.
A classification ruleis a mappingg : {Rp×{0,1}}n×Rp →
{0,1}. It maps Sn into the designed classifierg(Sn, ·) :
Rp → {0,1}. In fact, a classification rule is actually a col-
lection of mappings, one for eachn; however, we follow the
usual practice of using a single operator notationg to rep-
resent all of the individual mappings. Thetrue error of a
designed classifier is its error rate given the training data set:

�n[g|Sn] = P(g(Sn,X) �= Y )= EF(|Y − g(Sn,X)|), (1)

where EF denotes expectation with respect toF. The
expected error rate over the data is given by�n[g] =
EFnEF(|Y − g(Sn,X)|), whereFn is the joint distribution
of the training dataSn. Were the underlying feature-label
distributionF known, the true error could be computed ex-
actly via (1). In practice, one must use anerror estimator.
Ideally, this estimate should be fast to compute and as close
as possible to the true error, for the given training data.

A.2. Classical error estimation

The simplest way to estimate the error of a designed clas-
sifier in the absence of independent test data is to compute
its error directly on the sample data itself. Thisresubstitu-
tion estimator, �̂resub, is very fast, but is usually optimistic
(i.e., biased low) as an estimator of�n[g], sometimes very
much so. Typically, the more complex the classifier is, the
more optimistic resubstitution is, since complex classifiers
tend to overfit the data, especially with small samples[19].

Cross-validation removes the optimism from resubstitu-
tion by employing test points not used in the design of the
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classifier. Ink-fold cross-validation, the data setSn is parti-
tioned intok foldsS(i), for i = 1, . . . , k (for simplicity, we
assume thatk divides n). Each fold is left out of the de-
sign process and used as a test set, and the estimate,�̂cvk,
is the overall proportion of error on all folds. The process
may be repeated: several cross-validation estimates are com-
puted using different partitions of the data into folds, and
the results are averaged. Ak-fold cross-validation estimator
is unbiased as an estimator of�n−n/k[g]. The leave-one-
out estimator, �̂loo, in which a single observation is left out
each time, corresponds ton-fold cross-validation. It is unbi-
ased as an estimator of�n−1[g]. Cross-validation estimators
are often pessimistic, since they use smaller training sets to
design the classifier. Their main drawback is their variance
[20,21]. They can also be quite slow to compute when the
number of folds or samples is large.

The bootstrap error estimation technique[22,23] is based
on the notion of an “empirical distribution”F∗, which serves
as a replacement to the original unknown distributionF.
The empirical distribution puts mass 1/n on each of then
available data points. A “bootstrap sample”S∗

n fromF∗ con-
sists ofn equally-likely draws with replacement from the
original dataSn. The basicbootstrap zero estimator[23]
is written in terms of the empirical distribution as�̂0 =
EF∗(|Y − g(S∗

n,X)|: (X, Y ) ∈ Sn\S∗
n). In practice, the ex-

pectationEF∗ has to be approximated by a Monte-Carlo es-
timate based on independent replicatesS∗b

n , for b=1, . . . , B.
The bootstrap zero estimator works like cross-validation:
the classifier is designed on the bootstrap sample and tested
on the original data points that are left out. It tends to be
high-biased as an estimator of�n[g], since the amount of
samples available for designing the classifier is on average
only (1 − e−1)n ≈ 0.632n. The0.632 bootstrap estimator
[23], �̂b632= (1 − 0.632)�̂resub+ 0.632̂�0, tries to correct
this bias by doing a weighted average of the bootstrap zero
and resubstitution estimators. It has low variance, but can
be extremely slow to compute. In addition, it can fail when
resubstitution is too low-biased[20].

A.3. Bolstered error estimation

The resubstitution estimator is defined in terms of the
empirical feature-label distributionF ∗ by ε̂Rn = EF ∗ [|Y −
g(Sn,X)|]. Relative toF ∗, no distinction is made between
points near or far from the decision boundary. If one spreads
the probability mass at each point of the empirical distribu-
tion, then variation is reduced because points near the deci-
sion boundary will have more mass on the other side of the
boundary than will points far from the decision boundary.
To take advantage of this observation, consider a probabil-
ity density functionf♦

i
, for i = 1, . . . , n, called abolster-

ing kernel, and define thebolstered empirical distribution
F♦, with probability density function given byf♦(x) =
1
n

∑n
i=1 f

♦
i
(x− xi ). Thebolstered resubstitutionestimator

[24] is obtained by replacingF ∗ by F♦ in the definition of
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Fig. 1. Bolstered resubstitution for a linear classifier, assuming
uniform circular bolstering kernels. The area of each shaded region
divided by the area of the associated circle is the error contribution
made by a point. The bolstered resubstitution error is the sum of
all contributions divided by the number of points.

