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The Global Error Assessment (GEA) model for
the selection of differentially expressed genes
In microarray data
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ABSTRACT

Motivation: Microarray technology has become a powerful
research tool in many fields of study; however, the cost of
microarrays often results in the use of a low number of rep-
licates (k). Under circumstances where k is low, it becomes
difficult to perform standard statistical tests to extract the
most biologically significant experimental results. Other more
advanced statistical tests have been developed; however,
their use and interpretation often remain difficult to imple-
ment in routine biological research. The present work outlines
a method that achieves sufficient statistical power for select-
ing differentially expressed genes under conditions of low k,

ANOVA. The GEA selection method is compared with both
the classical and permutational ANOVA tests, and demon-
strates an increased stability, robustness and confidence in
gene selection. A subset of the selected genes were validated
by real-time reverse transcription—polymerase chain reaction
(RT-PCR). All these results suggest that GEA methodology
is (i) suitable for selection of differentially expressed genes in
microarray data, (i) intuitive and computationally efficient and
(iii) especially advantageous under conditions of low k.
Availability: The GEA code for R software is freely available
upon request to authors.

Contact: mroberts@purina.com

while remaining as an intuitive and computationally efficient
procedure.

Results: The present study describes a Global Error Assess-
ment (GEA) methodology to select differentially expressed
genes in microarray datasets, and was developed using an
in vitro experiment that compared control and interferon-y
treated skin cells. In this experiment, up to nine replicates were
used to confidently estimate error, thereby enabling methods
of different statistical power to be compared. Gene expres-
sion results of a similar absolute expression are binned, so
as to enable a highly accurate local estimate of the mean
squared error within conditions. The model then relates vari-
ability of gene expression in each bin to absolute expression
levels and uses this in a test derived from the classical

INTRODUCTION

One of the first and most important steps in microarray data
analysis is to determine those genes that were significantly and
differentially regulated according to the condition or experi-
mental parameter being studied. As all subsequent biological
interpretation will depend on the accuracy of determining
differential gene expression, an efficient and robust statist-
ical analysis is a fundamental prerequisite for experimental
interpretation.

Many of the first experiments to benefit from the global view
of microarrays utilized a simple fold-change (FC) cut-off for
the selection of differentially expressed genes. However, as
microarray analysis matures, it is becoming clear that such
a selection method makes several assumptions that are out
*To whom correspondence should be addressed. of context with the rest of the experimental and biological
"The authors wish it to be known that, in their opinion, the first two authorsdata at hand. First, a FC cut-off (typically between 1.8 and
should be regarded as joint First Authors. 3.0) will treat all results as equal; i.e. a lowly expressed gene
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Global Error Assessment model

