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Abstract. Empirical research in learning algorithms for classification tasks gen-
erally requires the use of significance tests. The quality of a test is typically judged
on Type I error (how often the test indicates a difference when it should not) and
Type II error (how often it indicates no difference when it should). In this paper
we argue that the replicability of a test is also of importance. We say that a test has
low replicability if its outcome strongly depends on the particular random parti-
tioning of the data that is used to perform it. We present empirical measures of
replicability and use them to compare the performance of several popular tests in
a realistic setting involving standard learning algorithms and benchmark datasets.
Based on our results we give recommendations on which test to use.

1 Introduction

Significance tests are often applied to compare performance estimates obtained by re-
sampling methods—such as cross-validation [1]—that randomly partition data. In this
paper we consider the problem that a test may be very sensitive to the particular random
partitioning used in this process. If this is the case, it is possible that, using the same
data, the same learning algorithms A and B, and the same significance test, one re-
searcher finds that method A is preferable, while another finds that there is not enough
evidence for this. Lack of replicability can also cause problems when “tuning” an algo-
rithm: a test may judge favorably on the latest modification purely due to its sensitivity
to the particular random number seed used to partition the data. In this paper we extend
previous work on replicability [2, 3] by studying the replicability of some popular tests
in a more realistic setting based on standard benchmark datasets taken from the UCI
repository of machine learning problems [4].

The structure of the paper is as follows. In Section 2 we review how significance
tests are used for comparing learning algorithms and introduce the notion of replicabil-
ity. Section 3 discusses some popular tests in detail. Section 4 contains empirical results
for these tests and highlights the lack of replicability of some of them. Section 5 sum-
marizes the results and makes some recommendations based on our empirical findings.



2 Evaluating significance tests

We consider a scenario where we have a certain application domain and we are inter-
ested in the mean difference in accuracy between two classification algorithms in this
domain, given that the two algorithms are trained on a dataset with N instances. We do
not know the joint distribution underlying the domain and consequently cannot com-
pute the difference exactly. Hence we need to estimate it, and, to check whether the
estimated difference is likely to be a “true” difference, perform a significance test. To
this end we also need to estimate the variance of the differences across different training
sets.

Obtaining an unbiased estimate of the mean and variance of the difference is easy if
there is a sufficient supply of data. In that case we can sample a number of training sets
of size N , run the two learning algorithms on each of them, and estimate the difference
in accuracy for each pair of classifiers on a large test set. The average of these differ-
ences is an estimate of the expected difference in generalization error across all possible
training sets of size N , and their variance is an estimate of the variance. Then we can
perform a paired t-test to check the null hypothesis that the mean difference is zero. The
Type I error of a test is the probability that it rejects the null hypothesis incorrectly (i.e.
it finds a “significant” difference although there is none). Type II error is the probability
that the null hypothesis is not rejected when there actually is a difference. The test’s
Type I error will be close to the chosen significance level α.

In practice we often only have one dataset of size N and all estimates must be
obtained from this one dataset. Different training sets are obtained by subsampling, and
the instances not sampled for training are used for testing. For each training set Si,
1 ≤ i ≤ k, we get a matching pair of accuracy estimates and the difference xi. The
mean and variance of the differences xi is used to estimate the mean and variance of
the difference in generalization error across different training sets. Unfortunately this
violates the independence assumption necessary for proper significance testing because
we re-use the data to obtain the different xi’s. The consequence of this is that the Type
I error exceeds the significance level. This is problematic because it is important for the
researcher to be able to control the Type I error and know the probability of incorrectly
rejecting the null hypothesis. Several heuristic versions of the t-test have been developed
to alleviate this problem [5, 6].

