
Pattern Recognition 38 (2005) 1197–1207
www.elsevier.com/locate/patcog

A one-dimensional analysis for the probability of error of linear
classifiers for normally distributed classes

Luis Rueda∗
School of Computer Science, University of Windsor, 401 Sunset Avenue, Windsor, Ont., N9B 3P4, Canada

Received 7 October 2004; accepted 7 December 2004

Abstract

Computing the probability of error is an important problem in evaluating classifiers. When dealing with normally distributed
classes, this problem becomes intricate due to the fact that there is no closed-form expression for integrating the probability
density function. In this paper, we derive lower and upper bounds for the probability of error for a linear classifier, where the
random vectors representing the underlying classes obey themultivariatenormal distribution. The expression of the error is
derived in theone-dimensional space, independently of the dimensionality of the original problem. Based on the two bounds,
we propose an approximating expression for the error of a generic linear classifier. In particular, we derive the corresponding
bounds and the expression for approximating the error of Fisher’s classifier. Our empirical results on synthetic data, including
up to two-hundred-dimensional featured samples, show that the computations for the error are extremely fast and quite accurate;
it differs from theactualerror in at most� = 0.0184340683. The scheme has also been successfully tested on real-life data
sets drawn from the UCI machine learning repository.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Assessing the performance of classifiers is a fundamental
problem is pattern recognition, for which various approaches
have been proposed in the literature. The main idea is to
measure the discriminability of the classifier by means of
its misclassification rateor error rate. The error rate or
classification error, in general, measured as theprobability
of error, provides a quite useful insight about the quality of a
classifier. We consider the classical problem of deriving the
trueerror rate for a linear classifier, which we presently refer
to as theclassification erroror probability of error. We deal
with two classes,�1 and�2, whose a priori probabilities are
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P(�1) and P(�2), respectively, and which are repre-
sented by two normally distributedd-dimensional random
vectors,1 x1 ∼ N(�1, �1) and x2 ∼ N(�2, �2), respec-
tively.

A more realistic scenario involves two data sets contain-
ing labeled samples,D1 = {x11, x12, . . . , x1n1

} andD2 =
{x21, x22, . . . , x2n2

}, wherex1j
andx2j

are drawn indepen-
dently from their respective classes,�1 and�2, respectively.
In order to derive a linear classification scheme, the aim is
to find a linear function of the form:

g(x) = wtx + w0

�1
≶
�2

0, (1)

1 In this paper, we use the notationx ∼ N(�,�) to refer to a
normally distributed random vector,x, where� is the mean vector,
and� is the covariance matrix.
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that classifies an unknown object, represented by a real-
valued feature vector,x = [x1, . . . , xd ]t , into the respec-
tive class, wherew is a d-dimensionalweightvector, such
that2 w 	= 0d , andw0 is a thresholdweight. We assume
that the underlying classes are normally distributed, and that
the parameters of the distribution are also known, i.e. they
are estimated by themaximum likelihood estimate(MLE)
or theBayesian approach, for example. The linear classi-
fier can be derived from the respective data sets, or once
the parameters have been estimated, the linear classifier can
be obtained from these parameters. In our notation, a vec-
tor x=[x1, . . . , xd ]t is composed ofd real-valued variables
x1, . . . , xd , which also refer to the axes of the system in
Rd , in that order. Similarly, we use the same notation for
a d-dimensional random vector,x = [x1, . . . , xd ]t , where
x1, . . . , xd are random variables. It is clear that the assump-
tion of normally distributed classes is restricted to particu-
lar cases in real-life scenarios. However, it is important to
highlight that this assumption has strong theoretical justifi-
cations (see Refs.[1,2]). Also, normal distributions are typ-
ically used in unsupervised learning schemes, in which the
distribution and the number of classes is unknown.

The problem of estimating the classification error has
been studied for various cases, including an asymptotic for-
mula for the expected error of the pseudo-Fisher classifier
for the case in which the dimensionality of the problem is
relatively larger than the size of the training data set[3].
Bounds for more generic scenarios have been derived for
linear classifiers that use kernel classifiers[4,5]. In the case
of the Bayesian (quadratic) classifier for normal distribu-
tions, it is well-known that bounds on the classification error
exist, namely Chernoff’s and Battacharyya’s bounds[1,2,6],
and the approximation method introduced by Lee and Choi
[7]. These bounds are applicable to theoptimal classifier,
which is linear only for equal covariance matrices, and are
not tight enough for the majority of the cases.

Since we are dealing with normally distributed classes, an
algebraic analysis of the probability of error is not possible
as it involves integrating the normal distribution probability
density function, which has no closed-form algebraic ex-
pression. Although bounds on the probability of error exist,
finding the exact (or eventually an approximate) value for
integrating the normal distribution probability density func-
tion still remains a well-known, open problem, which has
many applications in statistics, engineering, and computer
science. In this paper, we derive lower and upper bounds for
the classification error. These bounds are obtained from a
one-dimensionalalgebraic expression for the probability of
error of a linear classifier, where the random vectors repre-
senting the underlying classes obey themultivariatenormal
distribution. Using these bounds, an approximating expres-

2 Note that due to the nature of the problem,w is a non-null
vector, otherwise the hyperplane classifier would not have a defined
orientation. To state this assumption, we use the notationw 	= 0d ,
where0d is the null vector in the Euclideand-dimensional space.

sion is derived, which has been proved to be quite accurate
in estimating theactualprobability of error, differing from
the latter in at most� = 0.0184340683. By instantiating the
generic case to a specific scenario, we derive the bounds
and approximation for the well-known Fisher’s classifier.

