Publications Listing

Filter Publications:

Initials + surname. For example, to filter the publications
of Francisco Herrera, just input F. Herrera.
List of words to look at in the journal name and / or title.

SCI2S Publications (D. Molina)

Number of Results: 78

Jump to Year: 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004

Jump to Graph



2023 (2)

  • [3014] J. Poyatos, D. Molina, A. D. Martínez, J. Del Ser, F. Herrera. EvoPruneDeepTL: An evolutionary pruning model for transfer learning based deep neural networks. Neural Networks, 158 (2023) 59-82. doi: 10.1016/j.neunet.2022.10.011 PDF Icon BibTex Icon
  • [3056] J. Poyatos, D. Molina, Aitor Martínez-Seras, J. Del Ser, F. Herrera. Multiobjective evolutionary pruning of Deep Neural Networks with Transfer Learning for improving their performance and robustness. Applied Soft Computing 147 (2023) 110757 1-12. doi: 10.1016/j.asoc.2023.110757 PDF Icon BibTex Icon


2022 (2)


2021 (5)

  • [2895] E. Osaba, E. Villar-Rodriguez, J. Del Ser, A. J. Nebro, D. Molina, A. La Torre, P.N. Suganthan, C.A. Coello, F. Herrera. A Tutorial on the Design, Experimentation and Application of Metaheuristic Algorithms to Real-World Optimization Problems. Swarm and Evolutionary Computation.64 (2021), 100888. doi: 10.1016/j.swevo.2021.100888 PDF Icon BibTex Icon
  • [2853] A. D. Martinez, J. del Ser, E. Villa-Rodriguez, E. Osaka, J. Poyatos, S. Tabik, D. Molina, F. Herrera. Lights and Shadows in Evolutionary Deep Learning: Taxonomy, Critical Methodological Analysis, Cases of Study, Learned Lessons,Recommendations and Challenges. Information Fusion 67 (2021) 161-194. doi: 10.1016/j.inffus.2020.10.014 PDF Icon BibTex Icon
  • [2899] S. Alonso, R. Montes, D. Molina, I. Palomares, E. Martínez-Cámara, M. Chiachio, J. Chiachio, F.J. Melero, P. García-Moral, B. Fernández, C. Moral, R. Marchena, J. Pérez de Vargas, F. Herrera. Article Ordering Artificial Intelligence Based Recommendations to Tackle the SDGs with a Decision-Making Model Based on Surveys. Sustainability 2021, 13(11), 6038. doi: 10.3390/su13116038 PDF Icon BibTex Icon
  • [2906] I. Palomares, E. Martínez-Cámara, R. Montes, P. García-Moral, M. Chiachio, J. Chiachio, S. Alonso, F.J. Melero, D. Molina, B. Fernández, C. Moral, R. Marchena, J.P. de Vargas, F. Herrera. A panoramic view and swot analysis of artificial intelligence for achieving the sustainable development goals by 2030: progress and prospects. Applied Intelligence, (2021) 51, 6497-6527. doi: 10.1007/s10489-021-02264-y PDF Icon BibTex Icon
  • [2920] A. LaTorre, D. Molina, E. Osaba, J. Poyatos, J. Del Ser, F. Herrera. A prescription of methodological guidelines for comparing bio-inspired optimization algorithms. Swarm and Evolutionary Computation, 67 (2021) 100973. doi: 10.1016/j.swevo.2021.100973 PDF Icon BibTex Icon


2020 (4)

  • [2736] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. García, S. Gil-Robles, D. Molina, R. Benjamins, R. Chatila, F. Herrera. Explainable ArtificialIntelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58 (2020) 82-115. doi: 10.1016/j.inffus.2019.12.012 PDF Icon BibTex Icon
  • [2847] D. Molina, J. Poyatos, J.D. Del Ser, S. García, A. Hussain, F. Herrera. Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration Versus Algorithmic Behavior, Critical Analysis Recommendations. Cognitive Computation 12:5 (2020) 897-939. doi: 10.1007/s12559-020-09730-8 PDF Icon BibTex Icon
  • [2848] A. La Torre, D. Molina. On The Role Of Execution Order In Hybrid Evolutionary Algorithms. IEEE World Congress On Computational Intelligence (WCCI) 2020, Glasgow, United Kingdom, 1-8, July 19-24, 2020. doi: 10.1109/cec48606.2020.9185676 PDF Icon BibTex Icon
  • [2852] O. Gómez, O. Ibáñez, A. Valsecchi, E. Bermejo, D. Molina, O. Cordón. Performance analysis of real-coded evolutionary algorithms under a computationally expensive optimization scenario: 3D–2D Comparative Radiography. Applied Soft Computing 97:A (2020) 106793. doi: 10.1016/j.asoc.2020.106793 PDF Icon BibTex Icon


