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ABSTRACT
Genome scan mapping experiments involve multiple tests of significance. Thus, controlling the error

rate in such experiments is important. Simple extension of classical concepts results in attempts to control
the genomewise error rate (GWER), i.e., the probability of even a single false positive among all tests. This
results in very stringent comparisonwise error rates (CWER) and, consequently, low experimental power. We
here present an approach based on controlling the proportion of false positives (PFP) among all positive test
results. The CWER needed to attain a desired PFP level does not depend on the correlation among the
tests or on the number of tests as in other approaches. To estimate the PFP it is necessary to estimate the
proportion of true null hypotheses. Here we show how this can be estimated directly from experimental
results. The PFP approach is similar to the false discovery rate (FDR) and positive false discovery rate
(pFDR) approaches. For a fixed CWER, we have estimated PFP, FDR, pFDR, and GWER through simulation
under a variety of models to illustrate practical and philosophical similarities and differences among the
methods.

IN recent years a relatively new class of “multiple-test” many microarray experiments, treatments that cause
physiological changes are administered to experimentalgenetic experiments has come into prominence, in
units. One main goal of such experiments is to identifywhich there is a strong prior assumption that a certain
which of thousands of genes change expression as aproportion of the tested alternative hypotheses are true.
result of treatment. Treatments are often designed toConsider, for example, a genome-wide scan for linkage
alter the expression of particular genes, so it is reason-between a marker and a quantitative trait locus (QTL).
able to assume that some measurable changes in geneIn this situation, when heritability analysis shows that
expression occur.QTL are segregating in the population, the large num-

Clearly in these examples, identification of a markerber and close spacing of the markers employed ensures
in linkage to a QTL, identification of an individual-that an appreciable proportion of markers are in linkage
by-marker combination that represents a heterozygousto segregating QTL. The challenge is to identify these
QTL, or identification of differentially expressed genes,markers among all of the tested markers. Similarly, prior
there is the possibility of false-positive error. Controllingmarker-QTL linkage mapping in a particular popula-
this error is important scientifically to avoid clutteringtion may have identified a set of markers in linkage
the literature with false results and, practically, to avoidto segregating QTL. For purposes of marker-assisted
expenditure of effort on false leads to genetic improve-selection, it is important to identify individuals heterozy-
ment or gene cloning.gous at these QTL. On Hardy-Weinberg assumptions,

One of the most widely used approaches to controlover a wide range of QTL allele frequencies one-third
errors in multiple tests is based on controlling the fami-to one-half of the QTL will be heterozygous in any given
lywise type I error rate (FWER). The FWER is the proba-individual. Thus, the experiment to identify the markers
bility of rejecting one or more true null hypotheses inin linkage to heterozygous QTL in a particular individ-
a family of tests. In genome scans for QTL, it has beenual starts with the strong prior assumption that a compa-
proposed that the family of tests should be defined asrable proportion of the markers tested are indeed in
the set of all possible tests across the entire genome,such a state. Again, the challenge is to identify the indi-
thus controlling the genomewise type I error (GWER;vidual-by-marker combinations for which this is true,
Lander and Kruglyak 1995). The drawback of thisamong all tested individual-by-marker combinations. In
approach is the drastic loss of power.

An alternative to attempting to avoid all false-positive
results is to manage the accumulation of false positives
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was traditionally taken in human genetics, where it was to illustrate how the estimated PFP levels compare to true
PFP levels.early realized that for a monogenic trait, if a compari-

sonwise type I error rate (CWER) of 0.05 is used as the
threshold for declaring linkage, a large proportion of