In this paper we study the replicability of significance tests. Consider a test based
on the accuracy estimates generated by cross-validation. Before the cross-validation is
performed, the data is randomized so that each of the resulting training and test sets
exhibits the same distribution. Ideally, we would like the test’s outcome to be indepen-
dent of the particular partitioning resulting from the randomization process because this
would make it much easier to replicate experimental results published in the literature.
However, in practice there is always a certain sensitivity to the partitioning used. To
measure replicability we need to repeat the same test several times on the same data
with different random partitionings—in this paper we use ten repetitions—and count
how often the outcome is the same. Note that a test will have greater replicability than
another test with the same Type I and Type II error if it is more consistent in its out-
comes for each individual dataset.



We use two measures of replicability. The first measure, which we call consistency,
is based on the raw counts. If the outcome is the same for every repetition of a test on the
same data, we call the test consistent, and if there is a difference at most once, we call
it almost consistent. This procedure is repeated with multiple datasets, and the fraction
of outcomes for which a test is consistent or almost consistent is an indication of how
replicable the test is. The second measure, which we call replicability, is based on the
probability that two runs of the test on the same data set will produce the same outcome.
This probability is never worse than 0.5. To estimate it we need to consider pairs of
randomizations. If we have performed the test based on n different randomizations
for a particular dataset then there are
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)

such pairs. Assume the tests rejects the null
hypothesis for k (0 ≤ k ≤ n) of the randomizations. Then there are
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accepting ones. Based on this the above probability can be estimated
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= k(k−1)+(n−k)(n−k−1)
n(n−1) . We use this probability to

form a measure of replicability across different datasets. Assume there are m datasets
and let ik (0 ≤ k ≤ n) be the number of datasets for which the test agrees k times (i.e.
∑n

k=0 ik = m). Then we define replicability as R =
∑n

k=0
ik

m
R(k, n). The larger the

value of this measure, the more likely the test is to produce the same outcome for two
different randomizations of a dataset.

3 Significance Tests

In this section we review some tests for comparing learning algorithms. Although test-
ing is essential for empirical research, surprisingly little has been written on this topic.

3.1 The 5x2cv paired t-test

Dietterich [5] evaluates several significance tests by measuring their Type I and Type II
error on artificial and real-world data. He finds that the paired t-test applied to random
subsampling has an exceedingly large Type I error. In random subsampling a training
set is drawn at random without replacement and the remainder of the data is used for
testing. This is repeated a given number of times. In contrast to cross-validation, random
subsampling does not ensure that the test sets do not overlap. Ten-fold cross-validation
can be viewed as a special case of random subsampling repeated ten times, where 90%
of the data is used for training, and it is guaranteed that the ten test sets do not overlap.
The paired t-test based on ten-fold cross-validation fares better in the experiments in [5]
but also exhibits an inflated Type I error. On one of the real-world datasets its Type I
error is approximately twice the significance level.

As an alternative [5] proposes a heuristic test based on five runs of two-fold cross-
validation, called “5x2cv paired t-test”. In an r-times k-fold cross-validations there
are r, r > 1, runs and k, k > 1, folds. For each run j, 1 ≤ j ≤ r, the data is
randomly permutated and split into k subsets of equal size.1 We call these i, 1 ≤ i ≤ k,
subsets the k folds of run j. We consider two learning schemes A and B and measure

1 Of course, in some cases it may not be possible to split the data into subsets that have exactly
the same size.



their respective accuracies aij and bij for fold i and run j. To obtain aij and bij the
corresponding learning scheme is trained on all the data excluding that in fold i of run
j and tested on the remainder. Note that exactly the same pair of training and test sets
is used to obtain both aij and bij . That means a paired significance test is appropriate
and we can consider the individual differences in accuracy xij = aij − bij as the input
for the test.

Let x.j denote the mean difference for a single run of 2-fold cross-validation, x.j =
(x1j + x2j)/2. The variance is σ̂2

j = (x1j − x.j)
2 + (x2j − x.j)

2. The 5x2cv paired
t-test uses the following test statistic:

t =
x11

√

1
5

∑5
j=1 σ̂2

j

This statistic is plugged into the Student-t distribution with five degrees of freedom.
Note that the numerator only uses the term x11 and not the other differences xij . Con-
sequently the outcome of the test is strongly dependent on the particular partitioning of
the data used when the test is performed. Therefore it can be expected that the replica-
bility of this test is not high. Our empirical evaluation demonstrates that this is indeed
the case.

