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ABSTRACT
Motivation: Microarray technology has become a powerful
research tool in many fields of study; however, the cost of
microarrays often results in the use of a low number of rep-
licates (k ). Under circumstances where k is low, it becomes
difficult to perform standard statistical tests to extract the
most biologically significant experimental results. Other more
advanced statistical tests have been developed; however,
their use and interpretation often remain difficult to imple-
ment in routine biological research. The present work outlines
a method that achieves sufficient statistical power for select-
ing differentially expressed genes under conditions of low k ,
while remaining as an intuitive and computationally efficient
procedure.
Results: The present study describes a Global Error Assess-
ment (GEA) methodology to select differentially expressed
genes in microarray datasets, and was developed using an
in vitro experiment that compared control and interferon-γ
treated skin cells. In this experiment, up to nine replicates were
used to confidently estimate error, thereby enabling methods
of different statistical power to be compared. Gene expres-
sion results of a similar absolute expression are binned, so
as to enable a highly accurate local estimate of the mean
squared error within conditions. The model then relates vari-
ability of gene expression in each bin to absolute expression
levels and uses this in a test derived from the classical

∗To whom correspondence should be addressed.
†
The authors wish it to be known that, in their opinion, the first two authors

should be regarded as joint First Authors.

ANOVA. The GEA selection method is compared with both
the classical and permutational ANOVA tests, and demon-
strates an increased stability, robustness and confidence in
gene selection. A subset of the selected genes were validated
by real-time reverse transcription–polymerase chain reaction
(RT–PCR). All these results suggest that GEA methodology
is (i) suitable for selection of differentially expressed genes in
microarray data, (ii) intuitive and computationally efficient and
(iii) especially advantageous under conditions of low k .
Availability: The GEA code for R software is freely available
upon request to authors.
Contact: mroberts@purina.com

INTRODUCTION
One of the first and most important steps in microarray data
analysis is to determine those genes that were significantly and
differentially regulated according to the condition or experi-
mental parameter being studied. As all subsequent biological
interpretation will depend on the accuracy of determining
differential gene expression, an efficient and robust statist-
ical analysis is a fundamental prerequisite for experimental
interpretation.

Many of the first experiments to benefit from the global view
of microarrays utilized a simple fold-change (FC) cut-off for
the selection of differentially expressed genes. However, as
microarray analysis matures, it is becoming clear that such
a selection method makes several assumptions that are out
of context with the rest of the experimental and biological
data at hand. First, a FC cut-off (typically between 1.8 and
3.0) will treat all results as equal; i.e. a lowly expressed gene
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with a FC of 3 is just as differentially regulated as a highly
expressed gene with a FC of 3. Although exceptions can be
found, it is intuitive that there is less confidence in a 3 FC
observation at 3 transcripts/sample than for a 3 FC at1000
transcripts/sample. Therefore, confidence in biological inter-
pretation is difficult to ascertain when selecting microarray
results via FC. Second, this commonly used approach does
not accommodate for background noise, measurement variab-
ility, match/mismatch probe affinity, non-specific binding or
low copy numbers—characteristics typical of microarray data
that may not be homogeneously distributed (Kothapalliet al.,
2002). Indeed, these aspects of microarrays are now being
analyzed to fully understand how they affect the biological
and mathematical interpretation of the data (Ramakrishnan
et al., 2002).

Using standard statistical measures for each individual gene,
such as a student’st-test or a classical ANOVA, can lead to
inaccurate estimates of variances [statistical tests for indi-
vidual genes will be referred to as ‘by gene tests’ (BGTs)]
(Baldi and Long, 2001; Cui and Churchill, 2003). As the
use of microarrays is relatively resource intensive for most
laboratories, a lowk is the experimental norm. A lowk
decreases the power of BGTs to differentiate between reg-
ulated and non-regulated genes. Secondarily, even in the case
where reasonable numbers of replicates are achieved, there
is always the desire to derive greater statistical power from
the inherent multi-dimensional, yet simultaneous, measure-
ments characteristic of microarrays. Therefore, the research
community is keen to develop methodologies with these prop-
erties and new methods are frequently proposed with the
ultimate goal of extracting the most biologically and mathem-
atically significant results from genomic experiments (Baldi
and Long, 2001; Brazmaet al., 2001; Durbinet al., 2002;
Ghosh, 2002; Huang and Pan, 2002; Kepleret al., 2002; Sasik
et al., 2002; Thomaset al., 2001; Troyanskayaet al., 2002;
Woolf and Wang, 2000). Some of the present authors have pre-
viously published a ‘Limit fold change’ (LFC) model, which
attempts to utilize the inherent characteristics of microarray
data to overcome the low statistical power of BGTs (Mutch
et al., 2002). Increasing support for this type of methodo-
logy is now appearing in the literature (Baggerlyet al., 2001;
Claverie, 1999; Draghiciet al., 2003; Hesset al., 2001; Jain
et al., 2003; Kamb and Ramaswami, 2001; Linet al., 2003;
Nadon et al., 2001). These publications call for a neces-
sity to ‘borrow statistical power’ through pooling replicates
from different genes together during significance testing. In
our present research, we extended the concept of ‘borrowing
statistical power’ for estimating noise variance and applied
this to ANOVA-based regulation significance tests. We also
attempt to make a quantitative estimate of how efficient such
a technique is when applied to actual microarray data. We
use several approaches, including a comparison with real-
time RT–PCR results, to demonstrate the advantages of our
method when compared with BGTs. Despite the fact that the