CONNECTION TO POSTERIORdeclared linkages would be false. Instead, in human
TYPE I ERROR RATElinkage analysis error control has been based on control-

ling the posterior type I error rate (PER), which is the The philosophy behind the PFP approach is closely
probability of nonlinkage between two loci given that connected to the philosophy of the posterior type I
linkage was declared between these two loci (Morton error rate approach developed by Morton (1955) for
1955). By definition, this has the above property of con- the case of detecting linkage between a single-marker
trolling the accumulation of false positives relative to locus and a monogenic trait locus. In this setting, the
the total number of positive results. Although originally PER is the conditional probability that the true status
defined for the single-test situation, the PER has also between a randomly selected marker locus and the mo-
been discussed in a multiple-test situation (Risch 1991), nogeneic trait locus is one of nonlinkage, given a statisti-
where evenly spaced markers spanning the entire ge- cal test result interpreted as declaring linkage (Morton
nome were sequentially tested for linkage to a single- 1955). In technical notation, let the true status of link-
trait locus. Assuming that the tests were independent, age between the two loci be represented by a random
Risch (1991) computed the posterior type I error rate variable L that can take one of two values, L � 1 if the
given that linkage was declared after ks tests. When a two loci are linked and L � 0 if the two loci are not
constant threshold was used for declaring linkage, the linked; and let the declared status of linkage between
posterior type I error rate decreased as ks increased the two loci on the basis of some statistical test be repre-
(Risch 1991). sented by a random variable D that can also take one

In QTL scans, testing does not stop when one of the of two values, D � 1 if the two loci are declared linked
markers is declared to be linked to a QTL; all markers and D � 0 if the two loci are declared not linked. Then
are tested for linkage to QTL. Further, with the in- the PER is Pr(L � 0|D � 1). Following Morton (1955),
creased availability of closely spaced markers, tests can- this probability can be written as
not be considered to be independent. Thus, to extend

Pr(L � 0 |D � 1) �
Pr(L � 0, D � 1)

Pr(D � 1)
the philosophy underlying the posterior type I error
rate to QTL scans, Southey and Fernando (1998) de-
fined the proportion of false positives (PFP) as a general-

�
Pr(L � 0, D � 1)

Pr(L � 0, D � 1) � Pr(L � 1, D � 1)
.

ization of the PER to the genome scan situation. As is
shown in subsequent sections of this article, the PFP (1)
effectively controls the accumulation of false positives

The probabilities required to compute (1) arerelative to the total number of positive results. In addi-
tion, the PFP level for a set of tests does not depend on Pr(L � 0, D � 1) � Pr(D � 1 |L � 0)Pr(L � 0)
the number of tests or the correlation structure among

� �Pr(L � 0), (2)the tests. This makes the PFP of particular usefulness
in QTL mapping applications that often involve a large and
number of tests with a complex correlation structure.

Pr(L � 1, D � 1) � Pr(D � 1 |L � 1)Pr(L � 1)Another approach that has been used to control the
accumulation of false positives in QTL scans is based � �Pr(L � 1), (3)
on controlling the false discovery rate (FDR; Benjamini

where � is the CWER and � is the average power of theand Hochberg 1995; Weller 2000; Mosig et al. 2001).
test for markers for which L � 1. Using (2) and (3) inMosig et al. (2001) argued intuitively that the FDR as
(1) givesdefined by Benjamini and Hochberg (1995) is not

appropriate when the experiment has a large number of
PER � Pr(L � 0 |D � 1) �

�Pr(L � 0)
�Pr(L � 0) � �Pr(L � 1)

.tests for which the null hypothesis is false; they proposed
using an adjusted FDR, which takes this factor into ac- (4)
count. Although not considered previously in the QTL
mapping context, Storey (2002) defined the positive For a monogenic trait in humans, the prior probabil-

ity that a random marker is within detectable linkagefalse discovery rate (pFDR) to be more suitable than
FDR as a measure of false discoveries. Differences and of the trait locus is �0.02 (Elston and Lange 1975;

Ott 1991), so that for a random marker, Pr(L � 1) �similarities of these various methods with respect to PFP
are discussed in a subsequent section of this article. 0.02. Using a CWER of 0.05 to represent significance

would give a PER of 0.73; i.e., of every 100 declaredOur development of the PFP is general. However, we
use simulations within the QTL mapping application to linkages, �73 would be false. The traditional LOD score

of 3 required to declare linkage corresponds to a CWERshow how PFP compares to FWER, FDR, and pFDR and
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between 0.0001 and 0.001 (Elston 1997). Taking 0.001 Property 1: If the PFP level is equal to � for each of n sets
of tests corresponding to n independent experiments,as the critical CWER to declare linkage, and supposing
then the PFP level for the collection of all tests associ-that average power of the test is 0.90, the PER is
ated with the n experiments is also equal to �.

