
Optimising real parameters using the information of
a mesh of solutions: VMO algorithm

Amilkar Puris and Rafael Bello
Department of Computer Science

University of Las Villas, Cuba
Email: {ayudier, rbellop}@uclv.edu.cu

Daniel Molina
Department of Computer
Science and Engineering

University of Cadiz, Spain
Email: daniel.molina@uca.es

Francisco Herrera
Department of Comp. Sci. and A.I.

University of Granada, Spain
Info Contact: http://decsai.ugr.es/ herrera/

Email: herrera@decsai.ugr.es

Abstract—Population-based Meta-heuristics are algorithms
that can obtain very good results for complex continuous op-
timisation problems, using the information of a population of
solutions. In these algorithms the distribution of solutions is
crucial because it has a strong influence of the exploration
new regions. In this work, we present a population algorithm,
Variable Mesh Optimisation (VMO), in which a set of nodes
(potential solutions) is distributed as a mesh. This mesh is
initially homogeneously distributed, and then the mesh evolves to
a heterogeneous structure resampling the space toward the best
neighbours, maintaining at the same time a controlled diversity
(avoiding solutions too close to each other). We use a benchmark
of multimodal continuous functions to study the influence of
the different components of the proposal, and to compare the
proposed algorithm with other basic population-based meta-
heuristics in the literature. The results show that VMO is a very
competitive algorithm.

Index Terms—continuous optimisation, meta-heuristics, popu-
lation meta-heuristics, variable mesh optimisation

I. INTRODUCTION

Population based meta-heuristics (PMHs) are meta-
heuristics that use a solution sets (called population) that
evolves during the iterations of the algorithms, using the
information of these solutions to make a heuristic sampling
of the domain search. Real coded Genetic Algorithms (GAs)
[1], Particle Swarm optimisation (PSO) [2], Estimation of
Distribution Algorithms (EDAs), Scatter Search (SS) [3],
Difference Evolution (DE) [4] are, among others, examples
of PMHs.

PMHs introduce different ways of exploring the search
space. They present powerful communication or cooperation
mechanisms (depending on the context) in order to converge
the population toward promising regions of the search domain.

In these mechanisms, the best solutions usually have a
strong influence over the remaining ones of the population.
For instance, they could have a greater probability of survival
into the population, like in genetic algorithms [5]. In other
algorithms, remaining solutions are oriented to the best ones
directly, as in PSO [2], or more indirectly, as in DE [4], [6].

This type of meta-heuristics, also implements several mech-
anisms to introduce or maintain diversity into the population.
This combination of a convergence mechanism with strategies
to introduce the diversity allow PMHs to obtain very good
results in continuous optimisation problems.

With these two facts in mind, we present a new PMH called
Variable Mesh optimisation, VMO, for real parameter optimi-
sation. In this algorithm, the population is represented by a
set of nodes (potential solutions) that are initially distributed
as a mesh, using a uniform distribution. Then, VMO evolves
this mesh creating more solutions around the most promising
regions of the mesh, creating a heterogeneous structure of
the mesh. This heterogeneous structure can explore with a
better performance, as it is said in [7]. VMO differs from
other similar PMHs in the fact that in each iteration it creates
new solutions around the current solutions of the mesh, and
not only around the best ones, dividing the mesh in more
solutions in the most promising regions. Also, to avoid the
risk of premature convergence that could be associated with
this type of structures, VMO maintain the population diversity
by selecting the best representatives of the mesh for the
next iteration. The search process developed by VMO can be
described by the following two operations:

• Expansion: this mechanism explores around the best
solutions found, by creating new nodes between each
node of the mesh and its best neighbour, and around the
external borders of the mesh.

• Contraction: a clearing process removes all nodes that
are too close to others with best fitness. The aim is
to maintain the population size and to foment mesh
diversity.

We study, based on experimental work, the influence of its
different components, showing that the ideas underlying this
technique can lead to successful results. Then, we compare
the performance of the VMO with other basic PMHs with
multimodal functions on continuous domains, showing that
VMO is a competitive model.

This paper is organised as follows: In Section II, a detailed
description of the VMO is given, emphasizing the expansion
and contraction processes of the mesh. In Section III, the
experimental framework and the statistical tests used to vali-
date the experimental results are presented. In Section IV, we
analyse the behaviour of several VMO components. In Section
V, the proposed model is compared with others, to probe if its
results improve the obtained by other PMHs of the literature.
Finally, in Section VI, we present the main conclusions and

U.S. Government work not protected by U.S. copyright

WCCI 2012 IEEE World Congress on Computational Intelligence
June, 10-15, 2012 - Brisbane, Australia IEEE CEC

2553

suggest future work.

II. VARIABLE MESH OPTIMISATION

VMO is a PMH in which the population is distributed
as a mesh. This mesh is composed of P nodes (n1, n2,
. . . , nP) that represent solutions in the search space. Each
node is coded as a vector of M floating point numbers,
ni = (vi1, v

i
2, . . . , v

i
M) = vij , j = 1, . . . ,M that represent

the solution to the optimisation problem. In the search pro-
cess developed by VMO, two operations are executed: the
expansion and contraction processes. Both processes introduce
a suitable balance between exploration and diversity for the
VMO algorithm. In following subsections, these operators are
described in detail, and in Figure 1 the global algorithm is
presented, using the parameters explained in Table I.