methods described in the aforementioned articles are based
on approaches different from the ANOVAF -test utilized in
this work (Jainet al., 2003; Linet al., 2003), the qualitative
results stemming from the comparisons with BGTs can be
extrapolated to the class of ‘pooled replicate noise’ methods
in general.

The new methodology is termed as Global Error Assess-
ment (GEA) model, indicating its use of calculated inter-array
error. More specifically, this model directly generates a robust
estimate of the mean squared error (MSE), or equivalently of
the SD, by estimating a localized error from the measurement
information of several hundred genes with similar expression
levels (neighboring genes). The robust MSE of this group
of neighboring genes is a highly powerful estimate of the
denominator of theF -statistic used in BGTs. It is this prin-
cipal difference between GEA and other ANOVA-based tests
that enable GEA to more powerfully determine differentially
expressed genes.

An interesting alternative to the classic ANOVA test is
a permutational analog of ANOVA (Dudoitet al., 2002).
The benefit of utilizing this method lies in the attempt
to estimate the actual distribution of the test statistic (F )
through the use of thousands of computer permutations.
Although more robust than the classical ANOVA, it still
suffers from a lack of power under conditions of lowk.
Furthermore, it is computationally intensive and difficult to
implement for the average analyst. Therefore, we also com-
pared GEA with the permutational ANOVA test along these
criteria.

To test the methodology, GEA, classical ANOVA and
permutational ANOVA were applied to microarray measure-
ments from a biological experiment that compared control
and interferon-gamma (IFN-γ ) treated skin cellsin vitro. In
this respect, low biological variability and strong induction
of genes known to be affected by treatment were important
so as to lend credibility to any results obtained from down-
stream statistical or bioinformatic processing. The DK-7 cell
line was selected for the present study due to its previously
established high reproducibility (data not shown). Further-
more, IFNs have been chosen as stimulators due to their known
effects, such as induction of proinflammatory cytokines, cell
adhesion molecules and keratinocyte markers like keratin 17,
on skin epithelial cells (Freedberget al., 2001; Seboket al.,
1998; Teunissenet al., 1998; Weiet al., 1999). IFNs are a fam-
ily of related cytokines that act through their cognate receptor
to initiate a signaling cascade, involving the JAK kinase fam-
ily of tyrosine kinases and the STAT family of transcription
factors as well as alternative pathways, that lead to the tran-
scriptional modulation of known IFN-stimulated genes (ISGs)
(Ramanaet al., 2002; Schindler and Darnell, 1995). ISGs have
been well documented in previous studies, including a previ-
ous microarray analysis (Deret al., 1998), and thereby provide
a means to confirm or refute microarray results via alternate
techniques.
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Important to the statistical methodology presented here, the
experiment utilized a significant number of replicates to con-
fidently model the gene selection function and enable GEA’s
comparison with both the classical and permutational ANOVA
tests. In addition, a small subset of those genes identified as
differentially regulated were confirmed by real time RT–PCR
and compared to findings previously reported in the literature.
Of equal importance it is simple, intuitive and computationally
efficient allowing it to be easily implemented under standard
computing environments. Based on all these results, the GEA
model provides microarray users with a novel and statistic-
ally powerful method for the identification of differentially
expressed genes.

MATERIALS AND METHODS
Quality control for RNA integrity
At confluence, keratinocytes from the DK-7 cell line were
exposed to 100 IU/ml of IFN-γ in serum-free medium. After
24 h, RNA was extracted using the Qiagen Rneasy Mini Kit
(Qiagen SA, Cedex, France). All the samples were monitored
by agarose gel and with the Agilent 2100 Bioanalyser (Agilent
Biotechnologies, Germany) and consistently demonstrated
high-quality RNA (28S/18S ratio∼2, but always<3).