Pr(L � 0 |D � 1) �
0.001 � 0.98

0.001 � 0.98 � 0.9 � 0.02 Property 2: If the PFP level is equal to � for each of n sets
of tests corresponding to n independent experiments,� 0.05.
the observed proportion of false positives out of the

Thus, using this CWER, of every 100 declared linkage total number of rejections across all n experiments
associations, �5 would be false. Thus, the PER approach converges to � with probability 1 as the number of
indeed controls the proportion of false positives in the experiments increases, provided that the number of
literature as intended. tests per experiment does not grow without bound.

For the case of a genome scan involving a set of k
Contrast property 1 with the situation encounteredmarkers, Southey and Fernando (1998) defined the PFP

in FWER control. If the FWER is controlled at level �as
for each of n independent families of tests, the FWER
for the family consisting of the union of the n families

PFP � �k
i�1�i Pr(Hi)

�k
i�1[�iPr(Hi) � (1 � Pr(Hi))�i]

, (5)
of tests is 1 � (1 � �)n. This quantity may be several
times larger than � for even moderate n. As the number

where for the ith test, �i is the CWER, �i is the power, of independent sets of tests increases, it becomes prohib-
and Pr(Hi) is the probability that the null hypothesis is itively difficult to control the probability of one or more
true [if the ith marker is linked to a QTL Pr(Hi) � 0 false-positive errors.
and if it is not linked to a QTL Pr(Hi) � 1]. Comparing Rather than attempting to avoid all false positive re-
Equations 4 and 5, the correspondence between PER sults, it makes sense to manage the accumulation of
and PFP is evident. false positives relative to the total number of positive

For the general case involving a family of k hypothesis results that appear in the literature. The PFP approach
tests, we define provides precisely this type of error management as

illustrated by property 2. It is property 2 that suggests
“proportion of false positives” as an appropriate name ofPFP �

E(V)
E(R)

, (6)
the error measure E(V )/E(R). We show in a subsequent
section of this article that control of other error mea-

where V denotes the number of mistakenly rejected
sures (FWER, FDR, and pFDR) does not necessarily lead

null hypotheses (number of false positives), R denotes to the control of the proportion of false-positive results
the total number of rejected null hypotheses, and E(V) among all positive results.
and E(R) denote the mathematical expectations of the
random variables V and R, respectively. It is straightfor-
ward to show that this general definition of PFP special- PFP DOES NOT DEPEND ON EITHER THE NUMBER
izes to the definition of PFP given by Southey and OF TESTS OR THE CORRELATION STRUCTURE

AMONG THE TESTSFernando (1998) for the case of a genome scan involv-
ing k markers. For an experiment consisting of a single Consider a collection of k tests. Let Wj be 1 or 0
test of linkage between a random marker and a monoge- depending on whether or not the jth null hypothesis is
netic disease locus, we have falsely rejected. Let Sj be 1 or 0 depending on whether

or not the jth null hypothesis is rejected. Suppose the
PFP �

E(V)
E(R)

�
Pr(V � 1)
Pr(R � 1)

�
Pr(L � 0, D � 1)

Pr(D � 1) jth test is conducted at CWER �j, and let �j denote the
probability that the jth null hypothesis is rejected. Let

� Pr(L � 0 |D � 1) � PER. K0 and K1 form a partition of the indices 1, . . . , k
such that j � K0 if the jth null hypothesis is true and

Thus PFP simplifies to PER as proposed by Morton j � K0 if the jth null hypothesis is false. Then for all j �
(1955) and is a natural extension of PER to the multiple- K0, we have E(Wj) � E(Sj) � �j. For all j � K1, we
test setting considered throughout the remainder of the have E(Wj) � 0 and E(Sj) � �j. Now let p0 denote the
article. proportion of true null hypotheses among all hypothe-

ses tested. Let � � 1/kp0�j �K0
�j denote the average

CWER for tests of true null hypotheses. (Typically thePFP CONTROLS THE PROPORTION OF FALSE
same CWER will be used for all tests, in which case �j �POSITIVES ACROSS MANY EXPERIMENTS
� for all j.) Let � � 1/(k(1 � p0))�j �K1