ε̂Rn to obtain

ε̂♦Rn = EF♦[|Y − g(Sn,X)|]. (2)

Bolstering can be applied to other error estimators; however,
we only use bolstered (and semi-bolstered) resubstitution,
the bolstering method used most to date.

A computational expression for the bolstered resubstitu-
tion estimator is given by

ε̂♦Rn = 1

n

n∑
i=1

(
Iyi=0

∫
A1

f
♦
i
(x − xi)dx + Iyi=1

×
∫
A0

f
♦
i
(x − xi)dx

)
, (3)

whereAj = {x | g(Sn, x) = j}. The integrals are the error
contributions made by the data points, according to whether
yi = 0 or yi = 1. The bolstered resubstitution error estimate
is equal to the sum of all error contributions divided by
the number of points. If the classifier is linear, then the
decision boundary is a hyperplane and it is usually possible
to find analytical expressions for the integrals; otherwise,
Monte-Carlo integration can be employed. Experimentation
indicates that a small number of Monte-Carlo samples is
needed. Our simulations employ 10, the number used in
[24]. Fig. 1 illustrates the situation where the bolstering
kernels are given by uniform circular distributions and the
classifier is linear. In this case, no Monte-Carlo computation
is needed; the bolstered resubstitution error estimate is given
in terms of the areas of the shaded regions.
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Fig. 2. A typical branch-and-bound tree searching path forN = 20,K = 4, S = 30 using “true error” estimation for LDA rule. (Taken from
a simulation from Exp 1.)

When resubstitution is strongly low-biased, it may not
be good to spread incorrectly classified data points, as that
increases optimism of the error estimator. Bias is reduced
by using no bolstering for incorrectly classified points. The
result is thesemi-bolstered resubstitutionestimator[24].

Although more general bolstering kernels may be con-
sidered, in keeping with the principle of not making com-
plicated inferences from a limited amount of data, we only
consider zero-mean, spherical bolstering kernelsf �

i
, with

covariance matrices of the form�2
i
Ip. In each case there

is a family of bolstered estimators, corresponding to the
choices of the standard deviations�1, . . . , �n. The choice
of these parameters determines the variance and bias prop-
erties of the corresponding bolstered estimator. If�i = 0,
for i = 1, . . . , n, then there is no bolstering and the bol-
stered estimator reduces to the original estimator. As a gen-
eral rule, larger�i ’s, i.e., “wider” bolstering kernels, lead
to lower-variance estimators, but after a certain point this
advantage becomes offset by increasing bias. The choice of
the standard deviations is a critical issue. We employ a non-
parametric sample-based method to choose these parameters
that is applicable in small-sample settings[24]. The method
is somewhat involved, so we leave its description to the cited
paper. In this paper, a Gaussian kernel bolstering is used.

Appendix B

B.1. Branch-and-bound performance

We have seen that the branch-and-bound algorithm can
perform much worse than SFS and SFFS for LDA with very

small samples. To appreciate the source of this problem, we
refer to a typical branch-and-bound search inFig. 2. The
N = 20 features are labeled 0,1, . . . ,19. Marked at each
node explored is the label number of the feature discarded at
that point, along with the criterion function value evaluated
[25,18]. Notice that the criterion function value at node 17 is
higher than that at node 4. Thus, the search stops after merely
one branch exploration. This gives us the best features as
0,1,4, and 7, whereas the best features found by exhaustive
search are 0,1,3, and 15. The monotonicity assumption
for branch and bound is severely violated here. The poor
performance of enhBB is largely due to designing a classifier
on a very small sample. At level 1 inFig. 2, a 19-dimensional
LDA classifier must be designed with only 30 data points,
and the designed LDA classifier is likely to possess a large
error.

Appendix C

C.1. Tables. Selected experimental results

Tables 2–4.
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