2. Bounds and approximations for the error

We assume that we are dealing with the case in which�1 is
on the “negative side” of the classifier, i.e.g(�1) < 0, which
implies thatg(�2) > 0. It is thus, easy to see that to eval-
uate the opposite case, i.e. wheng(�1) > 0 andg(�2) < 0,
it suffices to rename the classes in such a way that the new
class�1 satisfiesg(�1) < 0. Additionally, although this ap-
proach is valid for a fairly efficient linear classifier that at
least separates the means, a similar analysis can be done to
consider even the case of aquite inefficientclassifier that
does notseparate the means.

Given a linear classifier of the form of Eq. (1), the intent
of the exercise is to compute (or eventually estimate) the
classification error. The probability of error measures the
likelihood that an unknown sample,x, which belongs to�1,
is assigned to�2, or x is assigned to�1 when it belongs
to �2. Thus, if the space is divided into two regions,R1
and R2, which represent the areas in which an object is
assigned to�1 and�2, respectively, the probability of error,
Pr[error], is calculated as follows[1]:

Pr[error] =
∫
R2

px1(x|�1)P (�1) dx

+
∫
R1

px2(x|�2)P (�2) dx, (2)

where pxi (x|�i ) is the probability ofx given �i , R1 is
the region determined byg(x) < 0, andR2 is the region
determined byg(x) > 0. Note thatg(x)=0 is excluded from
(2) since

∫
g(x)=0 pxi (x|�i )P (�i ) = 0.

The expression given in Eq. (2) is quite involved due to the
fact that it invokes integrating multivariate normal distribu-
tions. Fortunately, when dealing with normal distributions,
simpler expressions that involveN(0, 1) random variables
can be used (see Ref.[8]). An elegant way of writing the
integrals of Eq. (2) in terms of aN(0, 1) random variable,
x, is as follows[2]:

Pr[error] = P(�1)

∫ a1

−∞
1√
2�

e−x2/2 dx

+ P(�2)

∫ a2

−∞
1√
2�

e−x2/2 dx, (3)

wherex is aN(0, 1) random variable, and

a1 = (wt�1w)−1/2(w0 + wt�1) (4)

and

a2 = −(wt�2w)−1/2(w0 + wt�2). (5)
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Although the multi-dimensional problem is reduced to its
equivalent in the one-dimensional space, the analytical form
of the integral for the univariate normal distribution density
function is still not possible, and thus an algebraic analysis is
only possible by means of bounds. To derive the expressions
for the lower and upper bounds, we resort on the following
inequality for the cumulative normal distribution function
[9]. Let x be aN(0, 1) random variable. Then, for alla > 0:

2e−a2/2

(a +
√

a2 + 4)
√

2�
�1 −

∫ a

−∞
1√
2�

e−x2/2 dx

� 2e−a2/2

(a +
√

a2 + 2)
√

2�
. (6)

Using this inequality, we now obtain the lower and upper
bounds for the probability of error. Since the normal proba-
bility density function is symmetric around the mean (zero
in this case), we can re-write the inequality in Eq. (6) for
all −a < 0 as follows:

2e−a2/2

(a +
√

a2 + 4)
√

2�
�

∫ −a

−∞
1√
2�

e−x2/2 dx

� 2e−a2/2

(a +
√

a2 + 2)
√

2�
. (7)

On the other hand, we know thata1=(wt�1w)−1/2(w0+
wt�1). Since g(�1) < 0, it then follows thatwt�1 +
w0 < 0. Also, �1 is positive definite, which implies that
(wt�1w)−1/2 > 0. Thus, it follows thata1 < 0.

Additionally, we know thata2 = −(wt�2w)−1/2(w0 +
wt�2). Sinceg(�2) = wt�2 + w0 > 0, and�1 is positive
definite, which implies that(wt�2w)−1/2 > 0, it follows
thata2 < 0.

Since we know thatai < 0 for i=1, 2, we can then express
Eq. (7) in terms ofai as follows:

2e−a2
i /2

(−ai +
√

a2
i

+ 4)
√

2�
�

∫ ai

−∞
1√
2�

e−x2/2 dx

� 2e−a2
i /2

(−ai +
√

a2
i

+ 2)
√

2�
. (8)

Pre-multiplying byP(�i ), and adding the corresponding
terms of Eq. (8) fori = 1, 2, we obtain the following in-
equality:

√
2

�


 P(�1)e−a2

1/2

−a1 +
√

a2
1 + 4

+ P(�2)e−a2
2/2

−a2 +
√

a2
2 + 4


 � Pr[error]

�
√

2

�


 P(�1)e−a2

1/2

−a1 +
√

a2
1 + 2

+ P(�2)e−a2
2/2

−a2 +
√

a2
2 + 2


 , (9)

wherea1 anda2 are obtained as in Eqs. (4) and (5), respec-
tively.

Fig. 1. Lower and upper bounds, actual and approximate values
for the cumulative normal distribution for values ofai in [−3, 0].
The dashed lines represent the lower and upper bounds, and the
solid line represents the actual value of the cumulative distribution
function, as computed in Eq. (8). The dotted line near the solid
one corresponds to the approximation of Eq. (10).