�j denote the
In this section we present two useful properties of PFP. average power for tests of false null hypotheses. We may

write PFP for the collection of k tests asProofs of these properties are presented in the appendix.
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of the case where the jth test is conducted at its own
PFP �

E(V )
E(R)

�
E(�k

j�1Wj)
E(�k

j�1Sj)
� �k

j�1E(Wj)

�k
j�1E(Sj) CWER �j is a straightforward generalization. For any

given CWER �, (8) indicates that the PFP can be esti-
mated as� �j �K0

�j

�j �K0
�j � �j �K1

�j

(7)

PFP

�

� �
�p̂0

�p̂0 � �̂�(1 � p̂0)
, (12)�

�kp0

�kp0 � �k(1 � p0)
�

�p0

�p0 � �(1 � p0)
. (8)

From expression (8) we can see that PFP depends where p̂0 and �̂� are estimates of p0 and �, respectively.
only on the average CWER �, the proportion p0 of true Several methods for estimating p0 are beginning to ap-
null hypotheses out of all hypotheses tested, and the pear in the literature. Benjamini and Hochberg (2000)
average power �. Note that, as claimed in the Introduc- described a method for estimating p0 on the basis of a
tion, the PFP does not depend on either the number of

graphical approach proposed by Schweder and Spjot-
tests or the correlation structure among the tests. These

voll (1982). Storey (2002) and Storey and Tibshir-properties are particularly desirable for application of
ani (2001) used resampling techniques to approximatethe PFP approach to QTL mapping, where there is a
p0. Allison et al. (2002) fit a mixture of a uniform distribu-nontrivial correlation structure among a large number
tion and a � distribution to the observed P values. Theof tests.
maximum-likelihood estimate of the mixing proportion
corresponding to the uniform distribution serves as an

INTERPRETATION OF PFP FOR A SINGLE estimate of p0. Mosig et al. (2001) proposed an iterative
EXPERIMENT: THE RELATION OF PFP AND PER algorithm for estimating p0 that uses the number of P

values falling into each of several intervals that form aWe have shown that PFP � PER for an experiment
partition of the interval [0, 1]. Their procedure can beconsisting of a single test of linkage between a random
considered a nonparametric version of the proceduremarker and a monogenetic disease locus. In this section
proposed by Allison et al. (2002). Nettleton andwe demonstrate a more general result: the level of PER
Hwang (2003) describe the estimator proposed byfor a test randomly chosen from a family of k tests is
Mosig et al. (2001) in greater detail and show that theequal to the level of PFP for the family of k tests. Let J
estimator can be computed directly from the observeddenote a random index that is equally likely to take
P values without iteration.each value in {1, . . . , k}. Then, using the notation of

Because 1 � p̂0 is an estimate of the proportion ofthe previous section,
tested null hypotheses that are false (e.g., the proportion

PER � Pr( J � K0 |SJ � 1) �
Pr( J � K0, SJ � 1)

Pr(SJ � 1) of markers linked to QTL), it can be of direct scientific
interest. Note, however, that estimating the proportion
of null hypotheses that are false is not the same thing�

Pr(SJ � 1 | J � K0)Pr( J � K0)
Pr(SJ � 1 | J � K0)Pr( J � K0) � Pr(SJ � 1 | J � K1)Pr( J � K1)

.
as estimating which of the null hypotheses are false.

(9) Simply identifying the k(1 � p̂0) tests with the smallest
P values as those tests with false null hypotheses willNow
typically result in an unacceptably high PFP (see, for

Pr(SJ � 1 | J � K0) � �
j �K0

Pr(SJ � 1, J � j | J � K0) example, Genovese and Wasserman 2002, who consid-
ered this issue as part of their thorough investigation of

� �
j �K0

Pr(SJ � 1 | J � j)Pr( J � j | J � K0) the properties of FDR). Thus it is important to combine
estimates of p0 with estimates of � to approximate PFP.