with a FC of 3 is just as differentially regulated as a highly methods described in the aforementioned articles are based
expressed gene with a FC of 3. Although exceptions can ben approaches different from the ANOVA-test utilized in
found, it is intuitive that there is less confidencea 3 FC  this work (Jainet al., 2003; Linet al., 2003), the qualitative
observation at 3 transcripts/sample thanda3 FC atl000 results stemming from the comparisons with BGTs can be
transcripts/sample. Therefore, confidence in biological interextrapolated to the class of ‘pooled replicate noise’ methods
pretation is difficult to ascertain when selecting microarrayin general.
results via FC. Second, this commonly used approach doesThe new methodology is termed as Global Error Assess-
not accommodate for background noise, measurement variaent (GEA) model, indicating its use of calculated inter-array
ility, match/mismatch probe affinity, non-specific binding or error. More specifically, this model directly generates a robust
low copy numbers—characteristics typical of microarray dateestimate of the mean squared error (MSE), or equivalently of
that may not be homogeneously distributed (Kothaghti.,  the SD, by estimating a localized error from the measurement
2002). Indeed, these aspects of microarrays are now beirigformation of several hundred genes with similar expression
analyzed to fully understand how they affect the biologicallevels (neighboring genes). The robust MSE of this group
and mathematical interpretation of the data (Ramakrishnaof neighboring genes is a highly powerful estimate of the
et al., 2002). denominator of the -statistic used in BGTs. It is this prin-
Using standard statistical measures for each individual genejpal difference between GEA and other ANOVA-based tests
such as a studentistest or a classical ANOVA, can lead to that enable GEA to more powerfully determine differentially
inaccurate estimates of variances [statistical tests for indiexpressed genes.
vidual genes will be referred to as ‘by gene tests’ (BGTs)] An interesting alternative to the classic ANOVA test is
(Baldi and Long, 2001; Cui and Churchill, 2003). As the a permutational analog of ANOVA (Dudodt al., 2002).
use of microarrays is relatively resource intensive for mosiThe benefit of utilizing this method lies in the attempt
laboratories, a lowk is the experimental norm. A lowk  to estimate the actual distribution of the test statis#t (
decreases the power of BGTs to differentiate between reghrough the use of thousands of computer permutations.
ulated and non-regulated genes. Secondarily, even in the cadéthough more robust than the classical ANOVA, it still
where reasonable numbers of replicates are achieved, thesaffers from a lack of power under conditions of low
is always the desire to derive greater statistical power fronfFurthermore, it is computationally intensive and difficult to
the inherent multi-dimensional, yet simultaneous, measureimplement for the average analyst. Therefore, we also com-
ments characteristic of microarrays. Therefore, the researghmared GEA with the permutational ANOVA test along these
community is keen to develop methodologies with these properiteria.
erties and new methods are frequently proposed with the To test the methodology, GEA, classical ANOVA and
ultimate goal of extracting the most biologically and mathem-permutational ANOVA were applied to microarray measure-
atically significant results from genomic experiments (Baldiments from a biological experiment that compared control
and Long, 2001; Brazmet al., 2001; Durbinet al., 2002; and interferon-gamma (IF)) treated skin cell$n vitro. In
Ghosh, 2002; Huang and Pan, 2002; Keptat., 2002; Sasik  this respect, low biological variability and strong induction
et al., 2002; Thomast al., 2001; Troyanskayat al., 2002;  of genes known to be affected by treatment were important
Woolf and Wang, 2000). Some of the present authors have prao as to lend credibility to any results obtained from down-
viously published a ‘Limit fold change’ (LFC) model, which stream statistical or bioinformatic processing. The DK-7 cell
attempts to utilize the inherent characteristics of microarrayine was selected for the present study due to its previously
data to overcome the low statistical power of BGTs (Mutchestablished high reproducibility (data not shown). Further-
et al., 2002). Increasing support for this type of methodo-more, IFNs have been chosen as stimulators due to their known
logy is now appearing in the literature (Baggestyal., 2001; effects, such as induction of proinflammatory cytokines, cell
Claverie, 1999; Draghiait al., 2003; Hes®t al., 2001; Jain  adhesion molecules and keratinocyte markers like keratin 17,
et al., 2003; Kamb and Ramaswami, 2001; lainal., 2003;  on skin epithelial cells (Freedbegyal., 2001; Sebolet al.,
Nadonet al., 2001). These publications call for a neces-1998; Teunissed al., 1998; Wekt al., 1999). IFNs are a fam-
sity to ‘borrow statistical power’ through pooling replicates ily of related cytokines that act through their cognate receptor
from different genes together during significance testing. Irto initiate a signaling cascade, involving the JAK kinase fam-
our present research, we extended the concept of ‘borrowindy of tyrosine kinases and the STAT family of transcription
statistical power’ for estimating noise variance and appliedactors as well as alternative pathways, that lead to the tran-
this to ANOVA-based regulation significance tests. We alscscriptional modulation of known IFN-stimulated genes (ISGs)
attempt to make a quantitative estimate of how efficient suclfRamanat al., 2002; Schindler and Darnell, 1995). ISGs have
a technique is when applied to actual microarray data. Wdeen well documented in previous studies, including a previ-
use several approaches, including a comparison with reabus microarray analysis (Detral., 1998), and thereby provide
time RT-PCR results, to demonstrate the advantages of oa means to confirm or refute microarray results via alternate
method when compared with BGTs. Despite the fact that théechniques.
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Important to the statistical methodology presented here, the ¢« One wash with stringent buffer (100 mM MES, 0.1 M
experiment utilized a significant number of replicates to con-  NaCl and 0.01% Tween-20).

fidently model the gene selection function and enable GEAs , First stain with 0.01 mg/ml streptavidin—phycoerythrin
comparisonwith both the classical and permutational ANOVA  copjugate (Molecular Probes) in buffer containing

tests. In addition, a small subset of those genes identified as 100 mM MES, 1 M NaCl, 0.05% Tween-20 and 4 mg/ml
differentially regulated were confirmed by real time RT-PCR 5 gsA.

and compared to findings previously reported in the literature. . .

Ofequalimportance itis simple, intuitive and computationally ° .?xgevxzs; avr\]/ghorz)%rg; r;nngii?g];rgt)ﬁfer@SSPE, 0.01%
efficient allowing it to be easily implemented under standard o o )
computing environments. Based on all these results, the GEA ® Sécond stain with  3ug/ml of biotinylated anti-
model provides microarray users with a novel and statistic- ~ Streptavidin+0.2 mg/ml of IgG in buffer containing
ally powerful method for the identification of differentially 100 mM MES, 1 M NacCl, 0.05% Tween-20 and 4 mg/m|

expressed genes. of BSA.
¢ Third stain with 0.01 mg/ml streptavidin—phycoerythrin
MATERIALS AND METHODS conjugate (Molecular Probes) in buffer containing
Quality control for RNA integrity 100 MM MES, 1 M NacCl, 0.05% Tween-20 and 4 mg/mi
of BSA.

At confluence, keratinocytes from the DK-7 cell line were ) )

exposed to 100 IU/ml of IFN+ in serum-free medium. After o One wash with non-stringent buffer X65SPE, 0.01%

24 h, RNA was extracted using the Qiagen Rneasy Mini Kit Tween-20, 0.005% antifoam).