The bounds for the classification error are important to
obtain a fair assessment about the classifier, without com-
puting the error using numeric integration methods. One
should note, however, that these bounds are not tight enough
for values ofai close to 0, while being asymptotically ac-
curate forai < − 1. This relationship is shown inFig. 1,
where the lower and upper bounds, as well as the actual val-
ues for the cumulative distribution functions for values of
ai are plotted. An alternative for this is to use the following
approximating function for the probability of error:

Pr[error]� 1√
2�


P(�1)e−a2

1/2


 1

−a1 +
√

a2
1 + 4

+ 1

−a1 +
√

a2
1 + 2


 + P(�2)e−a2

2/2

×

 1

−a2 +
√

a2
2 + 4

+ 1

−a2 +
√

a2
2 + 2





 . (10)

As can observed inFig. 1, taking the average between
the lower and the upper bounds as in Eq. (10) appears to
be a very good approximation for the actual probability
of error. Based on this observation, we show that a good
approximation for the probability of error can be achieved by
averaging the lower and upper bounds. To prove this result,
we, first of all, analyze the relationship between the integral
and the average of the two bounds in Eq. (8). We are tempted
to call the result given belowlemma, but unfortunately, one
of the steps cannot be proved algebraically. Thus, we merely
provide a sketch of proof for such a result.
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Result 1. For all ai < 0

|g(ai)| =

∣∣∣∣∣∣∣
∫ ai

−∞
1√
2�

e−x2/2 dx − e−a2
i /2

√
2�

×

 1

−ai +
√

a2
i

+ 4
+ 1

−ai +
√

a2
i

+ 2




∣∣∣∣∣∣∣ ��, (11)

where� = 0.0184340683.

Sketch of Proof. By taking the first derivative ofg(ai) with
respect toai we obtain the necessary condition for a maxi-
mum or a minimum:

�g

�ai
= e−a2

i /2
√

2�

a4
i

+
(

4 −
√

a2
i

+ 4
√

a2
i

+ 2

)
a2
i

+
(√

a2
i

+ 4 +
√

a2
i

+ 2

)
ai + 2

√
a2
i

+ 4
√

a2
i

+ 2

(√
a2
i

+ 4 − ai

) (√
a2
i

+ 2 − ai

) = 0. (12)

It can be shown that for any value ofai < 0,
√

a2
i

+ 4√
a2
i

+ 2

(√
a2
i

+ 4 − ai

) (√
a2
i

+ 2 − ai

)
> 0. Thus, to

satisfy the equality of Eq. (12), either of the following equal-
ities must be satisfied:

e−a2
i /2 = 0 (13)

or

a4
i +

(
4 −

√
a2
i

+ 4
√

a2
i

+ 2

)
a2
i

+
(√

a2
i

+ 4 +
√

a2
i

+ 2

)
ai + 2 = 0. (14)

It is true that e−a2
i /2 will never reach the valuezeroex-

actly but asymptotically, i.e. limai→−∞ e−a2
i /2 = 0. Since

we are interested in all the values ofai < 0, we should then
find the values ofai that satisfy Eq. (14). Unfortunately, this
equation does not have a closed-form solution forai , and
hence we are obliged to find a numerical solution instead.

In Fig. 2, we plot the functiong(ai) for values ofai

between−4 and 0. Noting thatg(ai) reaches a minimum
for a value ofai that is between 0 and−1, we numerically
found the roots of Eq. (14), being the one of our interest
a′
i
= −0.690181517, where|g(a′

i
)| ≈ 0.005882668< �.

On the other hand, we observe that for alla′
i
< ai < 0,

g(ai) is monotonically increasing, and hence it attains a
maximum ata′′

i
= 0, where|g(a′′

i
)| ≈ � = 0.0184340683.

To verify that this is a maximum in(−∞, 0], we should
still analyze the behavior ofg(ai) for ai → −∞. In other
words, we should find the following limit:

lim
ai→−∞ g(ai) = lim

ai→−∞


 ∫ ai

−∞
1√
2�

e−x2/2 dx − e−a2
i /2

√
2�

×

 1

−ai +
√

a2
i

+ 4
+ 1

−ai +
√

a2
i

+ 2





 . (15)

It is clear that limai→−∞
∫ ai−∞ (1/

√
2�)e−x2/2 dx = 0,

since it leads to an integral with coincident boundaries. Also,

as observed earlier, limai→−∞ e−a2
i /2 = 0. Additionally, as

ai → −∞, it implies thata2
i

→ ∞ and−ai → ∞. This

implies that
√

a2
i

+ 4 → ∞ and
√

a2
i

+ 2 → ∞, yielding

limai→−∞ 1/

(
−ai +

√
a2
i

+ 4

)
+ 1/

(
−ai +

√
a2
i

+ 2

)
→ 0, and hence limai→−∞ g(ai) = 0.

Consequently, for allai < 0, |g(ai)|�� = 0.0184340683.
The result follows. �

Using the result shown above, we now state and prove
the relationship between the approximation function in

Eq. (10) and the actual probability of error, which is com-
puted as in Eq. (3).

Theorem 1. The approximation given in Eq.(10) differs
from the actual error in Eq.(3) in at most�=0.0184340683.