cRNA preparation, array hybridization and
scanning
According to Affymetrix protocol, 5µg total RNA was the
starting material for all individual samples. In general, total
RNA was converted into biotinylated cRNA, hybridized in
the Affymetrix probe array cartridge, stained and then quanti-
fied. First and second strand cDNA synthesis was performed
using the SuperScript Choice System (Invitrogen AG, Basel,
Switzerland), according to manufacturer’s instructions, but
using an oligo-dT primer containing a T7 RNA polymerase
binding site. Labeled cRNA was prepared with the RNA Tran-
script Labeling kit (Enzo Biochem Inc., NY). Biotinylated
CTP and UTP were used together with unlabeled NTPs in
the reaction, and unincorporated nucleotides were removed
with GeneChip® Cleanup Module (Affymetrix, Inc., Santa
Clara, CA).

cRNA (20µg) was fragmented at 94◦C for 35 min in buf-
fer containing 200 mM Tris-acetate, pH 8.1, 500 mM KOAc
and 150 mM MgOAc. Prior to hybridization, fragmented
cRNA in hybridization mix (buffer containing 100 mM MES,
1 M NaCl, 20 mM EDTA, 0.01% Tween-20, 0.5 ng/µl BSA,
0.1 ng/µl herring sperm and Affymetrix controls), was heated
to 95◦C for 5 min, cooled to 45◦C and loaded onto an Affy-
metrix probe array cartridge. The probe array was incubated
for 16 h at 45◦C at constant rotation (60 rpm), then exposed
to Affymetrix washing and staining protocol. This protocol
includes:

• One wash with non-stringent buffer (6× SSPE, 0.01%
Tween-20 and 0.005% antifoam).

• One wash with stringent buffer (100 mM MES, 0.1 M
NaCl and 0.01% Tween-20).

• First stain with 0.01 mg/ml streptavidin–phycoerythrin
conjugate (Molecular Probes) in buffer containing
100 mM MES, 1 M NaCl, 0.05% Tween-20 and 4 mg/ml
of BSA.

• One wash with non-stringent buffer (6× SSPE, 0.01%
Tween-20 and 0.005% antifoam).

• Second stain with 3µg/ml of biotinylated anti-
streptavidin+0.2 mg/ml of IgG in buffer containing
100 mM MES, 1 M NaCl, 0.05% Tween-20 and 4 mg/ml
of BSA.

• Third stain with 0.01 mg/ml streptavidin–phycoerythrin
conjugate (Molecular Probes) in buffer containing
100 mM MES, 1 M NaCl, 0.05% Tween-20 and 4 mg/ml
of BSA.

• One wash with non-stringent buffer (6× SSPE, 0.01%
Tween-20, 0.005% antifoam).

Probe arrays were scanned at 488 nm using an Argon-ion
Laser (made for Affymetrix by Agilent). Readings from the
quantitative scanning were analyzed with Affymetrix Gene
Expression Analysis Software (MAS 5.0).

Experimental design
The GEA model is explained using a simple experiment com-
paring control versus IFN-γ treated skin cells (one design
factor on two levels). To evaluate the biological and the
experimental variability, the following experimental design
was planned as shown in Figure 1: ‘Control’ and ‘IFN-γ

stimulated’ keratinocytes were cultured in triplicate using
three individual petri Æ10 culture dishes and RNA was inde-
pendently extracted from each cultured replicate. For each
RNA sample, cRNA synthesis was performed in triplicate
and each cRNA pool was hybridized to an Affymetrix U133
Gene Chip.

Data analysis
The GeneChip U133 Set, comprised of A and B chips,
contains 45 000 different probe sets that corresponds to
∼39 000 transcripts derived from∼33 000 well-substantiated
human genes. The Affymetrix ‘GeneChip software’ integ-
rates multiple types of information in order to determ-
ine the relative mRNA abundance for a given gene,
which is termed the average difference intensity or ADI
(http://www.affymetrix.com/); however, the statistical mod-
els discussed herein are not Affymetrix software-specific and
can be applied to datasets produced by alternate methods.
This ADI is then normalized using quantile normalization
and natural logarithm transformation. The complete dataset
(accession no. GSE1132) is available on the NCBI Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/). All
data processing steps described below rely on this normalized
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Fig. 1. Experimental design. ‘Control’ and ‘IFN-γ stimulated’ keratinocytes were cultured in triplicate using three individual Petri∅10
culture dishes and RNA was independently extracted from each Petri dish. For each RNA sample, cRNA synthesis was performed in triplicate
(A, B, C) and each cRNA pool was hybridized to an Affymetrix U133 Gene Chip. Quality controls were performed according to Affymetrix
protocols and all chips, except chip 5A, were found correctly hybridized.

ADI; however, the models presented herein are compatible
with other normalization procedures (data not shown).

BGT–ANOVA
By gene testing proceeds by applying an ANOVA to the nor-
malized ADI of each gene. The procedure is explained in the
case ofn treatments withk replicates each. In our case,n = 2
andk = 3 (corresponding to the three Petri dishes) ork = 9
(corresponding to the nine measurements).