(Qiagen SA, Cedex, France). All the samples were monitore('i,robe arrays were scanned at 488 nm using an Argon-ion
by agarose gel and with the Agilent 2100 Bioanalyser (Agilen[1aaser (made for Affymetrix by Agilent). Readings from the

Biotechnologies, Germany) and consistently demonstrategj,,nitative scanning were analyzed with Affymetrix Gene
high-quality RNA (28S/18S ratie-2, but always<3). Expression Analysis Software (MAS 5.0).

cRNA preparation, array hybridization and

scanning Experimental design

i . The GEA model is explained using a simple experiment com-
A A I | RNA h . . .
ccording to Affymetrix protocol, fug tota was the paring control versus IFN- treated skin cells (one design

rting material for all individual samples. In general | . .
starting material for all individual samples. In general, tota factor on two levels). To evaluate the biological and the

RNA was converted into biotinylated cRNA, hybridized in experimental variability, the following experimental design
the Affymetrix probe array cartridge, stained and then quanti- P Y, the T g . b , ) 9
) , : as planned as shown in Figure 1: ‘Control’ and ‘IFN-
fied. Firstand second strand CDNA synthesis was performe\éiimulated’ keratinocytes were cultured in triplicate usin
using the SuperScript Choice System (Invitrogen AG, Basel Y P g

Switzerland), according to manufacturer’s instructions, butthree individual petri £10 culture dishes and RNA was inde-

using an oligo-dT primer containing a T7 RNA polymerasependemly extracted from each cultured replicate. For each

- . . RNA sample, cRNA synthesis was performed in triplicate
binding site. Labeled cRNA was prepared with the RNA Tran- - .
script Labeling kit (Enzo Biochem Inc., NY). Biotinylated and each cRNA pool was hybridized to an Affymetrix U133

CTP and UTP were used together with unlabeled NTPs if>ene Chip.

the reaction, and unincorporated nucleotides were removeBata analysis
with GeneChiff Cleanup Module (Affymetrix, Inc., Santa The GeneChip U133 Set, comprised of A and B chips,

Clara, CA). contains 45000 different probe sets that corresponds to

cRNA (20 ug) was fragmented at 9€ for 35 min in buf- . . i )
fer containing 200 mM Tris-acetate, pH 8.1, 500 mM KOAc 39000 transcripts derived fr_onr?33 000 well substan'ugted
human genes. The Affymetrix ‘GeneChip software’ integ-

and 150 mM MgOAc. Prior to hybridization, fragmented . . T

. o ) - rates multiple types of information in order to determ-
cRNA in hybridization mix (buffer containing 100 mM MES, ine the relative mRNA abundance for ven n
1 M NaCl, 20 mM EDTA, 0.01% Tween-20, 0.5 nd/BSA, WﬁiCh ?s tzr?nez the aver:gg diilfe(r:gncg inatler?sit; orgeADeI,
0.1 ngful herring sperm and Affymetrix controls), was heated (http://lwww.affymetrix.com/); however, the statistical mod-

to 95°C for 5 min, cooled to 45C and loaded onto an Affy- . . . o
. . . Is discussed herein are not Affymetrix software-specific and
metrix probe array cartridge. The probe array was incubate§ )
. can be applied to datasets produced by alternate methods.
for 16 h at 45C at constant rotation (60 rpm), then exposed_., . . ) : . o
. . - - This ADI is then normalized using quantile normalization
to Affymetrix washing and staining protocol. This protocol . .
includes: and natural logarithm transformation. The complete dataset
' (accession no. GSE1132) is available on the NCBI Gene
o One wash with non-stringent buffer X6SSPE, 0.01% Expression Omnibus (http://www.ncbi.nim.nih.gov/geo/). All
Tween-20 and 0.005% antifoam). data processing steps described below rely on this normalized
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Fig. 1. Experimental design. ‘Control’ and ‘IFN-stimulated’ keratinocytes were cultured in triplicate using three individual Ret6i

culture dishes and RNA was independently extracted from each Petri dish. For each RNA sample, cRNA synthesis was performed in triplicate
(A, B, C) and each cRNA pool was hybridized to an Affymetrix U133 Gene Chip. Quality controls were performed according to Affymetrix
protocols and all chips, except chip 5A, were found correctly hybridized.