Proof. SinceP(�1)�0 andP(�2)�0, using the inequality
given in Eq. (11), we can write:

|P(�1)g(a1)|�P(�1)� (16)

and

|P(�2)g(a2)|�P(�2)� = [1 − P(�1)]�. (17)

Adding Eqs. (16) and (17), and using properties of abso-
lute value, we have:

|P(�1)g(a1) + P(�2)g(a2)|
� |P(�1)g(a1)| + |P(�2)g(a2)|
�P(�1)� + [1 − P(�1)]�. (18)

-0.005

0

0.005

0.01

0.015

0.02

-3 -2 -1 0
ai

g 
(a
i)

Fig. 2. Plot of the functiong(ai ), which is obtained as in Eq. (11),
for values ofai between−4 and 0.
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Substitutingg(ai) for its equivalent expression in Eq.
(11), we obtain:∣∣∣∣∣∣∣P(�1)

∫ a1

−∞
1√
2�

e−x2/2 dx+P(�2)

∫ a2

−∞
1√
2�

e−x2/2 dx

− 1√
2�


P(�1)e−a2

1/2


 1

−a1 +
√

a2
1 + 4

+ 1

−a1 +
√

a2
1 + 2


 + P(�2)e−a2

2/2

×

 1

−a2 +
√

a2
2 + 4

+ 1

−a2 +
√

a2
2 + 2







∣∣∣∣∣∣∣
�P(�1)� + [1 − P(�1)]� = �, (19)

wherea1 anda2 are obtained as in Eqs. (4) and (5), respec-
tively.

The theorem is thus proved.�

The result of Theorem 1 is quite important in our anal-
ysis, since it shows that the approximation for the error is
very accurate, e.g. it differs from the actual error in at most
two digits. This relationship is corroborated in the empirical
results discussed in Section 5.

3. Error analysis for Fisher’s classifier

It is well known that Fisher’s classifier can be derived
from the training samples or from the parameters of the dis-
tributions, when available. We assume that the parameters of
the distributions are known or they can be obtained from the
training samples by using the MLE or Bayesian estimation.
While we consider the two-class case, the general Fisher’s
classifier design that involves more than two classes can be
found in Refs.[1,10].

Suppose then that we deal with two classes,�1 and
�2, which are represented by two normally distributedd-
dimensional random vectors,x1 ∼ N(�1, �1) and x2 ∼
N(�2, �2), respectively, where�1 	= �2, and whose a priori
probabilities areP(�1) andP(�2), respectively. The aim is
to find a vector,w, which leads to themaximumclass sep-
arability in the projected, one-dimensional space. The so-
lution for the vectorw that maximizes the aforementioned
criterion is given by:

w = S−1
W

(�2 − �1), (20)

whereSW = 1
2(�1 + �2). Note that only the direction of

w is important here, and thus, the scaling factor1
2 can be

omitted at this point. However, to avoid inconsistencies in
our derivations, we will continue using the scaling factor.

To complete the linear classifier, the thresholdw0 has to
be obtained. A simple approach (suggested in Ref.[6]) is to

assume that the distributions in the original space have iden-
tical covariance matrices, and take the independent term of
the optimal quadratic or Bayesian classifier, which results in:

w0 = −1

2
(�2 − �1)tS−1

W
(�1 + �2) − log

P(�1)

P (�2)
. (21)

Once we have derived the corresponding linear classifier
by means of vectorw and the corresponding threshold, we
obtain the boundaries for the integrals in Eq. (3). The al-
gebraic expression for the error is stated in the following
theorem. We use Pr[error(F )] to refer to the probability of
error of Fisher’s classifier so that it is distinguished from
that of thegenericlinear classifier.

Theorem 2. Let x1 ∼ N(�1, �1) and x2 ∼ N(�2, �2)

be two normally distributed random vectors representing
two classes, �1 and �2, whose a priori probabilities are
P(�1) and P(�2), respectively, and g(x) = wtx + w0 be
Fisher’s classifier, wherew andw0 are obtained as in Eqs.
(20) and (21), respectively. Ifr2 = (�1 − �2)t(�1 + �2)−1

(�1−�2)> max{log(P (�1)/P (�2)), log(P (�2)/P (�1))},
then:

Pr[error(F )] = P(�1)

∫ b1

−∞
1√
2�

e−x2/2 dx

+ P(�2)

∫ b2

−∞
1√
2�

e−x2/2 dx, (22)

where x is aN(0, 1) random variable, and

b1 = 1

2

[
(�2 − �1)t(�1 + �2)−1�1(�1 + �2)−1

× (�2 − �1)
]−1/2

[
−(�2−�1)t(�1+�2)−1(�2−�1)− log

P(�1)

P (�2)

]
(23)

and

b2 = − 1

2

[
(�2 − �1)t(�1 + �2)−1�2(�1 + �2)−1

× (�2 − �1)
]−1/2

[
(�2−�1)t(�1+�2)−1(�2−�1)

− log
P(�1)

P (�2)

]
. (24)

Proof. We prove, first, that Fisher’s classifier separates the
means, i.e.g(�1) < 0 andg(�2) > 0. Substitutingx for �1
in Fisher’s classifier we have:

g(�1) =
{[

1

2
(�1 + �2)

]−1
(�2 − �1)

}t

�1 − 1

2
(�2 − �1)t

×
[

1

2
(�1 + �2)

]−1
(�1 + �2) − log

P(�1)

P (�2)
, (25)
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g(�1) = 2(�2 − �1)t(�1 + �2)−1�1 − (�2 − �1)t(�1

+ �2)−1(�1 + �2) − log
P(�1)

P (�2)
, (26)

g(�1) = −(�1 − �2)t(�1 + �2)−1(�1 − �2) − log
P(�1)

P (�2)
,

(27)

g(�1) = −r2 − log
P(�1)

P (�2)
, (28)

where r2 = (�1 − �2)t(�1 + �2)−1(�1 − �2). Since�1
and �2 are positive definite, it follows that�1 + �2 and
(�1 + �2)−1 are also positive definite, implying thatr2 is
a positive real number. Thus, it is true thatg(�1) = −r2 −
log(P (�1)/P (�2)) < 0, if

r2 > − log
P(�1)