2019 (4)

  • [2690] J. Del Ser, E. Osaba, D. Molina, Xin-She Yang, S. Salcedo-Sanz, D. Camacho, S. Das, P. N.Suganthan, C. A.Coello, F. Herrera. Bio-inspired computation: Where we stand and what's next. Swarm and Evolutionary Computation 48 (2019) 220-250. doi: 10.1016/j.swevo.2019.04.008 PDF Icon BibTex Icon
  • [2691] M. Leon, N. Xiong, D. Molina, F. Herrera. A Novel Memetic Framework for Enhancing Differential Evolution Algorithms via Combination With Alopex Local Search. International Journal of Computational Intelligence Systems 12:2 (2019) 795-808. doi: 10.2991/ijcis.d.190711.001 PDF Icon BibTex Icon
  • [2696] D. Molina, F. Herrera. Applying Memetic algorithm with Improved L-SHADE and Local Search Pool for the 100-digit challenge on Single Objective Numerical Optimization. 2019 IEEE Congress on Evolutionary Computation, CEC'2019, Wellington (New Zealand), 7-12, June 10-13, 2019. doi: 10.1109/CEC.2019.8789916 PDF Icon
  • [2697] D. Molina, A.R. Nesterenko, A. LaTorre. Comparing Large-Scale Global Optimization Competition winners in a real-world problem. IEEE Congress on Evolutionary Computation, CEC'2019, Wellington (New Zealand), 351-357, June 10-13, 2019. doi: 10.1109/CEC.2019.8789943 PDF Icon


2018 (6)

  • [2463] D. Molina, A. LaTorre, F. Herrera. An Insight into Bio-inspired and Evolutionary Algorithms for Global Optimization: Review, Analysis, and Lessons Learnt over a Decade of Competitions. Cognitive Computation (2018) 10:4, 517-544. doi: 10.1007/s12559-018-9554-0 PDF Icon BibTex Icon
  • [2507] D. Molina, A. LaTorre, F. Herrera. SHADE con una Búsqueda Local Iterativa para Optimización de Alta Dimensionalidad. Actas del XIII Congreso Español en Metaheurísticas y Algoritmos Evolutivos y BioInspirados, Granada, 741-746, Octubre 22-25, 2018. PDF Icon
  • [2478] D. Molina, A. LaTorre, F. Herrera. SHADE with Iterative Local Search for Large-Scale Global Optimization. 2018 World Congress on Computational Intelligence (WCCI-2018), 2018 IEEE Conference on Evolutionary Computation (IEEE CEC'2018), Rio de Janeiro (Brasil), 1252-1259, July 8-13, 2018. PDF Icon
  • [2479] D. Molina, A. LaTorre. Toolkit for the Automatic Comparison of Optimizers: comparing large-scale global optimizers made easy. 2018 World Congress on Computational Intelligence (WCCI-2018), 2018 IEEE Conference on Evolutionary Computation (IEEE CEC'2018), Rio de Janeiro (Brasil), 1229-1236, July 8-13, 2018. PDF Icon
  • [2518] D. Molina, A. LaTorre,. Toolkit for the Automatic Comparison of Optimizers (TACO): Herramienta online avanzada para comparar metaheurísticas. Actas del XIII Congreso Español en Metaheurísticas y Algoritmos Evolutivos y BioInspirados, Granada, 727-732, Octubre 22-25, 2018. PDF Icon
  • [2519] D. Molina, A. LaTorre. Toolkit for the Automatic Comparison of Optimizers: Comparing Large-Scale Global Optimizers Made Easy. 2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings, Rio de Janeiro, 8-13 July 2018, Rio de Janeiro, Brasil, 1229-1236, 2018.. doi: 10.1109/CEC.2018.8477755 PDF Icon BibTex Icon


2017 (3)

  • [2253] D. Molina, F. Moreno-García, F. Herrera. Analysis among winners of different IEEE CEC competitions on real-parameters optimization: Is there always improvement?. 2017 IEEE Congress on Evolutionary Computation, CEC 2017, Donostia-San Sebastian (Spain), 805-812, Juny 5-8, 2017.. doi: 10.1109/CEC.2017.7969392 PDF Icon
  • [2355] C. García-Martínez, P.D. Gutiérrez, D. Molina, M. Lozano, F. Herrera. Since CEC 2005 competition on realparameter optimisation: a decade of research, progress and comparative analysis's weakness. Soft Computing, 21:19 (2017) 5573-5583. doi: 10.1007/s00500-016-2471-9 PDF Icon BibTex Icon
  • [2713] D. Molina, F. Moreno-Garcia, F. Herrera. ¿Existe una mejora continua entre los algoritmos ganadores de las competiciones de optimización real del IEEE CEC?. Actas del 12ª Metaheuristics International Conference, XII Congreso de Metaheurísticas, Algoritmos Evolutivos y Bio-inspirados (MAEB'2017), Barcelona (Spain), 771-780, 4-7 July, 2017.