An estimator of � is given by� �
j �K0

�j
1

kp0

� � . (10)

Similarly
�̂� �

R� � �kp̂0

k(1 � p̂0)
, (13)

Pr(SJ � 1 | J � K1) � �, Pr( J � K0) � p0,

where R� denotes the observed value of R for the givenPr( J � K1) � 1 � p0 . (11)
choice of �. Note that the numerator of (13) is an estimate

Now (9), (10), and (11) imply that PER is equal to (8). of the number of true positives while the denominator
Thus PER � PFP. is an estimate of the number of tests for which the null

hypothesis is false. Combining (12) and (13) yields

ESTIMATING PFP FOR A GIVEN EXPERIMENT

For simplicity of notation, we assume henceforth that PFP

�

� �
�kp̂0

R�

. (14)
a single CWER � is used for each of k tests. Consideration
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When the method of Mosig et al. (2001) is used to FWER will not guarantee control of the accumulation
of false-positive results as a proportion of all positive
results over multiple experiments. Obviously the exam-

obtain p̂0, PFP

�

� is the estimator that Mosig et al. (2001)
referred to as “adjusted FDR.” In the simulation de-

ple has been artificially constructed to emphasize thescribed in a subsequent section, we use this estimator
differences among the error measures. This example
involves independent experiments, which means that

to produce estimates of PFP (PFP

�

�) for varying levels
of � (Table 2).

the tests in one experiment are independent of tests
in another. The tests within any of the experiments,

COMPARISON OF PFP, FWER, FDR, AND pFDR however, are not necessarily independent of each other.
Indeed, these tests must be dependent to obtain theBenjamini and Hochberg (1995) defined FDR as
behavior described in the example. Note that when a
large number of rejections occur, the ratio V/R is highFDR � E �VR �R 	 0�Pr(R 	 0), (15)
(50/100). On the other hand, when a small number of
rejections occur, the ratio V/R is quite low (0/10). Suchwhere, as defined previously, V represents the number of
a situation can arise in the QTL mapping setting. Sup-mistakenly rejected null hypotheses and R denotes the
pose that a QTL for a trait of interest lies on a chromo-number of rejected null hypotheses. Storey (2002) de-
some for which few markers are available. Suppose thatfined the pFDR as
some other chromosomes have a high density of mark-
ers. A high density of markers on a chromosome withoutpFDR � E �VR �R 	 0� (16)
the QTL translates into a high positive correlation
among tests for which the null hypothesis is true. Be-

and proposed pFDR as more suitable than FDR as a cause dense markers are positively correlated, a false-
measure of false discoveries because it more closely positive result at any one of these markers is likely to
matches the type of error control that is desirable in be accompanied by many other false-positive results at
practice. Both FDR and pFDR seem to be gaining in neighboring markers. With few markers on the chromo-
popularity as error measures for multiple-testing prob- some containing the QTL, there can never be a large
lems involving hundreds or thousands of tests. This is number of true positive results. Thus a large number
especially the case in the analysis of microarray data of rejections will occur only when there are a large
where thousands of tests are typical. Familywise error number of false positives. It is in such situations that we
rate [FWER � Pr(V 	 0)] traditionally has been the will see substantial differences between PFP and the
most popular error measure for general multiple-testing other error measures. Such a scenario is created in
problems.

model 5 of our simulation study described later in thisWe have previously shown that control of PFP across
article.multiple experiments will lead to control of the propor-

Although the example of this section and model 5 oftion of false-positive results among all positive results in
our simulation show that the error measures can differthe long run. We now show by a hypothetical example
substantially, there are many similarities among FDR,that the other error measures (FDR, pFDR, and FWER)
pFDR, and PFP. Storey (2002) has shown that whendo not necessarily share this property.
the tests are identically and independently distributedSuppose that for each experiment in a series of inde-
pFDR � PER; i.e., the level pFDR for a set of k tests ispendent and identical experiments V/R is 50/100 with
equal to the level of PER for a randomly chosen test.probability 0.1, 0/10 with probability 0.5, and 0/0 with
Storey (2003) has shown that pFDR � PFP when theprobability 0.4. Then
tests are independent (Corollary 1 in Storey 2003) and
that pFDR and FDR will be approximately equivalentPFP �

50(0.1)
100(0.1) � 10(0.5)

�
1
3

,
to PER (and thus PFP) as the number of tests in a family
grows large as long as the test statistics corresponding towhich is the proportion of false positives among all
the family of tests satisfy a “weak dependence” conditionpositive results that will accrue in the long run over
(Theorem 4 in Storey 2003). We have shown that therepeated experimentation. On the other hand, the val-
equality between PFP and PER holds in general regard-ues of FWER, pFDR, and FDR are
less of the dependence structure among the test statistics
or the number of tests conducted. A probability inter-FWER �

1
10

, pFDR � � 50
100��

0.1
0.1 � 0.5� pretation of pFDR that holds even when tests are not

independent or identically distributed is given below.
�

1
12

, FDR � � 1
12�(0.6) �

1
20

. Let A denote the event, “a positive result, randomly
selected from all positive results, is a false positive.” We
haveThis example shows that control of FDR, pFDR, or
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Pr(A | R 	 0) � �
k

r�1
�
r

v�0

Pr(A, V � v, R � r | R 	 0) QTL model 1: This model had 10 chromosomes with
one QTL at the center of the chromosome; the 10 QTL
were of equal effect, so that each accounted for 10%� �

k

r�1
�
r

v�0

Pr(A | V � v, R � r, R 	 0)Pr(V � v, R � r | R 	 0)
of the genetic variance. The remaining 20 chromosomes
had no QTL. The simulated trait was completely additive

� �
k

r�1
�
r

v�0

v
r

Pr(V � v, R � r | R 	 0)
with a heritability of 0.25 in the F2 generation. The
residuals were normally distributed. Each chromosome

� E �VR | R 	 0� � pFDR. was 100 cM long and had 21 equally spaced markers.
QTL model 2: This model was obtained from model

Thus, even when tests are not independent nor identi- 1 by moving the QTL from the center to the left by 25
cally distributed, conditional on an experiment having cM for each of the 10 chromosomes with a QTL.
one or more positive test results, pFDR is equal to the QTL model 3: This model was obtained from model
probability that a randomly chosen test from among 1 by increasing the number of chromosomes with a
these positive results is a false positive. single QTL at the center from 10 to 20 and by decreasing

It is easiest to understand the somewhat subtle differ- the number of chromosomes with no QTL from 20 to
ence between this interpretation of pFDR and the inter- 10. As this model contains 20 QTL of the same effect,
pretation of PFP as PER by considering the example each accounted for 5% of the additive genetic variance.
presented in this section. In the example pFDR is deter- QTL model 4: This model was obtained from model
mined as follows. Of the experiments with at least one 1 by decreasing the number of chromosomes with a
positive result, about five-sixths of the experiments will single QTL at the center from 10 to 5 and by increasing
have 0 as the probability that a randomly selected posi- the number of chromosomes with no QTL from 20 to
tive result will be a false positive while the other one- 25. As this model contained five QTL of the same size,
sixth will have probability 0.5 that a randomly selected each accounted for 20% of the additive genetic variance.
positive result is a false positive. Thus pFDR is (5/6) · QTL model 5: This model with only two chromo-
0 � (1/6)(0.5) � 1/12, which is exactly the probability somes was constructed to illustrate that PFP can give
that a randomly selected positive result will be a false quite different results from pFDR and FDR. The first
positive, given that the experiment resulted in at least chromosome was 100 cM long with one QTL at the
one positive result. Note that this calculation in no way center and 11 equally spaced markers. The second chro-
accounts for the fact that there are many more positive mosome also was 100 cM long with no QTL and 101
results in the less likely experimental outcome [Pr(V/ equally spaced markers. The heritability for the trait
R � 50/100) � 0.1] than in the more likely outcome was 0.025.
[Pr(V/R � 0/10) � 0.5]. On the other hand, PFP � The scan for QTL was based on testing each marker
PER is the probability that a randomly selected result for linkage to QTL by a t-test for comparing the means
is a false positive, given that it is positive. By conditioning for the trait between the two marker genotype classes
on the event that the randomly selected result is positive (Soller et al. 1976). The null hypothesis of no linkage
rather than on the event that the experiment contains to a QTL was rejected if the P value for the test was
at least one positive, PFP accounts for differences in the lower than the critical CWER. For each experiment,
number of positive results across experimental out- the numbers of positive (R) and false-positive (V) test
comes because randomly selected events are more likely results were counted given the critical CWER values of
to be positive in experiments with many positive results. 0.01, 0.001, and 0.0001. For each model, 50,000 replica-
In contrast to pFDR, experimental outcomes V/R are tions of the experiment were used to obtain empirical
weighted by both their probability of occurrence and values for PFP, pFDR, FDR, and FWER, which in this
the number of rejections R. For our hypothetical exam- context is called the GWER (Lander and Kruglyak
ple, we can write PFP as a weighted average of the V/R 1995). The empirical PFP was obtained as V/R, V and
ratios as R being the mean values of V and R over the 50,000