The empirical results in [5] show that the 5 × 2cv paired t-test has a Type I error at
or below the significance level. However, they also show that it has a much higher Type
II error than the standard t-test applied to ten-fold cross-validation. Consequently the
former test is recommended in [5] when a low Type I error is essential, and the latter
test otherwise.

The other two tests evaluated in [5] are McNemar’s test and the test for the dif-
ference of two proportions. Both of these tests are based on a single train/test split and
consequently cannot take variance due to the choice of training and test set into account.
Of these two tests, McNemar’s test performs better overall: it has an acceptable Type I
error and the Type II error is only slightly lower than that of the 5 × 2cv paired t-test.
However, because these two tests are inferior to the 5 × 2cv test, we will not consider
them in our experiments.

3.2 Tests based on random subsampling

As mentioned above, Dietterich [5] found that the standard t-test has a high Type I error
when used in conjunction with random subsampling. Nadeau and Bengio [6] observe
that this is due to an underestimation of the variance because the samples are not inde-
pendent (i.e. the different training and test sets overlap). Consequently they propose to
correct the variance estimate by taking this dependency into account.

Let aj and bj be the accuracy of algorithms A and B respectively, measured on
run j (1 ≤ j ≤ n). Assume that in each run n1 instances are used for training, and
the remaining n2 instances for testing. Let xj be the difference xj = aj − bj , and µ̂
and σ̂2 the estimates of the mean and variance of the n differences. The statistic of the
“corrected resampled t-test” is:

t =
1
n

∑n

j=1 xj
√

( 1
n

+ n2

n1

)σ̂2



This statistic is used in conjunction with the Student-t distribution and n− 1 degrees of
freedom. The only difference to the standard t-test is that the factor 1

n
in the denominator

has been replaced by the factor 1
n

+ n2

n1

. Nadeau and Bengio [6] suggest that “... normal
usage would call for n1 to be 5 or 10 times larger than n2, ...”.

Empirical results show that this test dramatically improves on the standard resam-
pled t-test: the Type I error is close to the significance level, and, unlike McNemar’s test
and the 5 × 2cv test, it does not suffer from high Type II error [6].

3.3 Tests based on repeated k-fold cross validation

Here we consider tests based on r-times k-fold cross-validation where r and k can have
any value. As in Section 3.1, we observe differences xij = aij − bij for fold i and
run j. One could simply use m = 1

k.r

∑k

i=1

∑r

j=1 xij as an estimate for the mean

and σ̂2 = 1
k.r−1

∑k

i=1

∑r

j=1(xij − m)2 as an estimate for the variance. Then, assum-

ing the various values of xij are independent, the test statistic t = m/
√

(1/k.r)σ̂2 is
distributed according to a t-distribution with df = k.r−1 degrees of freedom. Unfortu-
nately, the independence assumption is highly flawed, and tests based on this assump-
tion show very high Type I error, similar to plain subsampling.

However, the same variance correction as in the previous subsection can be per-
formed here because cross-validation is a special case of random subsampling where
we ensure that the test sets in one run do not overlap. (Of course, test sets from different
runs will overlap.) This results in the following statistic:

t =
1

k.r

∑k

i=1

∑r

j=1 xij
√

( 1
k.r

+ n2

n1

)σ̂2

where n1 is the number of instances used for training, and n2 the number of instances
used for testing. We call this test the “corrected repeated k-fold cv test”.