• Estimate the total variability using the sum of squares
(SST) and split it into two sources: between treatment
and within treatment variability (SST= SSA+ SSE).

• Compute the variances of these two sources using mean
squares (MS): MSA= SSA/dfA and MSE= SSE/dfE
with dfA = n − 1 and dfE = nk − n.

• Compute the test statisticF = MSA/MSE, which fol-
lows Snedecor’sF -distribution with degrees of freedom
dfA and dfE.

• Select genes for which MSA> Limitα = MSE ∗ F−1

(1 − αdfA, dfE), whereα is the significance level.

BGT–permutational ANOVA
The classic ANOVA test described above is based on the
assumption of Gaussian distribution imposed on the data
points. Even though this assumption is widely accepted for
log-transformed microarray data, it is frequently seen that

it cannot be assumed and applied to all datasets. The most
interesting alternative to classic ANOVA test is permutational
analog of ANOVA (Dudoitet al., 2002). The benefit of util-
izing this method lies with its attempt to estimate actual
distribution of the test statisticF described in the previous
paragraph. The procedure consists of two steps repeated at
least 10 000 times:

• Randomly permute experiment columns of the data table
not permuting the experiment labels. Now for every
gene you have your measurements randomly distributed
between experiments.

• Perform classic ANOVA test on these data and record the
value ofF -statistic.

These two steps repeated a number of times will produce an
estimate of distribution forF -statistics for every particular
gene. ActualF -values for original expression measurements
compared to this distribution will yield aP -value.

Global Error Assessment
GEA applies ANOVA, but uses a robust estimation of the
within treatment variability. Robustness is achieved by two
means:

• Averaging within treatment variability of genes that are
expressed at a similar level.

2729



R.Mansourian et al.

Table 1. Sequence information for those genes selected for confirmation by real-time RT–PCR

Gene name Accession
number/AoD

Forward primer Probe Reverse primer

gIP10 Hs00171042_m1 N/A N/A N/A
STAT1 M97936 GTGGAAAGACAGCCCTGCAT CGCACCCTCAGAGGCCGCTG ACTGGACCCCTGTCTTCAAGAC
MXB M30818 CGAATGAGTGCTGTGTAAGTGATG TGCTCAAGCCCAGGCCTTGGAC AAAGGGACCGGCTAACAGTCA
MXA Hs00182073_m1 N/A N/A N/A
isg15 NM_005101 GGGACCTGACGGTGAAGATG TGGCGGGCAACGAATTCCAGG GCCAATCTTCTGGGTGATCTG
IRF7 U73036 GCCTGGTCCTGGTGAAGCT CCTGGCTGTGCCGAGTGCACCT AGGAAGCACTCGATGTCGTCAT
ISG56K M24594 GCCTCCTTGGGTTCGTCTATAA CCCTGGAGTACTATGAGCGGGCCC TTCTCAAAGTCAGCAGCCAGTCT
IFI-6-16 NM_002038 GGCTACGCCACCCACAAGT CTGGCTACTCCTCATCCTCCTCACT-

ATCGA
GGCCAAGAAGGAAGAAGAGGTT

N/A, not available.

• Using robust estimates of the average variability, instead
of classical ones.

The following procedure is therefore implemented:

• Calculate the mean normalized ADI, as well as the MSA
and the MSE of each gene.

• Sort genes by ascending mean normalized ADI and group
them into bins of 200 consecutive genes (corresponding
to ∼100 bins for an Affymetrix GeneChip).

• The MSE of the 200 genes in each bin are summarized
using a robust estimation: MSERobust=Mediani=1,...,200

(MSE) * dfE/χ−1 (0.5, dfE), whereχ−1 is the inverse of
the one-tailed probability of theχ2 distribution.

• For each gene, compute the test statisticF =
MSA/MSERobust, which follows Snedecor’s
F -distribution with degrees of freedom dfA = n − 1
and dfE,Robust= 200∗ (nk − n).

• Select genes for which MSA> LimitRobust,α =
MSERobust* F−1(1 − α, dfA, dfE,Robust), whereα is the
significance level.

Quantitative Real-Time RT–PCR
Of the total RNA preparation used for microarray analysis
500 ng was used for the first-strand cDNA synthesis (Taq-
Man reverse transcription reagent, N8080234 and a random
hexamer primer) according to the manufacturer’s instructions
(Applied Biosystems, Foster City, USA). Semi-quantitative
PCR was performed using the ABI PRISM 7900 Sequence
detection system (Applied Biosystems). Primers and TaqMan
probes were either designed using Primer Express software
(Applied Biosystems) or ordered from Applied Biosystems
through their Assays on Demand (AoD) service (Table 1).
The PCR reactions were carried out according to the manufac-
turer’s instructions. All results were normalized to GAPDH,
which was not differentially regulated.