ADI; however, the models presented herein are compatiblé cannot be assumed and applied to all datasets. The most
with other normalization procedures (data not shown). interesting alternative to classic ANOVA test is permutational
analog of ANOVA (Dudoitet al., 2002). The benefit of util-
BGT-ANOVA izing this method lies with its attempt to estimate actual
By gene testing proceeds by applying an ANOVA to the nor-djstribution of the test statisti¢’ described in the previous
malized ADI of each gene. The procedure is explained in thgyaragraph. The procedure consists of two steps repeated at
case ofi treatments wittk replicates each. Inourcase= 2  |east 10000 times:
andk = 3 (corresponding to the three Petri dishes} et 9
(corresponding to the nine measurements). « Randomly permute experiment columns of the data table
not permuting the experiment labels. Now for every
gene you have your measurements randomly distributed
between experiments.

e Perform classic ANOVA test on these data and record the
value of F-statistic.

o Estimate the total variability using the sum of squares
(SST) and split it into two sources: between treatment
and within treatment variability (SS¥ SSA+ SSE).

o Compute the variances of these two sources using mean
squares (MS): MSA= SSA/dfx and MSE= SSE/dE

with dfa =n — 1 and d_é = nk —n. _ These two steps repeated a number of times will produce an
« Compute the test statistE = MSA/MSE, which fol-  estimate of distribution for-statistics for every particular
lows Snedecor's -distribution with degrees of freedom gene. ActualF-values for original expression measurements

dfa and dt. compared to this distribution will yield &-value.
e Select genes for which MSA Limit, = MSE x F~1
(1 — adfa, dfg), where is the significance level. Global Error Assessment
. GEA applies ANOVA, but uses a robust estimation of the
BGT-permutational ANOVA within treatment variability. Robustness is achieved by two

The classic ANOVA test described above is based on theneans:

assumption of Gaussian distribution imposed on the data

points. Even though this assumption is widely accepted for e Averaging within treatment variability of genes that are
log-transformed microarray data, it is frequently seen that  expressed at a similar level.
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Table 1. Sequence information for those genes selected for confirmation by real-time RT-PCR

Gene name Accession Forward primer Probe Reverse primer

number/AoD
glP10 Hs00171042_m1 N/A N/A N/A
STAT1 M97936 GTGGAAAGACAGCCCTGCAT CGCACCCTCAGAGGCCGCTG ACTGGACCCCTGTCTTCAAGAC
MXB M30818 CGAATGAGTGCTGTGTAAGTGATG TGCTCAAGCCCAGGCCTTGGAC AAAGGGACCGGCTAACAGTCA
MXA Hs00182073_m1 N/A N/A N/A
isg15 NM_005101 GGGACCTGACGGTGAAGATG TGGCGGGCAACGAATTCCAGG GCCAATCTTCTGGGTGATCTG
IRF7 U73036 GCCTGGTCCTGGTGAAGCT CCTGGCTGTGCCGAGTGCACCT AGGAAGCACTCGATGTCGTCAT
ISG56K M24594 GCCTCCTTGGGTTCGTCTATAA CCCTGGAGTACTATGAGCGGGCCC TTCTCAAAGTCAGCAGCCAGTCT
IFI-6-16 NM_002038 GGCTACGCCACCCACAAGT CTGGCTACTCCTCATCCTCCTCACTEGCCAAGAAGGAAGAAGAGGTT

ATCGA

N/A, not available.

o Using robust estimates of the average variability, insteadRESULTS AND DISCUSSION
of classical ones. The GEA model

Binning The GEA method more accurately characterizes
MSE by calculating the robust mean SD of genes within a
bin of 200 nearest neighbors. This is accomplished by sort-
[ Ca|CU|ate the mean normalized ADl, as We” as the MSA|ng genes by mean ADI in ascending Order and then placing
and the MSE of each gene. them into bins. Various bin sizes were examined to determine
e Sortgenes by ascending mean normalized ADI and groupow bin size would affect GEA model. Bin sizes of 25, 50,
them into bins of 200 consecutive genes (correspondind00, 200 and 300 genes were examined as shown in Figure 2.
to ~100 bins for an Affymetrix GeneChip). In the present experiment, greater variability was observed
« The MSE of the 200 genes in each bin are summarized"_ith small bins_, decreasing sharply and then leveling off.at
using a robust estimation: MREsust=Median_1 . 200 higher expression. It should be noted that there are a variety
(MSE) * dfe/x 1 (0.5, d), wherex ~ is the inverse of of normalization methods and alternative pr'obe set expres-
the one-tailed probability of thg? distribution. sion level calculations (Bplstaet al., 2003; Irlza_rry_eF al.,_ _
2003) that would have various effects on the variability distri-
bution seen in Figure 2. A full analysis of data pretreatment
procedures is beyond the scope of the present work; how-
ever, under any of these procedures variability would still
be expected to remain heterogeneous across the expression

The following procedure is therefore implemented:

e For each gene, compute the test statisic =
MSA/MSERrobuss which  follows Snedecor’s
F-distribution with degrees of freedomgdf= n — 1
and d& robust= 200 (nk — n).

e Select genes for which MSALimitrobusy =  range and therefore take advantage of the binning and local
MSEgrobust F_l(l — o, de, de’Robusf, whereq is the calculation of error.
significance level. Importantly, the trend for the relationship between variab-
ility and expression level remained stable across the range
Quantitative Real-Time RT-PCR of bin sizes, indicating that small changes in bin size do

Of the total RNA preparation used for microarray analysis"0t have major effects. A bin size of 200 appeared to
500 ng was used for the first-strand cDNA synthesis (TagP® OPtimal because it provides an accurate local estim-
Man reverse transcription reagent, N8080234 and a randof@® ©f MSE while simultaneously approaching a smoothed
hexamer primer) according to the manufacturer's instruction&€nd line. No further investigation for smoothing this non-
(Applied Biosystems, Foster City, USA). Semi-quantitativeCont'nuous trend to contmwty was deemed necessary. All
PCR was performed using the ABI PRISM 7900 Sequenc&ubsequent GEA calculations are based on the MSE per
detection system (Applied Biosystems). Primers and TagMaRin ©f 200 genes, as described in Materials and methods
probes were either designed using Primer Express softwaEction.