replications of the experiment; empirical pFDR was ob-
PFP �

(0.5)(10)(0/10) � (0.1)(100)(10/100)
(0.5)(10) � (0.1)(100)

�
1
3

. tained as the mean value of the ratio V/R over all experi-
ments with R 	 0; empirical FDR was obtained as empiri-
cal pFDR times the proportion of experiments with R 	
0; and empirical GWER was obtained as the proportion

A SIMULATION STUDY
of experiments with V 	 0. The results for these empiri-
cal values are given in Table 1.A QTL scan with 500 backcross offspring from inbred

lines was simulated. The simulation was used to compare Table 1 shows that PFP, pFDR, and FDR were practi-
cally identical to each other for model 1 through modelPFP with FWER, FDR, and pFDR and to illustrate how

the estimated PFP levels compare to true PFP levels. 4, while GWER was very different from these. For these
four models, using a P-value threshold of 0.001 wasThe simulation was repeated for five simple genetic

models. sufficient to control PFP, pFDR, or FDR to well below
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TABLE 2TABLE 1

Empirical values of PFP, pFDR, FDR, and GWER from Empirical values of PFP, mean values of PFP estimates,
and their mean squared errors from 50,000 replicates50,000 replicates of a simulated backcross

experiment for models 1–5 of a simulated backcross experiment for models 1–5

Critical Critical
Model CWER PFP pFDR FDR GWER Model P value PFP Mean (PFP

�

) MSE (PFP

�

)

1 0.01 0.088 0.090 0.090 0.825 1 0.01 0.088 0.115 0.0039
0.001 0.027 0.031 0.031 0.194 0.001 0.027 0.049 0.0044
0.0001 0.009 0.012 0.010 0.025 0.0001 0.009 0.016 0.0002

2 0.01 0.094 0.095 0.095 0.824 2 0.01 0.094 0.125 0.0050
0.001 0.028 0.032 0.031 0.192 0.001 0.028 0.053 0.0049
0.0001 0.009 0.012 0.010 0.025 0.0001 0.009 0.016 0.0003

3 0.01 0.051 0.053 0.053 0.581 3 0.01 0.051 0.125 0.0133
0.001 0.022 0.026 0.026 0.104 0.001 0.022 0.080 0.0123
0.0001 0.010 0.013 0.008 0.012 0.0001 0.010 0.020 0.0003

4 0.01 0.106 0.105 0.105 0.889 4 0.01 0.106 0.115 0.0018
0.001 0.022 0.023 0.023 0.237 0.001 0.022 0.028 0.0007
0.0001 0.004 0.005 0.005 0.030 0.0001 0.004 0.008 0.0008