P (�2)
= log

P(�2)

P (�1)
. (29)

Similarly, replacingx by �2 in Fisher’s classifier, and
replicating the steps from Eqs. (25) to (28), we obtain:

g(�2) = 2(�2 − �1)t(�1 + �2)−1�2 − (�2 − �1)t

× (�1 + �2)−1(�1 + �2) − log
P(�1)

P (�2)
, (30)

g(�2) = (�1 − �2)t(�1 + �2)−1(�1 − �2) − log
P(�1)

P (�2)
,

(31)

g(�2) = r2 − log
P(�1)

P (�2)
. (32)

Again, sincer2 is a positive real number, it follows that
g(�2) > 0, if

r2 > log
P(�1)

P (�2)
. (33)

From the inequalities in Eqs. (29) and (33), we conclude
that Fisher’s classifier separates the means, i.e.g(�1) < 0
andg(�2) > 0, if

r2 = (�1 − �2)t(�1 + �2)−1(�1 − �2)

> max

{
log

P(�1)

P (�2)
, log

P(�2)

P (�1)

}
. (34)

We now use the result of the generic linear classifier. Sub-
stitutingw andw0 for their corresponding values obtained
from Eqs. (20) and (21), respectively, the boundary for the
first integral of Eq. (3) results in:

b1 = (wt�1w)−1/2(w0 + wt�1), (35)

b1 =
{[

2(�1 + �2)−1(�2 − �1)
]t

�1

[
2(�1 + �2)−1

× (�2−�1)
]}−1/2 {

−1

2
(�2−�1)t2(�1+�2)−1(�1+�2)

− log
P(�1)

P (�2)
+ [2(�1 + �2)−1(�2 − �1)]t�1

}
, (36)

b1 = 1

2

[
(�2 − �1)t(�1 + �2)−1�1(�1 + �2)−1

× (�2 − �1)
]−1/2

[
− (�2 − �1)(�1 + �2)−1(�1+�2)

− log
P(�1)

P (�2)
+ 2(�2 − �1)t(�1 + �2)−1�1

]
, (37)

b1 = 1

2

[
(�2 − �1)t(�1 + �2)−1�1(�1 + �2)−1

× (�2 − �1)
]−1/2

[
− (�2−�1)t(�1+�2)−1(�2−�1)

− log
P(�1)

P (�2)

]
, (38)

where Eq. (37) is obtained from Eq. (36) after expanding
[2(�1+�2)−1(�2−�1)]t and some algebraic manipulations;
and Eq. (38) follows from Eq. (37) because�1 and�2 are
symmetric, which implies that�1+�2 and(�1 + �2)−1 are
both symmetric, and other minor algebraic manipulations.

Similarly, the boundary for the second integral of Eq. (3)
can be expressed as follows:

b2 = −(wt�2w)−1/2(w0 + wt�2), (39)

b2 = −
{[

2(�1 + �2)−1(�2 − �1)
]t

�2

[
2(�1

+�2)−1(�2 − �1)
]}−1/2

×
{
−1

2
(�2 − �1)t2(�1 + �2)−1(�1 + �2) − log

P(�1)

P (�2)

+
[
2(�1 + �2)−1(�2 − �1)

]t
�2

}
, (40)

b2 = −1

2

[
(�2 − �1)t(�1 + �2)−1�2

(�1 + �2)−1(�2 − �1)
]−1/2

×
[
−(�2 − �1)(�1 + �2)−1(�1 + �2) − log

P(�1)

P (�2)

+ 2(�2 − �1)t(�1 + �2)−1�2

]
, (41)

b2 = −1

2

[
(�2 − �1)t(�1 + �2)−1�2(�1 + �2)−1

× (�2 − �1)
]−1/2

[
(�2 − �1)t(�1 + �2)−1(�2 − �1)

− log
P(�1)

P (�2)

]
, (42)

where, again, we expanded[2(�1+�2)−1(�2−�1)]t , used
the fact that(�1+�2)−1 is symmetric, and performed other
minor algebraic manipulations.

The theorem is thus proved.�

Corollary 1. Under the conditions of Theorem2, and as-
suming thatP(�1) = P(�2) = 0.5, the probability of error
of Fisher’s classifier canalwaysbe computed as in Eq.(22).
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Proof. The proof of this corollary is straightforward. From
the proof of Theorem 2, we know that the probability of
error can be computed as in (22), ifr2 > max{log(P (�1)/

P (�2)), log(P (�2)/P (�1))}. Since,P(�1)=P(�2)=0.5,
it implies that log(P (�1)/P (�2))= log(P (�2)/P (�1))=
0. Also, r2 is a positive real number, and thus, the result
follows. �

The algebraic expression for the error obtained in Theo-
rem 2 shows that the classification error for Fisher’s classi-
fier can be derived directly from the parameters of the distri-
butions, i.e. without finding the corresponding classifier. It
is important to note, however, that the threshold in Fisher’s
classifier, and in general, for any classifier, can be obtained
in many different ways. In Ref.[11], it has been shown ex-
perimentally that the probability of error can be reduced if
the threshold is computed by invoking a Bayes classifier
in the transformed, one-dimensional space. It is then easy
to see that the expressions forb1andb2 given in Eqs. (23)
and (24), respectively, can also be expressed in terms of
the aforementioned thresholding method. The derivation of
these algebraic expressions is quite involved, and left for
future research work.