(Applied Biosystems) or ordered from Applied Biosystems .

through their Assays on Demand (AoD) service (Table 1) Classical ANOVA and GEA for two treatments

The PCR reactions were carried out according to the manufa@nd three replicates

turer’s instructions. All results were normalized to GAPDH, Gene selections resulting from classical ANOVA and GEA
which was not differentially regulated. are compared for the experiment with two treatments (control
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MEAN NOEMALIZED ADI MEAN NOEMALIZED ADI

Fig. 2. Effects of varying bin size on the GEA model. Bin sizes of 200 are compared with bins 250 B), 100 C) and 400 D) genes.
The x-axis represents the mean normalized ADI per bin. Fais represents the robust SD per bin, which is the square root okMSKE
(defined in the Materials and methods section).

versus IFNy treated skin cells) with three replicates (three Classical ANOVA and GEA for two treatments
Petri dishes). For an initial comparison the number of geneand nine replicates

selected is unimportant, only in so much as itis equal betweefpg jnitial analysis indicated that the between-petri variabil-
the two methodologies. Inthis manner, the alpha values genefy, a5 of the same magnitude as the within-petri variability

ated can be compared instead of the actual gene content. Oy 4 not shown). It was therefore concluded that, for the pur-
for convenience aninitial selection of 10% (or 4.5 k probe setsbose of demonstration, the data could be analyzed as though
among the 45k present on the combined U133A and B chipfere was one sample consisting of nine replicates, instead of
was used. The calculated significance levels wese0.0144 o6 samples consisting of three replicates. It is important to
for classical ANOVA andx = 0.0010 for GEA. These Sig- e that this analysis was only performed to show the effects
nificance levels show the higher confidence estimated via thgs o larger sample size on gene selection with both GEA and
GEA selection. This confidence is directly dependent of the,|assjcal ANOVA. The selection differences between classical
higher degrees of freedom of the binned MSE in GEA. OneANOVA a = 0.0013 and GEAx = 0.0004 are striking.
obtains the following distribution among selected genes: 2799 qer these conditions, 3239 genes are selected with both
genes are selected by both techniques; 1709 genes are S.elﬁpdssical ANOVA and GEA, 1260 genes by GEA only and a
ted by GEA only; and 1710 genes are selected by classic3fitarent 1260 genes by classical ANOVA only.

ANOVA only. These results demonstrate that by increasing the num-

These differences can be explained by the fact that classicgly of replicates, the differences between classical ANOVA
ANOVA computes the MSE individually, and is therefore 54 GEA are reduced because the individual MSE is estim-
influenced by random noise. Uncertainty in the estimate Ofteq more accurately. Furthermore, increasing the number of
MSE leads to both false negatives (high MSA and acc'demaWeplicates from 3 to 9 indicates that the classical ANOVA

large MSE) as well as false positives (low MSA and acCi-ggjection approaches that of the GEA selection; however,
dentally very low MSE). Furthermore, GEA is based on theg,en \ith nine replicates it is still far from achieving an

observation that the experimental variability (MSE) of genejgentical selection. It is estimated that the classical ANOVA
expression s locally related to expression level, which impliesy, g eventually completely converge with GEA at some
that MSE s similar for nelghborlng genes. Therefore, theIarge number of replicates. Furthermore, comparing those
GEA method computes a robust estimate of the MSE of €acgnes selected by either analysis, GEA appears to be selecting
gene by averaging the MSE of gene neighbors in each biryiqst the same genes, whereas classical ANOVA does not,
This is an effort to establish a localized baseline of variability ;.5 shown in Table 2.

to compare with potential treatment effects, i.e. differential ¢ comparison can also be made from a different perspect-
gene expression. ive. By choosing a highly confident GEA-value the question
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Table 2. Effects of replication on ANOVA- and GEA-based gene selection ANOVA, which selects a total of 3358 genes, almost all of
which overlap with the underlying variability cloud as seen
in Figure 3a. It can be concluded from this analysis that
GEA does in fact derive increased statistical power from the

Classical ANOVA  Perm. ANOVA GEA

Genes selected for both 3375 — 4128 binned MSE.