2016 (4)

  • [2109] B. Lacroix, D. Molina, F. Herrera. Region-based memetic algorithm with archive for multimodal optimisation. Information Sciences 367-368 (2016) 719-746. doi: 10.1016/j.ins.2016.05.049 PDF Icon BibTex Icon
  • [2352] S. Salcedo-Sanz, C. Camacho-Gomez, D. Molina, F. Herrera. A coral reefs optimization algorithm with substrate layers and local search for large scale global optimization. 2016 IEEE Congress on Evolutionary Computation, CEC 2016, Vancouver, BC, Canada, July 24-29, 3574-3581, 2016.. doi: 10.1109/CEC.2016.7744242 PDF Icon BibTex Icon
  • [2353] C. Bergmeir, D. Molina, J.M. Benitez. Memetic algorithms with local search chains in R: The Rmalschains package. Journal of Statistical Software. 75:1 (2016) 1-33.. doi: 10.18637/jss.v075.i04 PDF Icon BibTex Icon
    R source code of the package, replication code from the manuscript

  • [2367] D. Molina, F. Herrera. Descomposición Jerárquica no homogénea de nichos basados en regiones. Actas de las XVIII Conferencia de la Asociación Española para la Inteligencia Artificial, CAEPIA, XI Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB 2016), Salamanca, 439-448, 13-16 Septiembre,2016. PDF Icon


2015 (4)


2014 (3)

  • [1706] B. Lacroix, D. Molina, F. Herrera. Region based memetic algorithm for real-parameter optimisation. Information Sciences, 262 (2014) 15-31. doi: 10.1016/j.ins.2013.11.032 PDF Icon
  • [1729] Liao Tianjun, D. Molina, Marco A. Montes de Oca, Thomas Stützle. A Note on Bound Constraints Handling for the IEEE CEC’05 Benchmark Function Suite. Evolutionary Computation 22:2 (2014) 351-359. doi: 10.1162/EVCO_a_00120 PDF Icon
  • [1812] D. Molina, B. Lacroix, F. Herrera. Influence of Regions on the Memetic Algorithm for the Special Session on Real-Parameter Single Objetive Optimisation. In Proceeding on the WCCI 2014 IEEE World Congress on Computational Intelligence, IEEE Congress on Evolutionaty Computation CEC'2010, Beijing (China), 6-11 July, 2014, pp. 1633-1640.. PDF Icon


2013 (3)

  • [1663] B. Lacroix, D. Molina, F. Herrera. Dynamically updated region based memetic algorithm for the 2013 CEC Special Session and Competition on Real Parameter Single Objective Optimization. Evolutionary Computation (CEC), 2013 IEEE Congress on, Cancun (Mexico), pp 1945-1951. doi: 10.1109/CEC.2013.6557797
  • [1664] D. Molina, Amilkar Puris, Rafael Bello, F. Herrera. Variable mesh optimization for the 2013 CEC Special Session Niching Methods for Multimodal Optimization. Actas en Evolutionary Computation (CEC), 2013 IEEE Congress on, Cancun (Mexico), pp 87-94. doi: 10.1109/CEC.2013.6557557
  • [1835] D. Molina, Amilkar Puris, Rafael Bello, F. Herrera. Optimización basada en Malla Variable para funciones multimodales. Actas de la Multiconferencia CAEPIA 2013, IX Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB13), Madrid, 17-20 Septiembre 2013, pp 594-603..