4. Bounds on the error of Fisher’s classifier

Using the algebraic analysis of the probability of error
discussed in the previous subsection, we obtain bounds on
the error for Fisher’s classifier. To achieve this, we use the
inequality of Eq. (9).

Theorem 3. Let x1 ∼ N(�1, �1) and x2 ∼ N(�2, �2)

be two normally distributed random vectors representing
two classes, �1 and �2, whose a priori probabilities are
P(�1) and P(�2), respectively, and g(x) = wtx + w0 be
Fisher’s classifier, wherew andw0 are obtained as in Eqs.
(20) and (21), respectively. If r2 = (�1 − �2)t(�1 + �2)−1

(�1−�2)> max{log(P (�1)/P (�2)), log(P (�2)/P (�1))},
then:

√
2

�


 P(�1)e−b2

1/2

−b1+
√

b2
1 + 4

+ P(�2)e−b2
2/2

−b2 +
√

b2
2 + 4


 � Pr[error(F )]

�
√

2

�


 P(�1)e−b2

2/2

−b1 +
√

b2
1 + 2

+ P(�2)e−b2
2/2

−b2 +
√

b2
2 + 2


 , (43)

where b1 and b2 are obtained as in Eqs.(23) and (24),
respectively.

Proof. Since�1 and �2 are positive definite, it then fol-
lows that�1 + �2, its inverse,(�1 + �2)−1, and (�1 +
�2)−1�1(�1 + �2)−1 are positive definite, implying that
(�2 − �1)t(�1 + �2)−1�1(�1 + �2)−1(�2 − �1) is a posi-
tive real number for all�1 and�2, where�1 	= �2. Also, it

is true thatr2 = (�2 − �1)t(�1 + �2)−1(�2 − �1) > 0, and
henceb1 < 0 if r2 > log(P (�1)/P (�2)).

Similarly, since�1 and�2 are positive definite, it follows
that(�1+�2)−1�2(�1+�2)−1 is also positive definite. As
a result,(�2−�1)t(�1+�2)−1�2(�1+�2)−1(�2−�1) > 0
for all �1 and�2, where�1 	= �2. Consequently,b2 < 0 if
r2 > log(P (�2)/P (�1)), implying thatb1 < 0 andb2 < 0,
if r2 > max{log(P (�1)/P (�2)), log(P (�2)/P (�1))}.

Substituting a1 and a2 for b1 and b2, respectively,
Eq. (9) can be written as follows:

√
2

�


 P(�1)e−b2

1/2

−b1 +
√

b2
1 + 4

+ P(�2)e−b2
2/2

−b2 +
√

b2
2 + 4




�P(�1)

∫ b1

−∞
1√
2�

e−x2/2 dx

+ P(�2)

∫ b2

−∞
1√
2�

e−x2/2 dx

�
√

2

�


 P(�1)e−b2

1/2

−b1 +
√

b2
1 + 2

+ P(�2)e−b2
2/2

−b2 +
√

b2
2 + 2


 , (44)

where b1 and b2 are obtained as in Eqs. (23) and (24),
respectively.

The theorem is thus proved.�

The lower and upper bounds can also be obtained by tak-
ing Eq. (3), and substitutingw andw0 for their correspond-
ing values obtained from Eqs. (20) and (21), respectively.
The algebraic steps involved in the derivation are straight-
forward and omitted to avoid repetition.

As in the general case, we can use the expression given
in Eq. (10) to yield an approximation for the probability of
error of Fisher’s classifier. This expression can be derived
by taking the average of the two bounds in Eq. (43) as
follows:

Pr[error(F)]� 1√
2�


P(�1)e−b2

1/2


 1

−b1 +
√

b2
1 + 4

+ 1

−b1 +
√

b2
1 + 2


 + P(�2)e−b2

2/2

×

 1

−b2 +
√

b2
2 + 4

+ 1

−b2 +
√

b2
2 + 2





 . (45)

As shown in the general case, the expression given in Eq.
(45) provides a good approximation for the probability of
error of Fisher’s classifier, differing from the actual value in
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Table 1
Comparison of the probability of error obtained using traditional methods and the approximation method discussed in this paper. The lower
and upper bounds, as well as the approximation given in Eq. (10) are shown

Dim. P(�1) a1 a2 Pr[error] Lower bnd. Upper bnd. Approx. Difference

10 0.42 −0.451764 −1.048493 0.2219389 0.2015077 0.2510731 0.2262904 0.0043516
20 0.21 −0.523061 −1.793484 0.0929374 0.0855113 0.1041107 0.0948110 0.0018735
30 0.29 −0.670047 −1.443671 0.1260964 0.1179252 0.1407908 0.1293580 0.0032616
40 0.13 −0.865691 −2.102256 0.0414202 0.0394080 0.0456212 0.0425146 0.0010943
50 0.54 −1.500102 −1.590889 0.0617688 0.0599570 0.0671311 0.0635440 0.0017752
60 0.74 −2.120503 −1.914417 0.0197510 0.0194277 0.0210349 0.0202313 0.0004804
70 0.47 −1.970613 −1.977531 0.0241757 0.0237525 0.0258121 0.0247823 0.0006066
80 0.15 −2.144580 −2.923591 0.0039152 0.0038698 0.0041255 0.0039976 0.0000824
90 0.77 −2.496978 −2.074405 0.0092195 0.0091016 0.0097450 0.0094233 0.0002037

100 0.73 −2.434394 −2.235407 0.0088897 0.0087858 0.0093767 0.0090812 0.0001915

at most�=0.0184340683. This is empirically demonstrated
in the experiments discussed in Section 5.