three and nine replicates .
Genes selected for three 1125 _ 371 Permutational ANOVA test and GEA

replicates only The permutational ANOVA test was picked for additional
Genes selected for nine 1124 4500

comparison because it is considered to be more robust and
powerful than the classic ANOVA (Dudaét al., 2002). Hav-
Number of genes selected by classical ANOVA, permutational ANOVA and GEA as ahga |arge number of rephcates foreach eXpe”mem allows us
function of the number of replicates used for computation. A target of 4500 genes was s¢0 build a reliable estimate of statistic distribution through per-
for each method genergtlngl%t\{alue threshold 0f0.9013, 0.0197 and _0.0004, respect- mutations (in the presem case 10 k permutations were used.
ively. Only values for nine replicates could be obtained for permutational ANOVA, as . . .
the minimum confidence (0.001) could not be achieved with less than 7 replicates. The _same perspective _as was used with classical ANOVA_‘ was
applied to the comparison between GEA and permutational
Table 3. Selection confidence of ANOVA- and GEA-based selection ANOVA (Table 2 and Figure 3b.) In Table 2, it can be seen
methods for most significant expression outliers that a completely parallel comparison cannot be performed
using permutational ANOVA, as the number of available rep-
licates determines a minimum level of availalflevalues. A

replicates only

Selection P-value No of. No. of genes in - - !
method level selected commonwith GEA  highly confidentP-value of 0.05 or better is far out of reach for
genes selected genes this method when only three replicates are available. A min-
imum of seven replicates would be required to meaningfully
GEA 1.00% 10730 531 531 achieve aP-value of 0.05 or better. This ‘non-comparison’
Perm. ANOVA 0.003 2418 527 is itself important as it indicates that GEA can be confidently
Classical ANOVA 0.02 3358 523

used under conditions of low experimental replicates where
permutational ANOVA could not.

A graphical analysis similar to that conducted between
can then be asked at what confidence level would the classicBEA and classical ANOVA is shown in Figure 3b. Using
technique require to achieve full concordance. As shown irthe same highly confident GER-value (P < 1 x 10-30)
Table 3, a GEAP-value of 1x 1030 selects 531 genes. As as before, a confidence level for permutational ANOVA was
demonstrated graphically in Figure 3, these genes clearly difselected to achieve full concordance, as demonstrated in
ferentiate themselves from the underlying variability derivedTable 3 (P < 0.003; 10k permutations). The orange squaresin
from comparison of replicate controls. Point coordinates ~ Figure 3b correspond to those genes selected by the permuta-
on the graph corresponds to the expression (in log scale) oftion ANOVA test; however, it can also be seen that most GEA
particular gene, as observed under the two conditions (IFNselections are co-selected by the permutation ANOVA. The
y and control treatments). Blue points correspond to paireghermutation ANOVA returns 527 out of 531 genes selected
expressions in control treatments and make up the ‘variabilitypy GEA; however, these 527 are among a total of 2418 genes,
cloud’, green open squares correspond to paired expressionsimost of them borderline or within the underlying variabil-
control and treated conditions—most of them correspondingty cloud. These results demonstrate additional confidence in
to unmodulated genes and thus overlapping with backgroun@EA (co-selected by a second method with high confidence),
blue points. The pear shape of the variability cloud shown irbut also a superior selectivity that is achieved compared to
Figure 3 corroborates the inverse relationship between varpermutational ANOVA.
ability and expression demonstrated in Figure 2. Red crossesAnother significant advantage of GEA over the permuta-
correspond to selected genes according to GEA, with vertional test is lower computational complexity. Performing a
high significance # < 1 x 10~39). One can visually see that large number of permutations on a standard laboratory PC can
the higher the expression level, the closer these points are take hours or even days, whereas the GEA methodology can
the contour of the variability cloud. However, a minimal dis- be applied to a dataset and return results in a matter of minutes.
tance separates these points from the contour. In other wordgsing the present study as an example, the GEA calculation
paired expressions of selected genesin control and treated caiwok <5 min whereas the 10k permutational ANOVA took
ditions, according to GEA, are clearly different from paired ~6 h to run on a 1.6 MHz Pentium 4 computing platform.
expressions of genes in control conditions. ) .

To achieve concordance (523 out of 531 genes), the clagf-value adjustment for multiple tests
sical ANOVA must relax to aP-value of 0.02 or greater. Performing multiple, yet simultaneous, significance tests
Orange squares correspond to those genes selected by classreddes the pointed question Bfvalue adjustment. A&-value
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Fig. 3. (a) Graphical validation of detected genes (classical ANOVA versus GEA). Blue squares define the ‘variability cloud’ of the dataset.
Green open squares represent those genes under treated condition. Red crosses indicate those genes detected RvthlaeGEA

1 x 10-%0, Orange squares indicate those genes detected with a classical AR@she < 0.02. (b) Graphical validation of detected genes
(permutational ANOVA versus GEA). Blue squares define the ‘variability cloud’ of the dataset. Green open squares represent those genes
under treated condition. Red crosses indicate those genes detected with A-GHife of<1 x 10-3C. Orange squares indicate those genes
detected with a permutational ANOVAR-value <0.003.