4 Empirical evaluation

To evaluate how replicability affects the various tests, we performed experiments on a
selection of datasets from the UCI repository [4]. We used naive Bayes, C4.5 [7], and
the nearest neighbor classifier, with default settings as implemented in Weka2 version
3.3 [1]. For tests that involve multiple folds, the folds were chosen using stratification,
which ensures that the class distribution in the whole dataset is reflected in each of the
folds. Each of the tests was run ten times for each pair of learning schemes and a 5%
significance level was used in all tests unless stated otherwise.

4.1 Results for the 5x2cv paired t-test

Table 1 shows the datasets and their properties, and the results for the 5x2 cross valida-
tion test. The three right-most columns show the number of times the test does not reject

2 Weka is freely available with source from http://www.cs.waikato.ac.nz/ml.



dataset #inst. #atts. #cl. NB vs C4.5 NB vs NN C4.5 vs NN
anneal 898 38 5 4 4 10
arrhythmia 452 280 13 9 9 2
audiology 226 69 24 5 10 8
autos 205 25 6 10 7 10
balance-scale 625 4 3 1 4 7
breast-cancer 286 9 2 10 9 8
credit-rating 690 16 2 6 8 10
ecoli 336 8 8 7 10 10
German credit 1000 20 2 9 6 10
glass 214 9 6 6 6 9
heart-statlog 270 13 2 4 5 9
hepatitis 155 19 2 9 10 10
horse-colic 368 22 2 8 10 7
Hungarian 294 13 2 10 10 10
heart disease
ionosphere 351 34 2 10 10 8
iris 150 4 3 10 10 10
labor 57 16 2 8 10 10
lymphography 148 18 4 9 10 10
pima-diabetes 768 8 2 10 6 7
primary-tumor 339 17 21 7 3 10
sonar 208 60 2 10 9 6
soybean 683 35 19 8 8 9
vehicle 846 18 4 0 0 9
vote 435 16 2 4 9 7
vowel 990 13 11 4 0 0
Wisconsin 699 9 2 8 9 10
breast cancer
zoo 101 16 7 10 10 8

Consistent: 9 12 13
Almost consistent: 14 17 17
Replicability (R): 0.737 0.783 0.816

Table 1. The number of cases (#inst.), attributes (#atts.), and classes (#cl.) for each dataset; and
the number of draws for each pair of classifiers based on the 5x2 cross validation test (NB = naive
Bayes, NN = nearest neighbor).

the null hypothesis, i.e, the number of times the 5x2 cross validation test indicates that
there is no difference between the corresponding pair of classifiers. For example, for
the anneal dataset, the test indicates no difference between naive Bayes and C4.5 four
times, so six times it does indicate a difference. Note that the same dataset, the same
algorithm, the same settings, and the same significance test were used in each of the ten
experiments. The only difference was in the way the dataset was split into the 2 folds in
each of the 5 runs. Clearly, the test is very sensitive to the particular partitioning of the
anneal data.



Looking at the column for naive Bayes vs. C4.5, this test could be used to justify
the claim that the two perform the same for all datasets except the vehicle dataset just
by choosing appropriate random number seeds. However, it could just as well be used
to support the claim that the two algorithms perform differently in 19 out of 27 cases.

For some rows, the test consistently indicates no difference between any two of the
three schemes, in particular for the iris and Hungarian heart disease datasets. However,
most rows contain at least one cell where the outcomes of the test are not consistent.

The row labeled “consistent” at the bottom of the table lists the number of datasets
for which all outcomes of the test are the same. These are calculated as the number of
0’s and 10’s in the column. For any of the compared schemes, less than 50% of the
results turn out to be consistent.

Note that, it is possible that, when comparing algorithms A and B, sometimes A is
preferred and sometimes B if the null hypothesis is rejected. However, closer inspection
of the data reveals that this only happens when the null hypothesis is accepted most of
the time, except for 2 or 3 runs. Consequently these cases do not contribute to the value
of the consistency measure.

If we could accept that one outcome of the ten runs does not agree with the rest, we
get the number labeled “almost consistent” in Table 1 (i.e. the number of 0’s, 1’s, 9’s
and 10’s in a column). The 5x2 cross validation test is almost consistent in fewer than
66% of the cases, which is still a very low rate.