5. Experimental results

To test the accuracy and computational efficiency of the
error analysis discussed in this paper, we performed a few
simulations on synthetic data and standard real-life data sets.
The experiments involve two normally distributed classes
and Fisher’s linear classifier, which is obtained as in Eqs.
(20) and (21).

5.1. Experiments on synthetic data

For this set of experiments, we randomly generated nor-
mally distributed random vectors for two classes. These
classes,�1 and�2, are then fully specified by their param-
eters,�1, �2, �1 and�2. In order to make the experiments
more realistic, we randomly generatedP(�1) from a uni-
form distribution in[0, 1], and setP(�2) = 1 − P(�1).

One of the tests involves the analysis of theactual clas-
sification error,3 as well as the bounds and the approxima-
tion introduced in this paper. To conduct the test, we gen-
erated random parameters ford-dimensional classes, where
d = 10, 20, . . . , 100. The linear classifier used to test our
method is the traditional Fisher’s classifier, where the thresh-
old is obtained as in Eq. (21). The mean vectors for the two
classes were generated randomly from a uniform distribu-
tion specified by the intervals[0, 0.4] for �1, and[0.4, 0.8]
for �2. The means generated are very close so that for lower
dimensions, the classification task is more demanding. The
covariance matrices were generated by invoking the ran-
dom correlation method for generating positive semidefi-

3 It should be noted that theactual classification error cannot
be obtained, due to the impossibility of obtaining the integrals
for the normal distribution density function. We, indeed, use the
term “actual” to refer to values obtained using numeric integration
methods.

nite matrices[12]. The empirical results obtained from our
simulations are shown inTable 1. The first column corre-
sponds to the dimension of the feature space, and the sec-
ond column contains the a priori probability of�1. The
third and fourth columns contain the boundaries for the
two integrals, computed as in Eqs. (4) and (5), respectively.
The fifth column corresponds to the probability of error
for Fisher’s classifier, obtained as in Eq. (3), where the in-
tegrals were computed numerically by invoking the near-
minimax Chebyschev approximations for the error function
[13]. The sixth and seventh columns contain the lower and
upper bounds for the classification error, which were com-
puted as in Eq. (9). The eighth column represents the ap-
proximation of the classification error, obtained as in Eq.
(10), and the last column corresponds to the difference
(in absolute value) between theactualprobability of error,
the fifth column, and theapproximationof the error, the
eighth column.

The results from the table show that the lower and upper
bounds for the error are quiteloosefor large values of the
classification error. Conversely, they are verytight for small
values of the classification error. This is observed in the last
row for dimension 100, in which the bounds are found to be
very close to each other. A similar behavior is observed when
analyzing the difference between the actual error and the
approximation. The approximation differs from the actual
error in nearly 10−4 for dimensions 90 and 100. Observe
also, that in all cases, even in the case of dimension 10
in which the error is large, the approximation of the error
differs from the actual value in less than�= 0.0184340683,
and hence achieving at leasttwo digitsof precision.

To experimentally analyze the computational efficiency
for computing the classification error, we conducted simula-
tions on test suites involving dimensionsd=20, 40, . . . , 200.
The parameters used in our simulations were obtained as
explained above. To assess the running time of the meth-
ods, we ran the experiments for each dimension 100 times.
The results obtained are depicted inTable 2. The second
and third columns contain the average for the probability of
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Table 2
Results for the running times and probabilities of error for different simulations on normally distributed classes whose dimensions range
from 20 to 200

Dim. Avg. error Avg. diff. Time

20 0.29636033 0.00505519 0.01743
40 0.22418577 0.00571323 0.03264
60 0.17657586 0.00504054 0.05367
80 0.14238103 0.00423317 0.09574

100 0.11416514 0.00343556 0.15212
120 0.09429007 0.00282129 0.26718
140 0.07453343 0.00218855 0.43082
160 0.06238508 0.00179567 0.74598
180 0.05257992 0.00148198 0.91441
200 0.04395622 0.00120941 1.46771
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Fig. 3. Plot of the running time vs. the dimension of the feature
space for simulations involving normally distributed classes and
Fisher’s classification error.

error, and the average of the difference between the actual
value and the approximation. The fourth column contains
the CPU time (in seconds) for computing the actual proba-
bility of error, the bounds, and the approximation for each
of the experiments. The methods were tested using Matlab
on an Intel 2.0 GHz workstation running Windows XP.

The results from the table show that our computational
method is extremely fast for dimensions less than 100, per-
forming the computations in less thana tenthof a second.
As the dimension of the feature space increases, we observe
that the running times also increase. We also observe that
the average differences between the actual error and the ap-
proximation are very small, below� = 0.0184340683.

On the other hand, as can be observed in Eqs. (4) and
(5), the running time for computing the boundaries of the
integrals is proportional to the square of the dimension
of the feature space, i.e. its time complexity is�(d2).
This can be observed inFig. 3, in which the plot of the
dimension against the running time is depicted. The shape
of the curve in the figure corroborates the aforementioned
complexity analysis for our approximation method to

compute the classification error. This behavior indicates
that there are still open problems in this direction, such
as devising more efficient algorithms to implement our
approximation methods for computing the classification
error.