can be significantly low simply because of the noise presentomparison of tests, e.g. the GEA versus ANOVA comparis-
in the system. By increasing the number of tests there is aons made here. In addition, multiple testing corrections do not
increased chance that this will arise. There are multiple prosolve for the lack of power in a situation with a low number
cedures that allow adjustment Bfvalues with respect to the of replicates.

multiple testing problem (Bonferroni method, Holm’s pro- AnadjustmentoP-valuesis stillan approximation, and can
cedure, etc.). However useful these may be for estimatingometimes aggravate the situation. As an example, the West-
the true P-value, they are not of great importance for thefall and Young adjustment procedure (Dudsital., 2002;
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Fig. 4. Detection of previously identified IF¥-stimulated genes. Number of IFNstimulated genes selected by a particular method versus
total number of genes selected by the method at particular thresholds. Squares correspondro<GEA10-30), Diamond shapes represent
results of classic ANOVA approactP(< 0.0004), and Triangles show performance of permutational ANQ¥A<(0.0012). ‘DSG’ refers

to Deret al. IFN-y stimulated genes.

Westfall and Young, 1993) was applied to the permutationabe seen that GEA is almost uniformly superior to both forms
ANOVA results here, producing alt-values equal to 1. This of ANOVA in detecting these genes. The GEA test detected
was not helpful and so was not included in the comparisor28 DSGs with a high degree of confidende & 1 x 1030

of selection methods. Therefore, analysts of microarray resselecting DSGs in a total pool of 531 differentially expressed
ults are encouraged to consider the multiple testing problengenes), whereas a classical ANOVA was only able to identify
in addition, but not as a substitute, to the differential gene25 DSGs within total selection of approximately the same
expression methodologies such as those presented here. size (P < 0.0004 selecting DSGs in a total pool of 548 dif-

i i ferentially expressed genes; 9 replicates). The permutational
Confirmation of results ANOVA performed less well than both the classical ANOVA
A thorough literature review revealed a high concordanceand GEA, as only 8 DSGs in a pool of 540 selected genes
between known IFN- effects and the panel of genes selec-were identified with this method of analysiB (< 0.0012).
ted by GEA. The classical ANOVA, permutational ANOVA  Importantly, the study of Deat al. also lists those 30 genes,
and GEA were then compared to determine their respectivpreviously identified in the literature using alternative exper-
abilities to detect ISGs. A previous study lists ISGs that werdmental methodolgies, to be stimulated by IFNDeret al.,
known from the literature along side those discovered through 998). All 30 ISGs were selected by GEA in the present
microarray analysis (Det al., 1998). Using various selection experiment (100% detection & < 1 x 1030 selecting 30
criteria, a total of 49 IFNy stimulated (increased expression) ISGs in a pool of 531 differentially expressed genes). In con-
genes were previously detected inastudy bydDal. Asthere  trast, only 25 ISGs were selected by classical ANOVA using
are significant differences in the protocols of the two experi-all nine replicates (83% detection & < 0.0004 selecting
ments, 100% concordance was considered unlikely; howevelSGs in a total pool of 548 differentially expressed genes).
a significant number of these genes were expected to appearfinom another perspective, over 2000 genes would need to
the current study. The ability of each technique to detect thige selected in order to achieve 100% detection of ISGs by
set of 49 genes is illustrated in Figure 4, in which the numbeclassical ANOVA. In comparison, the permutational ANOVA
of the Deret al. IFN-y stimulated genes (DSGs) selected intest identified just seven of the known ISGs (23% detection
the present dataset by a particular method is plotted againat P < 0.0012 selecting ISGs in a total pool of 540 differen-
the total number of genes selected. In addition, the multipleially expressed genes). Alternatively, 2400 genes would have
P-value thresholds for each method is provided to demonto be selected by the permutational ANOVA to achieve a 100%
strate the overall performance of the various methods. It cadetection rate.
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Fig. 5. Comparison between real-time RT-PCR and Affymetrix results. Fold induction values of eight ISGs are plottgd/@fhs control),

with RT-PCR data represented by empty bars and microarray data by stripped bars. RT-PCR results are normalized to the housekeepin
gene GAPDH. All genes validated by RT-PCR were selected by GEARvalues<1 x 1030, The abbreviations listed above correspond

to the following gene information. They are listed here according to abbreviation, Affymetrix U133A probe set ID, gene title and then
accession number. Gene List: STAT1, 200887_s_at, signal transducer and activator of transcription 1, 91 kDa, ‘NM_007315, NM_139266’;
Mxa, 202086_at, myxovirus (influenza virus) resistance 1, interferon-inducible protein p78 (mouse), NM_002462; isg56k, 203153_at,
interferon-induced protein with tetratricopeptide repeats 1, NM_001548; ifi-6-16, 204415 _at, interferon, alpha-inducible protein (clone IFI-
6-16), ‘NM_002038 NM_022872, NM_022873’; glP10, 204533_at, chemokine (C—X-C motif) ligand 10, NM_001565; mxb, 204994 _at,
myxovirus (influenza virus) resistance 2 (mouse), NM_002463; isg15, 205483_s_at, interferon, alpha-inducible protein (clone IFI-15K),
NM_005101; irf7, 208436_s_at, interferon regulatory factor 7, NM_001572.