5 0.01 0.275 0.107 0.079 0.111 5 0.01 0.275 0.352 0.101
0.001 0.081 0.030 0.012 0.015 0.001 0.081 0.051 0.003
0.0001 0.024 0.008 0.002 0.002 0.0001 0.024 0.006 0.000

0.05, while with this threshold GWER is well above 0.05.
The results for model 5 show that PFP can be quite from the set of k tests is equivalent to controlling the
different from pFDR and FDR and that pFDR can be PFP defined over all k tests. These results hold for any
different from FDR. dependence structure among the k tests in an experi-

ment.
When tests are identically and independently distrib-

DISCUSSION uted, pFDR � PFP, and thus, in this situation, control-
ling PER for a randomly chosen test is equivalent toIn linkage analysis, significance testing has not been
controlling pFDR (Storey 2002). A probability inter-based on controlling the type I error rate, but on con-
pretation of pFDR that holds even when tests are nottrolling the PER, which is the conditional probability
independent nor identically distributed given here is:of a false-positive result given a positive test result (Mor-
if an experiment with level � for pFDR has one or moreton 1955; Ott 1991). For QTL scans, which involve
positive test results, � is the conditional probability thatmultiple tests of linkage, Southey and Fernando
a randomly sampled result from these positive results(1998) proposed PFP as a natural extension of PER,
is a false positive.which was defined for a single test. In this article we

Thus in multiple-test experiments, controlling PFPprovided the mathematical justification for this pro-
will result in controlling the proportion of false-positiveposal.
results in the accumulated positive test results over manyBriefly, the justification is as follows. If the level of
experiments, while controlling pFDR will result in con-PER for a test is �, then as the number of independent
trolling the expected proportion of false positives in thetests increases, the proportion of false positives in the
positive test results in each experiment. When tests areaccumulated positive results converges to �. We have
independently and identically distributed, pFDR � PFP,shown here that if the level of PFP in a multiple test
and, thus, false positives will be controlled to the sameexperiment is �, then as the number of such indepen-
level in each experiment and in the accumulated testdent experiments increases, the proportion of false posi-
results over many experiments. The simulation resultstives in the accumulated positive results also converges
for models 1–4 show that even when tests are highlyto �. Alternatively, we have shown here that when the
dependent, pFDR and PFP can give very similar results.number k of tests is 1, controlling PER is equivalent to
For tests that are identically distributed but dependent,controlling PFP. Further, when k 	 1, we showed that

controlling the PER for a test that is randomly chosen Storey (2003) has given conditions under which pFDR
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Pr(lim
n→∞ �

n

i�1

{Vi � E(Vi)}/n � 0) � 1.�n
i�1Vi

�n
i�1Ri

� �n
i�1{Vi � E(Vi)}/n � �n

i�1E(Vi )/n

�n
i�1{Ri � E(Ri)}/n � �n

i�1E(Ri)/n
. (A1)

The same basic argument can be used to show thatBy Corollary 1 to Theorem 6 in Rohatgi (1976),
�n

i�1{Vi � E(Vi)}/n will converge to 0, in the almost sure
Pr(lim

n→∞ �
n

i�1

{Ri � E(Ri)}/n � 0) � 1.sense, as long as �∞
i�1Var(Vi)/i2 
 ∞. Note that Vi � ki ,

where ki denotes the number of tests in the ith experi-
ment. There exists M � ki for all i because the number Therefore, using (A1), we have
of tests for each experiment does not grow without
bound. Thus

lim
n→∞

�n
i�1Vi

�n
i�1Ri

�
a.s.

lim
n→∞

�n
i�1E(Vi)/n

�n
i�1E(Ri)/n

� lim
n→∞

E(�n
i�1Vi)

E(�n
i�1Ri)

� � ,
Vi � M, which implies Var(Vi ) � E(Vi

2) � M 2 for all i.

It follows that �∞
i�1Var(Vi)/i 2 is bounded above by

where the last equality follows from property 1 andM 2�∞
i�11/i 2, which is finite. Thus Corollary 1 to Theorem

6 in Rohatgi (1976) implies that �
a.s.

denotes equality in the almost sure sense.