RESULTS AND DISCUSSION
The GEA model
Binning The GEA method more accurately characterizes
MSE by calculating the robust mean SD of genes within a
bin of 200 nearest neighbors. This is accomplished by sort-
ing genes by mean ADI in ascending order and then placing
them into bins. Various bin sizes were examined to determine
how bin size would affect GEA model. Bin sizes of 25, 50,
100, 200 and 300 genes were examined as shown in Figure 2.
In the present experiment, greater variability was observed
with small bins, decreasing sharply and then leveling off at
higher expression. It should be noted that there are a variety
of normalization methods and alternative probe set expres-
sion level calculations (Bolstadet al., 2003; Irizarryet al.,
2003) that would have various effects on the variability distri-
bution seen in Figure 2. A full analysis of data pretreatment
procedures is beyond the scope of the present work; how-
ever, under any of these procedures variability would still
be expected to remain heterogeneous across the expression
range and therefore take advantage of the binning and local
calculation of error.

Importantly, the trend for the relationship between variab-
ility and expression level remained stable across the range
of bin sizes, indicating that small changes in bin size do
not have major effects. A bin size of 200 appeared to
be optimal because it provides an accurate local estim-
ate of MSE while simultaneously approaching a smoothed
trend line. No further investigation for smoothing this non-
continuous trend to continuity was deemed necessary. All
subsequent GEA calculations are based on the MSE per
bin of 200 genes, as described in Materials and methods
section.

Classical ANOVA and GEA for two treatments
and three replicates
Gene selections resulting from classical ANOVA and GEA
are compared for the experiment with two treatments (control
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Fig. 2. Effects of varying bin size on the GEA model. Bin sizes of 200 are compared with bins of 25 (A), 50 (B), 100 (C) and 400 (D) genes.
Thex-axis represents the mean normalized ADI per bin. They-axis represents the robust SD per bin, which is the square root of MSERobust

(defined in the Materials and methods section).

versus IFN-γ treated skin cells) with three replicates (three
Petri dishes). For an initial comparison the number of genes
selected is unimportant, only in so much as it is equal between
the two methodologies. In this manner, the alpha values gener-
ated can be compared instead of the actual gene content. Only
for convenience an initial selection of 10% (or 4.5 k probe sets)
among the 45k present on the combined U133A and B chips
was used. The calculated significance levels wereα = 0.0144
for classical ANOVA andα = 0.0010 for GEA. These sig-
nificance levels show the higher confidence estimated via the
GEA selection. This confidence is directly dependent of the
higher degrees of freedom of the binned MSE in GEA. One
obtains the following distribution among selected genes: 2790
genes are selected by both techniques; 1709 genes are selec-
ted by GEA only; and 1710 genes are selected by classical
ANOVA only.

These differences can be explained by the fact that classical
ANOVA computes the MSE individually, and is therefore
influenced by random noise. Uncertainty in the estimate of
MSE leads to both false negatives (high MSA and accidentally
large MSE) as well as false positives (low MSA and acci-
dentally very low MSE). Furthermore, GEA is based on the
observation that the experimental variability (MSE) of gene
expression is locally related to expression level, which implies
that MSE is similar for neighboring genes. Therefore, the
GEA method computes a robust estimate of the MSE of each
gene by averaging the MSE of gene neighbors in each bin.
This is an effort to establish a localized baseline of variability
to compare with potential treatment effects, i.e. differential
gene expression.

Classical ANOVA and GEA for two treatments
and nine replicates
The initial analysis indicated that the between-petri variabil-
ity was of the same magnitude as the within-petri variability
(data not shown). It was therefore concluded that, for the pur-
pose of demonstration, the data could be analyzed as though
there was one sample consisting of nine replicates, instead of
three samples consisting of three replicates. It is important to
note that this analysis was only performed to show the effects
of a larger sample size on gene selection with both GEA and
classical ANOVA. The selection differences between classical
ANOVA α = 0.0013 and GEAα = 0.0004 are striking.
Under these conditions, 3239 genes are selected with both
classical ANOVA and GEA, 1260 genes by GEA only and a
different 1260 genes by classical ANOVA only.

These results demonstrate that by increasing the num-
ber of replicates, the differences between classical ANOVA
and GEA are reduced because the individual MSE is estim-
ated more accurately. Furthermore, increasing the number of
replicates from 3 to 9 indicates that the classical ANOVA
selection approaches that of the GEA selection; however,
even with nine replicates it is still far from achieving an
identical selection. It is estimated that the classical ANOVA
would eventually completely converge with GEA at some
large number of replicates. Furthermore, comparing those
genes selected by either analysis, GEA appears to be selecting
almost the same genes, whereas classical ANOVA does not,
as shown in Table 2.