The last row shows the value of the replicability measure R for the three pairs of
learning schemes considered. These results reflect the same behaviour as the consis-
tency measures. The replicability values are pretty low considering that R cannot be
smaller than 0.5.

4.2 Results for the corrected resampled t-test

In the resampling experiments, the data was randomized, 90% of it used for training,
and the remaining 10% used to measure accuracy. This was repeated with a different
random number seed for each run. Table 2 shows the results for the corrected resampled
t-test. The number of runs used in resampling was varied from 10 to 100 to see the effect
on the replicability.

The replicability increases with the number of runs almost everywhere. The only
exception is in the last row, where the “almost consistent” value decreases by one when
increasing the runs from 10 to 20. This can be explained by random fluctuations due to
the random partitioning of the datasets. Overall, the replicability becomes reasonably
acceptable when the number of runs is 100. In this case 80% of the results are “almost
consistent”, and the value of the replicability measure R is approximately 0.9 or above.

4.3 Results for tests based on (repeated) cross validation

For the standard t-test based on a single run of 10-fold cross validation we observed
consistent results for 15, 16, and 14 datasets, comparing NB with C4.5, NB with NN,
and C4.5 with NN respectively. Contrasting this with corrected resampling with 10
runs, which takes the same computational effort, we see that 10-fold cross validation



#Runs
10 20 50 100

NB vs C4.5
consistent 15 14 19 21
almost consistent 16 19 22 23
replicability (R) 0.801 0.843 0.892 0.922
NB vs NN
consistent 12 15 18 20
almost consistent 20 21 22 23
replicability (R) 0.835 0.865 0.882 0.899
C4.5 vs NN
consistent 12 14 18 23
almost consistent 18 17 22 24
replicability (R) 0.819 0.825 0.878 0.935

Table 2. Replicability for corrected resampled t-test.

is at least as consistent. However, it is substantially less consistent than (corrected)
resampling at 100 runs. Note also that this test has an inflated Type I error [5].

Performing the same experiment in conjunction with the standard t-test based on
the 100 differences obtained by 10-times 10-fold cross validation, produced consistent
results for 25, 24, and 18 datasets, based on NB with C4.5, NB with NN, and C4.5 with
NN respectively. This looks impressive compared to any of the tests we have evaluated
so far. However, the Type I error of this test is very high (because of the overlapping
training and test sets) and therefore it should not be used in practice.

To reduce Type I error it is necessary to correct the variance. Table 3 shows the same
results for the corrected paired t-test based on the paired outcomes of r-times 10-fold
cross validation. Comparing this to Table 2 (for corrected resampling) the consistency
is almost everywhere as good and often better (assuming the same computational effort
in both cases): the column with 1 run in Table 3 should be compared with the 10 runs
column in Table 2, the column with 2 runs in Table 3 with the column with 20 runs in
Table 2, etc. The same can be said about the replicability measure R. This indicates that
repeated cross validation helps to improve replicability (compared to just performing
random subsampling).

To ensure that the improved replicability of cross-validation is not due to strati-
fication (which is not performed in the case of random subsampling), we performed
an experiment where resampling was done with stratification. The replicability scores
differed only very slightly from the ones shown in Table 2, suggesting the improved
replicability is not due to stratification.

Because the corrected paired t-test based on 10-times 10-fold cross validation ex-
hibits the best replicability scores, we performed an experiment to see how sensitive its
replicability is to the significance level. The results, shown in Table 4, demonstrate that
the significance level does not have a major impact on consistency or the replicability
measure R. Note that the latter is greater than 0.9 in every single case, indicating very
good replicability for this test.