Eight of the many known ISGs (gIP10, Statl, MxA, MxB, of 531 differentially expressed genes). Lastly, within a pool
IRF7, 1ISG56K) and the housekeeping gene GAPDH weref similar size permutational ANOVA selected only three of
analyzed further by real-time RT-PCR as an initiahitro  the eight real-time RT-PCR validated gends & 0.0012
validation. Each gene was examined in duplicate in eaclselecting a total pool of 540 differentially expressed genes).
of the three control conditions and the three IlNreated In summary, these confirmatory results are highly signi-
conditions. Following normalization with GAPDH, the fold ficant. They indicate good sensitivity for true positives by
induction values were determined and these values were corGEA relative to the other techniques being compared here.
pared with the observed microarray results (Figure 5). AsThe GEA method has been found to place high confidence
the sensitivity for these two techniques is quite different, itin biologically significant genes known to be regulated by the
was not expected that identical fold-changes would be seeexperimentalinduction (IFN+) being studied. Lastly, the bio-
for real-time RT-PCR and Affymetrix Gene Chips (Holland, logically significant genes have also been confirmed through
2002). Therefore, concordance was determined based on da-complementary technique like real-time RT-PCR.
ection, i.e. an increase in gene expression measured with
Gene Chips was also seen by real-time RT-PCR. As shown
in Figure 5, all genes showed an increased expression whépONCLUSION
measured by either technique. Therefore, this initial valid-The GEA model for differential gene expression selection
ation study confirmed that the experiment was functioningvas introduced to respond to the small sample size prob-
predictably (as previously determined in the literature) andem in microarray analysis by replacing the denominator
that the GEA selection results had biological significance. Awof the F-ratio (the MSE normally estimated per gene) with
the same time, using the previously described set for classicéthe MSE calculated per bin, which is directly related to the
ANOVA (P < 0.0004 selecting a total pool of 548 differen- mean absolute expression level within each bin. The GEA
tially expressed genes) only six of the eight would have beemethod was demonstrated to confidently determine differ-
selected; whereas all genes measured by real-time RT-PG#htially expressed genes under conditions of both low and
were selected by GEAR < 1 x 10-3C selecting a total pool high replication. These results were compared to a classical
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ANOVA and an advanced permutational ANOVA test. The Dudoit,S., Yang,Y.H., Speed,T.P. and Callow,M.J. (2002) Statist-

major differences in gene selection between ANOVA and ical methods for identifying differentially expressed genes in

GEA are that an ANOVA (classic or permutational) analyzes replicated cDNA microarray experiment3atistica Snica, 12,

each gene separately using a single factor ANOVA, whereas 111-139. _ _

GEA is far more powerful because the MSE is estimated locPurbin.B.P., Hardin,J.S., Hawkins,D.M. and Rocke,D.M. (2002) A
variance-stabilizing transformation for gene-expression microar-

ally based on information from nearest gene neighbors. This ray dataBioinformatics, 18, S105-S110,

h?f, Lecﬁmly been derlnonStrated by N:umm (,?003), forf. Freedberg,|.M., Tomic-Canic,M., Komine,M. and Blumenberg,M.

which the GEA_ model more at_:curatey identi |e_d SIgNITIC- — 5001) Keratins and the keratinocyte activation cydlelnvest.

ant differences in gene expression than the classical ANOVA pgrmatol, 116, 633-640.

when .Com.pa"ed Wit.h real-time RTTP_CR (;Iata. As the bin sizghosh,D. (2002) Resampling methods for variance estimation of sin-

used in this analysis was 200, this implies that the number gular value decomposition analyses from microarray experiments.

of degrees of freedom is increased by 200-fold. The §N-  Funct. Integr. Genomics, 2, 92-97.

experiment used here to develop GEA provided a number dfless,K.R.,  Zhang,W.,  Baggerly,K.A.,  Stivers,D.N. and

literature sources to confirm or refute our findings. GEA was Coombes,K.R. (2001) Microarrays: handling the deluge of

demonstrated to be uniformly superior for both high and low data and extracting reliable informatiofrends Biotechnol., 19,

replicates in detecting known ISGs and had excellent con|—_| ‘|1|63E4'383' (2002) T int abund ) ¢ vari )
. . . : : _ olland,V.J. ranscript abundance In yeast varies over Six

e e L . reri el G, 71,3436 1436

) . T _y,’ q p - Huang,X. and Pan,W. (2002) Comparing three methods for variance

ively simple, intuitive and computationally efficient method,

: . R estimation with duplicated high density oligonucleotide arrays.
which allows it to be easily implemented under standard gynct. ntegr. Genomics, 2, 126-133.

computing environments. Irizarry,R.A., Bolstad,B.M., Collin,F., Cope,L.M., Hobbs,B. and
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