The comparison can also be made from a different perspect-
ive. By choosing a highly confident GEAP -value the question
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Table 2. Effects of replication on ANOVA- and GEA-based gene selection

Classical ANOVA Perm. ANOVA GEA

Genes selected for both 3375 — 4128
three and nine replicates

Genes selected for three 1125 — 371
replicates only

Genes selected for nine 1124 4500 371
replicates only

Number of genes selected by classical ANOVA, permutational ANOVA and GEA as a
function of the number of replicates used for computation. A target of 4500 genes was set
for each method generating aP -value threshold of 0.0013, 0.0197 and 0.0004, respect-
ively. Only values for nine replicates could be obtained for permutational ANOVA, as
the minimum confidence (0.001) could not be achieved with less than 7 replicates.

Table 3. Selection confidence of ANOVA- and GEA-based selection
methods for most significant expression outliers

Selection
method

P -value
level

No of.
selected
genes

No. of genes in
common with GEA
selected genes

GEA 1.00× 10−30 531 531
Perm. ANOVA 0.003 2418 527
Classical ANOVA 0.02 3358 523

can then be asked at what confidence level would the classical
technique require to achieve full concordance. As shown in
Table 3, a GEAP -value of 1× 10−30 selects 531 genes. As
demonstrated graphically in Figure 3, these genes clearly dif-
ferentiate themselves from the underlying variability derived
from comparison of replicate controls. Point coordinatesx,y
on the graph corresponds to the expression (in log scale) of a
particular gene, as observed under the two conditions (IFN-
γ and control treatments). Blue points correspond to paired
expressions in control treatments and make up the ‘variability
cloud’, green open squares correspond to paired expressions in
control and treated conditions—most of them corresponding
to unmodulated genes and thus overlapping with background
blue points. The pear shape of the variability cloud shown in
Figure 3 corroborates the inverse relationship between vari-
ability and expression demonstrated in Figure 2. Red crosses
correspond to selected genes according to GEA, with very
high significance (P < 1× 10−30). One can visually see that
the higher the expression level, the closer these points are to
the contour of the variability cloud. However, a minimal dis-
tance separates these points from the contour. In other words,
paired expressions of selected genes in control and treated con-
ditions, according to GEA, are clearly different from paired
expressions of genes in control conditions.

To achieve concordance (523 out of 531 genes), the clas-
sical ANOVA must relax to aP -value of 0.02 or greater.
Orange squares correspond to those genes selected by classical

ANOVA, which selects a total of 3358 genes, almost all of
which overlap with the underlying variability cloud as seen
in Figure 3a. It can be concluded from this analysis that
GEA does in fact derive increased statistical power from the
binned MSE.

Permutational ANOVA test and GEA
The permutational ANOVA test was picked for additional
comparison because it is considered to be more robust and
powerful than the classic ANOVA (Dudoitet al., 2002). Hav-
ing a large number of replicates for each experiment allows us
to build a reliable estimate of statistic distribution through per-
mutations (in the present case 10 k permutations were used.
The same perspective as was used with classical ANOVA was
applied to the comparison between GEA and permutational
ANOVA (Table 2 and Figure 3b.) In Table 2, it can be seen
that a completely parallel comparison cannot be performed
using permutational ANOVA, as the number of available rep-
licates determines a minimum level of availableP -values. A
highly confidentP -value of 0.05 or better is far out of reach for
this method when only three replicates are available. A min-
imum of seven replicates would be required to meaningfully
achieve aP -value of 0.05 or better. This ‘non-comparison’
is itself important as it indicates that GEA can be confidently
used under conditions of low experimental replicates where
permutational ANOVA could not.

A graphical analysis similar to that conducted between
GEA and classical ANOVA is shown in Figure 3b. Using
the same highly confident GEAP -value (P < 1 × 10−30)
as before, a confidence level for permutational ANOVA was
selected to achieve full concordance, as demonstrated in
Table 3 (P < 0.003; 10k permutations). The orange squares in
Figure 3b correspond to those genes selected by the permuta-
tion ANOVA test; however, it can also be seen that most GEA
selections are co-selected by the permutation ANOVA. The
permutation ANOVA returns 527 out of 531 genes selected
by GEA; however, these 527 are among a total of 2418 genes,
most of them borderline or within the underlying variabil-
ity cloud. These results demonstrate additional confidence in
GEA (co-selected by a second method with high confidence),
but also a superior selectivity that is achieved compared to
permutational ANOVA.

Another significant advantage of GEA over the permuta-
tional test is lower computational complexity. Performing a
large number of permutations on a standard laboratory PC can
take hours or even days, whereas the GEA methodology can
be applied to a dataset and return results in a matter of minutes.
Using the present study as an example, the GEA calculation
took <5 min whereas the 10k permutational ANOVA took
∼6 h to run on a 1.6 MHz Pentium 4 computing platform.