2012 (9)

  • [1414] J. Marín, D. Molina, F. Herrera. Modeling Dynamics of a Real-coded CHC Algorithm in Terms of Dynamical Probability Distributions. Soft Computing 16:2 (2012) 331-351. doi: 10.1007/s00500-011-0745-9 PDF Icon
  • [1433] Amilkar Puris, Rafael Bello, D. Molina, F. Herrera. Variable mesh optimization for continuous optimization problems. Soft Computing - A Fusion of Foundations, Methodologies and Applications (2012), 16(3), 511-525. doi: 10.1007/s00500-011-0753-9 PDF Icon
  • [1504] J. Derrac, S. García, D. Molina, F. Herrera. Un tutorial sobre el uso de test estadísticos no paramétricos en comparaciones múltiples de metaheurísticas y algoritmos evolutivos. Actas del VIII Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB12), Albacete (Spain), pp. 455-462, Febrero 8-10, 2012. PDF Icon
  • [1509] D. Molina, B. Lacroix, F. Herrera. Algoritmo Memético con regiones basado en encadenamiento de búsquedas locales. Actas del VIII Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB12), Albacete (Spain), pp. 205-210, Febrero 8-10, 2012. PDF Icon
  • [1510] D. Molina, Juan Manuel Dodero. Técnicas de pruebas automáticas para algoritmos evolutivos. Actas del VIII Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB12), Albacete (Spain), pp. 479-486, Febrero 8-10, 2012. PDF Icon
  • [1547] B. Lacroix, D. Molina, F. Herrera. Region Based Memetic Algorithm with LS chaining. Actas en WCCI 2012 IEEE World Congress on Computational Intelligence, IEEE CEC, Brisbane (Australia), pp. 1474-1479, Junio 10-15, 2012.. PDF Icon
  • [1548] A. Puris, R. Bello, D. Molina, F. Herrera. Optimising real parameters using the information of a mesh of solutions: VMO algorithm. Actas del WCCI 2012 IEEE World Congress on Computational Intelligence, IEEE CEC, Brisbane (Australia), pp. 2553-2559, June 10-15, 2012. PDF Icon
  • [1550] C. Bergmeir, I. Triguero, D. Molina, J.L. Aznarte M., J.M. Benítez. Time Series Modeling and Forecasting Using Memetic Algorithms for Regime-switching Models. IEEE Transactions on Neural Networks and Learning Systems (2012), volume 23, issue 11, pages 1841-1847. doi: 10.1109/TNNLS.2012.2216898 PDF Icon
  • [1808] Tianjun Liao, D. Molina, Thomas Stutzle, Marco A. Montes de Oca, Marco Dorigo. An ACO Algorithm Benchmarked on the BBOB Noiseless Function Testbed. Proceedings of the 14th annual conference companion on Genetic and evolutionary computation (GECCO '12).


2011 (5)


2010 (3)

  • [0849] D. Molina, M. Lozano, C. García-Martínez, F. Herrera. Memetic Algorithms for Continuous Optimization Based on Local Search Chains. Evolutionary Computation, 18:1 (2010) 27-63. doi: 10.1162/evco.2010.18.1.18102 PDF Icon
  • [1290] D. Molina, M. Lozano, F. Herrera. MA-SW-Chains: Memetic Algorithm Based on Local Search Chains for Large Scale Continuous Global Optimization. In Proceeding on the WCCI 2010 IEEE World Congress on Computational Intelligence, IEEE Congress on Evolutionaty Computation CEC'2010, Barcelona (Spain), 18-23 July, pp 3153-3160, 2010. COMPETITION WINNER.. doi: 10.1109%2FCEC.2010.5586034 PDF Icon
  • [1330] D. Molina, C. García-Martínez, M. Lozano, F. Herrera. web temática sobre algoritmos evolutivos y otras metaheurísticas. Proceeding del VII Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados, MAEB'2010, Valencia, Septiembre 2010, pp 311-317, 2010. PDF Icon


2009 (7)

  • [0834] S. García, D. Molina, M. Lozano, F. Herrera. A Study on the Use of Non-Parametric Tests for Analyzing the Evolutionary Algorithms' Behaviour: A Case Study on the CEC'2005 Special Session on Real Parameter Optimization. Journal of Heuristics 15 (2009) 617-644. doi: 10.1007/s10732-008-9080-4 PDF Icon
    COMPLEMENTARY MATERIAL to the paper: Software and tests description