#Runs
1 2 5 10

NB vs C4.5
consistent 16 20 21 24
almost consistent 18 21 23 25
replicability (R) 0.821 0.889 0.928 0.962
NB vs NN
consistent 18 20 23 23
almost consistent 19 21 23 24
replicability (R) 0.858 0.890 0.939 0.942
C4.5 vs NN
consistent 13 19 22 22
almost consistent 18 23 24 24
replicability (R) 0.814 0.904 0.928 0.928
Table 3. Replicability for corrected rx10
fold cross-validation test.

Significance level
1% 2.5% 5% 10%

NB vs C4.5
consistent 22 23 24 21
almost consistent 23 24 25 22
replicability (R) 0.927 0.936 0.962 0.915
NB vs NN
consistent 23 24 23 23
almost consistent 24 27 24 23
replicability (R) 0.939 0.978 0.942 0.939
C4.5 vs NN
consistent 23 24 22 20
almost consistent 23 24 24 24
replicability (R) 0.943 0.953 0.928 0.919
Table 4. Replicability of corrected 10x10
fold cross-validation test for various signif-
icance levels.

4.4 Simulation experiment

To study the effect of the observed difference in accuracy on replicability, we performed
a simulation study. Four data sources were selected by randomly generating Bayesian
networks over 10 binary variables where the class variable had 0.5 probability of being
zero or one. A 0.5 probability of the class variable is known to cause the largest vari-
ability due to selection of the training data [5]. The first network had no arrows and all
variables except the class variables were independently selected with various different
probabilities. This guarantees that any learning scheme will have 50% expected accu-
racy on the test data. The other three data sources had a BAN structure [8], generated
by starting with a naive Bayes model and adding arrows while guaranteeing acyclicity.

Using stochastic simulation [9], a collection of 1000 training sets with 300 instances
each was created. Naive Bayes and C4.5 were trained on each of them and their accu-
racy measured on a test set of 20,000 cases, generated from each of the data sources.
The average difference in accuracy is shown in Table 5 in the row marked ∆ accuracy,
and it ranges from 0% to 11.27%.

Each of the tests was run 10 times on each of the 4 × 1000 training sets. Table 5
shows, for each of the tests and each data source, the percentage of training sets for
which the test is consistent (i.e., indicates the same outcome 10 times). The last column
shows the minimum of the consistency over the four data sources.

Again, 5×2 cross validation, 10 times resampling, and 10 fold cross validation show
rather low consistency. Replicability increases dramatically with 100 times resampling,
and increases even further when performing 10 times repeated 10 fold cross validation.
This is consistent with the results observed on the UCI datasets.

Table 5 shows that the tests have fewer problems with data sources 1 and 4 (apart
from the 5 × 2 cv test), where it is easy to decide whether the two schemes differ. The
5 × 2 test has problems with data source 4 because it is a rather conservative test (low
Type I error, high Type II error) and tends to err on the side of being too cautious when
deciding whether two schemes differ.



Source 1 2 3 4
∆ accuracy 0.0 2.77 5.83 11.27 min.
5x2 cv 72.3 71.2 63.5 16.9 16.9
10 x resampling 65.5 44.0 26.0 48.8 26.0
100 x resampling 90.9 73.2 66.8 97.2 66.8
10-fold cv 49.7 47.6 33.2 90.8 33.2
corrected 10x10 fold cv 91.9 80.3 76.7 98.9 76.7

Table 5. Results for data sources 1 to 4: the difference in accuracy between naive Bayes and C4.5
(in percent) and the consistency of the tests (in percent).

5 Conclusions

We considered tests for choosing between two learning algorithms for classification
tasks. We argued that such a test should not only have an appropriate Type I error and
low Type II error, but also high replicability. High replicability facilitates reproducing
published results and reduces the likelihood of oversearching. In our experiments, good
replicability was obtained using 100 runs of random subsampling in conjunction with
Nadeau and Bengio’s corrected resampled t-test, and replicability improved even fur-
ther by using 10-times 10-fold cross-validation instead of random subsampling. Both
methods are acceptable but for best replicability we recommend the latter one.
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