P -value adjustment for multiple tests
Performing multiple, yet simultaneous, significance tests
raises the pointed question ofP -value adjustment. AP -value
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(a)

(b)

Fig. 3. (a) Graphical validation of detected genes (classical ANOVA versus GEA). Blue squares define the ‘variability cloud’ of the dataset.
Green open squares represent those genes under treated condition. Red crosses indicate those genes detected with a GEAP -value <

1× 10−30. Orange squares indicate those genes detected with a classical ANOVAP -value< 0.02. (b) Graphical validation of detected genes
(permutational ANOVA versus GEA). Blue squares define the ‘variability cloud’ of the dataset. Green open squares represent those genes
under treated condition. Red crosses indicate those genes detected with a GEAP -value of<1 × 10−30. Orange squares indicate those genes
detected with a permutational ANOVAP -value<0.003.

can be significantly low simply because of the noise present
in the system. By increasing the number of tests there is an
increased chance that this will arise. There are multiple pro-
cedures that allow adjustment ofP -values with respect to the
multiple testing problem (Bonferroni method, Holm’s pro-
cedure, etc.). However useful these may be for estimating
the trueP -value, they are not of great importance for the

comparison of tests, e.g. the GEA versus ANOVA comparis-
ons made here. In addition, multiple testing corrections do not
solve for the lack of power in a situation with a low number
of replicates.

An adjustment ofP -values is still an approximation, and can
sometimes aggravate the situation. As an example, the West-
fall and Young adjustment procedure (Dudoitet al., 2002;
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0

Fig. 4. Detection of previously identified IFN-γ stimulated genes. Number of IFN-γ stimulated genes selected by a particular method versus
total number of genes selected by the method at particular thresholds. Squares correspond to GEA (P < 1×10−30), Diamond shapes represent
results of classic ANOVA approach (P < 0.0004), and Triangles show performance of permutational ANOVA (P < 0.0012). ‘DSG’ refers
to Deret al. IFN-γ stimulated genes.

Westfall and Young, 1993) was applied to the permutational
ANOVA results here, producing allP -values equal to 1. This
was not helpful and so was not included in the comparison
of selection methods. Therefore, analysts of microarray res-
ults are encouraged to consider the multiple testing problem,
in addition, but not as a substitute, to the differential gene
expression methodologies such as those presented here.

Confirmation of results
A thorough literature review revealed a high concordance
between known IFN-γ effects and the panel of genes selec-
ted by GEA. The classical ANOVA, permutational ANOVA
and GEA were then compared to determine their respective
abilities to detect ISGs. A previous study lists ISGs that were
known from the literature along side those discovered through
microarray analysis (Deret al., 1998). Using various selection
criteria, a total of 49 IFN-γ stimulated (increased expression)
genes were previously detected in a study by Deret al. As there
are significant differences in the protocols of the two experi-
ments, 100% concordance was considered unlikely; however,
a significant number of these genes were expected to appear in
the current study. The ability of each technique to detect this
set of 49 genes is illustrated in Figure 4, in which the number
of the Deret al. IFN-γ stimulated genes (DSGs) selected in
the present dataset by a particular method is plotted against
the total number of genes selected. In addition, the multiple
P -value thresholds for each method is provided to demon-
strate the overall performance of the various methods. It can

be seen that GEA is almost uniformly superior to both forms
of ANOVA in detecting these genes. The GEA test detected
28 DSGs with a high degree of confidence (P < 1 × 10−30

selecting DSGs in a total pool of 531 differentially expressed
genes), whereas a classical ANOVA was only able to identify
25 DSGs within total selection of approximately the same
size (P < 0.0004 selecting DSGs in a total pool of 548 dif-
ferentially expressed genes; 9 replicates). The permutational
ANOVA performed less well than both the classical ANOVA
and GEA, as only 8 DSGs in a pool of 540 selected genes
were identified with this method of analysis (P < 0.0012).