  • [0964] D. Molina, M. Lozano, F. Herrera. Study of the Influence of the Local Search Method in Memetic Algorithms for Large Scale Continuous Optimization Problems. Learning and Intelligent OptimizatioN Workshop (LION'3), pages 221-234. PDF Icon
  • [1058] D. Molina, M. Lozano, F. Herrera. Memetic Algorithm with Local Search Chaining for Large Scale Continuous Optimization. Proceeding IEEE Congress on Evolutionary Computation (2009) 830-837. PDF Icon
  • [1075] D. Molina, M. Lozano, F. Herrera. A Memetic Algorithm using Local Search Chaining for Black-Box Optimization for Noiseless Functions. Proceeding of Genetic and Evolutionary Computation Conference (GECCO), (2009), 2255-2262. PDF Icon
  • [1076] D. Molina, M. Lozano, F. Herrera. A Memetic Algorithm using Local Search Chaining for Black-Box Optimization for Noisy Functions. Proceeding of Genetic and Evolutionary Computation Conference (GECCO), (2009), 2359-2366. PDF Icon
  • [1098] D. Molina, M. Lozano, F. Herrera. Algoritmo Memético Basado en Encadenamiento de Búsquedas Locales para Problemas de Optimización Continua. Proceeding VI Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB'09), (2009), 481-486. PDF Icon
  • [1222] D. Molina, M. Lozano, F. Herrera. Memetic Algorithm with Local Search Chaining for Continuous Optimization Problems. Proceeding of 9th International Conference on Intelligent System Design and Applications, 2009 (ISDA'2009), 1068-1073. PDF Icon


2008 (3)


2007 (4)

  • [0630] S. García, D. Molina, M. Lozano, F. Herrera. Un estudio experimental sobre el uso de test no paramétricos para analizar el comportamiento de los algoritmos evolutivos en problemas de optimización. In Proceedings Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB07), Tenerife (Spain), 275-285, 14-16 February 2007. PDF Icon
  • [0718] D. Molina, F. Herrera, M. Lozano. Algoritmo Memético con Intensidad de Busqueda Local Adaptativa. Proceedings of the II Congreso Español de Informática (CEDI 2007). I Jornadas sobre Algoritmos Evolutivos y Metaheurísticas (JAEM'07), Zaragoza (Spain), 195-202, 11-14 September 2007. PDF Icon
  • [0719] S. García, D. Molina, F. Herrera, M. Lozano. Tests no paramétricos de comparaciones múltiples con algoritmo de control en el análisis de algoritmos evolutivos: Un caso de estudio con los resultados de la sesión especial en optimización continua. Proceedings of the II Congreso Español de Informática (CEDI 2007). I Jornadas sobre Algoritmos Evolutivos y Metaheurísticas (JAEM'07), Zaragoza (Spain), 219-227, 11-14 September 2007. PDF Icon
  • [0755] D. Molina. Algoritmos Meméticos con aplicación adaptativa de la Búsqueda Local para optimización contínua.. Department of Computer Science and Artificial Intelligence (DECSAI), University of Granada. October 2007.
    Advisor: Dr. Manuel Lozano and Dr. Francisco Herrera


2006 (2)

  • [0342] F. Herrera, M. Lozano, D. Molina. Continuous Scatter Search: An Analysis of the Integration of Some Combination Methods and Improvement Strategies. European Journal of Operational Research 169:2 (2006) 450-476. doi: 10.1016/j.ejor.2004.08.009 PDF Icon
  • [0610] C. García-Martínez, M. Lozano, D. Molina. A Local Genetic Algorithm for Binary-coded Problems. Proceedings of the 9th Internationational Conference on Parallel Problem Solving from Nature. Lecture Notes in Computer Science 4193, Springer-Verlag 2006, Reykjavik (Islandia) 192-201, September 2006.


2005 (3)

  • [0477] D. Molina, F. Herrera, M. Lozano, C. García-Martínez, A.M. Sánchez. Técnicas de Diversidad para Algoritmos Meméticos. Proceeding del Segundo Congreso Mexicano de Computación Evolutiva "COMCEV 2005", 2005, 29-34.
  • [0493] D. Molina, F. Herrera, M. Lozano. Adaptive Local Search Parameters for Real-Coded Memetic Algorithms. 2005 IEEE Congress on Evolutionary Computation, 2-5 September 2005, Edinburg (Scotland), 888-895.
  • [0500] D. Molina, F. Herrera, M. Lozano. Técnicas de Diversidad para Algoritmos Meméticos: un estudio experimental. In Proceedings del MAEB'05 (Cuarto congreso español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados), Granada (Spain), 39-46, 2005. PDF Icon


2004 (2)

  • [0372] M. Lozano, F. Herrera, N. Krasnogor, D. Molina. Algoritmos Meméticos con Codificación Real con Técnicas de Ascensión de Colinas Basadas en el Cruce. In Proceedings del MAEB'04 (Tercer congreso español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados), Córdoba (Spain), 254-261, 2004.
  • [0337] M. Lozano, F. Herrera, N. Krasnogor, D. Molina. Real-Coded Memetic Algorithms with Crossover Hill-Climbing. Evolutionary Computation 12:3 (2004) 273-302. doi: 10.1162/1063656041774983 PDF Icon