5.2. Results on real-life data

For the experiments on real-life data we have selected
various data sets drawn from the UCI machine learning
repository.4 From each data set, we have selected pairs of
classes, in order to conduct the experiments for two classes.
The parameters of the distributions have been estimated
using the MLE method, and the threshold for Fisher’s
classifier has been computed as in Eq. (21). The a priori
probabilities for the two classes has also been estimated by
using the MLE method, i.e. by dividing the number of sam-
ples that belong to the respective class by the total number
of samples. The results obtained are displayed inTable 3.
We observe that the results shown in the table corroborate
our theoretical analysis for the classification error, regard-
ing the accuracy in approximating the error, i.e. the error is
approximated by a factor of at most� = 0.0184340683. In
some data sets, and specifically, in some pairs of classes,
the resulting error, approximation and bounds are arbitrar-
ily small, due to the fact that the classes are well-separated
(linearly). This is the case of versicolor and setosa, from
the Iris data set, and type3 and type1 from the Wine
data set.

6. The multi-class case

When dealing with more than two classes the problem
of estimating the error, and in general, deriving a linear
classifier is quite intricate. A generic classification scheme

4Available electronically athttp://www.ics.uci.edu/∼mlearn/
MLRepository.html.

http://www.icsuciedumlearnMLRepositoryhtml
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Table 3
Empirical results for the lower and upper bounds, as well as the approximation for the probability of error on data sets from the UCI
machine learning repository

Data set �1 �2 P(�1) Pr[error] Lwr bnd. Upp bnd. Approx. Diff.

Yeast ystCYT ystMIT 0.655 0.187076 0.165495 0.211298 0.188396 0.001321
Iris versicolor virginica 0.500 0.028485 0.027937 0.030503 0.029220 0.000735
Iris versicolor setosa 0.500 0.000002 0.000002 0.000002 0.000002 0.000000
Balance left right 0.500 0.073745 0.071336 0.080478 0.075907 0.002162
Balance right balanced 0.855 0.117241 0.110187 0.130346 0.120266 0.003026
WDBC nonrecur recur 0.763 0.128400 0.120771 0.143026 0.131899 0.003499
WDBC benign malignant 0.627 0.031091 0.030312 0.033562 0.031937 0.000846
CPU-Perf. nas ncr 0.594 0.032361 0.031642 0.034805 0.033224 0.000863
Letter A B 0.507 0.001107 0.001100 0.001151 0.001126 0.000019
Spect class0 class1 0.500 0.051545 0.050115 0.055884 0.052999 0.001455
Vehicle bus van 0.500 0.000503 0.000500 0.000521 0.000510 0.000008
Wine type1 type2 0.454 0.007422 0.007329 0.007847 0.007588 0.000165
Wine type3 type1 0.449 0.000001 0.000001 0.000001 0.000001 0.000000
Wine type3 type2 0.403 0.004361 0.004319 0.004578 0.004448 0.000088

(suggested in Ref.[1]) that avoids ambiguous regions is as
follows. Considerc classes,{�1, . . . , �c}. The aim is to find
c linear functionsgi(x), and given an unknown object,x, as-
sign it to class�i for whichgi(x) is maximum. As observed
in Ref. [1], finding the probability of error in this scheme
is easier if considering the probability of being correct.
That is:

Pr[error] = 1 − Pr[correct], (46)

where

Pr[correct] =
c∑

i=1

Pr[x assigned to�i | x ∈ �i ]. (47)

Given a setW of linear functions of the formwt
j
x +

w0j , the above-mentioned scheme leads toc convex re-
gions, where the region for�i is bounded by a subset of
W containingki functionswt

k
x + w0k , for k = 1, . . . , ki

as follows:

x ∈ �i if
ki∧

k=1

wt
kx + w0k > 0. (48)

Pr[correct] is then computed by adding the probabili-
ties of the events in Eq. (48), fori = 1, . . . , c, where each
term is multiplied by the corresponding a priori proba-
bility, P(�i ). This is always possible, since events that
x ∈ �i and x ∈ �j are mutually exclusive, for alli 	=
j . Computing such a probability is not an easy task, and
many approaches have been proposed[14–17]. Unfortu-
nately, all of these approaches provide a numerical solu-
tion, and thus, deriving closed-form expressions for the
bounds or approximation of the error is not possible. This
problem which, to date, remains open, is currently being
investigated.

7. Conclusions

In this paper, we derive lower and upper bounds, and an
expression that approximates the probability of error, which
can be obtained directly from the parameters of the distri-
butions. This result can be used forany linear classifier,
even though the underlying distributions are not normal. We
have shown that the approximating expression differs from
theactualvalue for the error in at most� = 0.0184340683.
By instantiating the expression of the generic linear clas-
sifier to a particular case, we derive the lower and up-
per bounds for the probability of error of the traditional
Fisher’s classifier. For this classifier, we also derive the cor-
responding expression that approximates the classification
error.

Our empirical results on synthetic,higher-dimensional
data show that the bounds are very tight for small values
of the classification error. Also, the approximation expres-
sion has been empirically shown to be very precise in the
estimation of the error—the error is approximated by a fac-
tor at most� = 0.0184340683. The method has been shown
to work efficiently for classification problems involving up
to two hundredfeatures. Experiments on real-life data from
the UCI machine learning repository have also been con-
ducted, which demonstrate that our scheme is quite accu-
rate in approximating the classification error for real-life
scenarios.

Many directions for future work exist, including the
generalization of this model for more than two classes.
As pointed out in Section 6, this problem, which we are
currently investigating, is far from trivial. Another prob-
lem that is worth investigating is the generalization of the
model for piecewise linear classifiers including more than
one hyperplane. This problem is quite difficult since the
linear transformations have to be applied simultaneously
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for all hyperplanes, leading to a multivariate integration
problem.
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