Importantly, the study of Deret al. also lists those 30 genes,
previously identified in the literature using alternative exper-
imental methodolgies, to be stimulated by IFN-γ (Der et al.,
1998). All 30 ISGs were selected by GEA in the present
experiment (100% detection atP < 1 × 10−30 selecting 30
ISGs in a pool of 531 differentially expressed genes). In con-
trast, only 25 ISGs were selected by classical ANOVA using
all nine replicates (83% detection atP < 0.0004 selecting
ISGs in a total pool of 548 differentially expressed genes).
From another perspective, over 2000 genes would need to
be selected in order to achieve 100% detection of ISGs by
classical ANOVA. In comparison, the permutational ANOVA
test identified just seven of the known ISGs (23% detection
atP < 0.0012 selecting ISGs in a total pool of 540 differen-
tially expressed genes). Alternatively, 2400 genes would have
to be selected by the permutational ANOVA to achieve a 100%
detection rate.
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Fig. 5. Comparison between real-time RT–PCR and Affymetrix results. Fold induction values of eight ISGs are plotted (IFN-γ versus control),
with RT–PCR data represented by empty bars and microarray data by stripped bars. RT–PCR results are normalized to the housekeeping
gene GAPDH. All genes validated by RT–PCR were selected by GEA withP -values<1× 10−30. The abbreviations listed above correspond
to the following gene information. They are listed here according to abbreviation, Affymetrix U133A probe set ID, gene title and then
accession number. Gene List: STAT1, 200887_s_at, signal transducer and activator of transcription 1, 91 kDa, ‘NM_007315, NM_139266’;
Mxa, 202086_at, myxovirus (influenza virus) resistance 1, interferon-inducible protein p78 (mouse), NM_002462; isg56k, 203153_at,
interferon-induced protein with tetratricopeptide repeats 1, NM_001548; ifi-6-16, 204415_at, interferon, alpha-inducible protein (clone IFI-
6-16), ‘NM_002038 NM_022872, NM_022873’; gIP10, 204533_at, chemokine (C–X–C motif) ligand 10, NM_001565; mxb, 204994_at,
myxovirus (influenza virus) resistance 2 (mouse), NM_002463; isg15, 205483_s_at, interferon, alpha-inducible protein (clone IFI-15K),
NM_005101; irf7, 208436_s_at, interferon regulatory factor 7, NM_001572.

Eight of the many known ISGs (gIP10, Stat1, MxA, MxB,
IRF7, ISG56K) and the housekeeping gene GAPDH were
analyzed further by real-time RT–PCR as an initialin vitro
validation. Each gene was examined in duplicate in each
of the three control conditions and the three IFN-γ treated
conditions. Following normalization with GAPDH, the fold
induction values were determined and these values were com-
pared with the observed microarray results (Figure 5). As
the sensitivity for these two techniques is quite different, it
was not expected that identical fold-changes would be seen
for real-time RT–PCR and Affymetrix Gene Chips (Holland,
2002). Therefore, concordance was determined based on dir-
ection, i.e. an increase in gene expression measured with
Gene Chips was also seen by real-time RT–PCR. As shown
in Figure 5, all genes showed an increased expression when
measured by either technique. Therefore, this initial valid-
ation study confirmed that the experiment was functioning
predictably (as previously determined in the literature) and
that the GEA selection results had biological significance. At
the same time, using the previously described set for classical
ANOVA (P < 0.0004 selecting a total pool of 548 differen-
tially expressed genes) only six of the eight would have been
selected; whereas all genes measured by real-time RT–PCR
were selected by GEA (P < 1 × 10−30 selecting a total pool

of 531 differentially expressed genes). Lastly, within a pool
of similar size permutational ANOVA selected only three of
the eight real-time RT–PCR validated genes (P < 0.0012
selecting a total pool of 540 differentially expressed genes).

In summary, these confirmatory results are highly signi-
ficant. They indicate good sensitivity for true positives by
GEA relative to the other techniques being compared here.
The GEA method has been found to place high confidence
in biologically significant genes known to be regulated by the
experimental induction (IFN-γ ) being studied. Lastly, the bio-
logically significant genes have also been confirmed through
a complementary technique like real-time RT–PCR.

CONCLUSION
The GEA model for differential gene expression selection
was introduced to respond to the small sample size prob-
lem in microarray analysis by replacing the denominator
of the F -ratio (the MSE normally estimated per gene) with
the MSE calculated per bin, which is directly related to the
mean absolute expression level within each bin. The GEA
method was demonstrated to confidently determine differ-
entially expressed genes under conditions of both low and
high replication. These results were compared to a classical
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ANOVA and an advanced permutational ANOVA test. The
major differences in gene selection between ANOVA and
GEA are that an ANOVA (classic or permutational) analyzes
each gene separately using a single factor ANOVA, whereas
GEA is far more powerful because the MSE is estimated loc-
ally based on information from nearest gene neighbors. This
has recently been demonstrated by Mutchet al. (2003) for
which the GEA model more accurately identified signific-
ant differences in gene expression than the classical ANOVA
when compared with real-time RT–PCR data. As the bin size
used in this analysis was 200, this implies that the number
of degrees of freedom is increased by 200-fold. The IFN-γ

experiment used here to develop GEA provided a number of
literature sources to confirm or refute our findings. GEA was
demonstrated to be uniformly superior for both high and low
replicates in detecting known ISGs and had excellent con-
cordance with previous microarray studies looking at IFN-γ

stimulation. Lastly, but of equal importance GEA is a relat-
ively simple, intuitive and computationally efficient method,
which allows it to be easily implemented under standard
computing environments.
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