Parameter Description

P Number of nodes of the population for
each iteration

T Number of new nodes required in the ex-
pansion process

k Number of nodes that define the neigh-
bourhoods of each node of the mesh

C Algorithm stop condition (maximum num-
ber of fitness evaluations)

TABLE I
PARAMETERS OF THE VMO ALGORITHM

A. Mesh expansion operation

The algorithm develops the expansion process by moving
the population through the search space. For this action, new
nodes are obtained, using the current population of each
iteration, according to the following steps:
Step 1. (Initial mesh generation) The initial population for
the first algorithm iteration is composed of P nodes that are
randomly generated with uniform distribution.
Step 2. (Nodes generation towards local extremes in neigh-
bourhood) The first kind of exploration in VMO is carried out
in the neighborhood of each node (ni). The neighborhood of
ni is composed of the k nodes closest (in terms of distance)
to it. The best node (fitness) in the neighborhood is selected
as the local extreme (n∗i). Only when n∗i is better than ni, a
new node is generated between ni and ni∗ . Z new nodes are
created, where Z ≤ P − 1. To detect the neighbourhood of
the i-th node, we used the euclidean distance (see Equation 1)

Deuclidean(n1, n2) =

√√√√ M∑
j=1

(v1j − v2j)2 (1)

The new nodes (nz = {vz1 , vz2 , . . . , vzM}) are calculated
using Equation 2.

vzj =

mj , if |mj − vi

∗

j | > ξj and
U [0, 1] ≤ Pr(ni, n∗i)

vi
∗

j + U [−ξj , ξj], if |mj − vi
∗

j | ≤ ξj
U [vij ,mj], othercase

(2)

where mj = average(vij , v
i∗

j), U [x, y] denotes a random value
(uniformly) in the interval [x, y].
Pr is the near factor and represents the relation between the
fitness of the current node and its local extreme. It takes a
value in the range [0, 1], higher when better fitness has ni.
This factor is calculated by Equation 3.

Pr(ni, n
∗
i) =

1

1 + |fitness(ni)− fitness(n∗i)|
(3)

The variable ξj defines the minimum allowed distance for each
component, and its value decreases during the running of the
algorithm, calculated by Equation 4.

ξj =

range(aj ,bj)
4 if c < 0.15%C

range(aj ,bj)
8 if 0.15%C ≤ c < 0.3%C

range(aj ,bj)
16 if 0.3%C ≤ c < 0.6%C

range(aj ,bj)
50 if 0.6%C ≤ c < 0.8%C

range(aj ,bj)
100 if c ≥ 0.8%C

(4)

where C and c denote a maximum number of fitness evalu-
ations allowed and the current number of fitness evaluations.
In addition, the range(aj , bj) denotes the domain amplitude
(aj , bj) of each component.

The mesh expansion behaves as follows: in the first case
the average value between the current node and the local
extreme is obtained for the j-th component. In the second
case, the local extreme neighbourhood is displaced depending
on a distance value for current iteration. And in the last case,
a random number is generated between the average value and
the current node. Figure 2 shows an example of this step, with
k = 4.

neighbourhood

Fig. 2. Example of Step 2

Step 3. (Nodes generation towards the global extreme) This
step is used to accelerate the algorithm convergence. Thus,

2554

(Define input parameter setting: P , T , k and C, described in Table I).
1) P nodes are randomly generated to compose the initial population and all are evaluated to select the best

ng one.

E
xp

an
si

on

2) For each node of the current population ni (Z new nodes are created, Z < P):
a) find its closest k nodes using euclidean distance by Equation 1.
b) select the best node n∗i (fitness) on neighbours.
c) if n∗i is better than ni, then

• calculate near factor Pr between ni and n∗i by Equation 3.
• generate a new node by Equation 2 using ni, n∗i and Pr.

3) For each node ni (X new nodes are created, X = P − 1):
a) calculate near factor Pr between ni and ng by Equation 3.
b) create a new node by Equation 5 using ni, ng and Pr.

4) If (Z +X) < T , select the frontier nodes (external ns and internal nu nodes) (Y new nodes are created,
Y = T − (Z +X)):

a) calculate wj displacement vector by Equation 8.
b) generate bY/2c new node from ns by Equation 6.
c) generate Y − bY/2c new node from nu by Equation 7.

C
on

tr
ac

tio
n

5) Merge and sort the current population with the created nodes in Steps 2-4 according to their fitness.
6) Apply an adaptive clearing operator, eliminating the near nodes. We obtain B nodes for the next iteration.
7) If B < P then

• select the B nodes and complete the population with P −B new random nodes.
Otherwise (B >= P) then

• select the P best nodes (fitness) to compose the population of the next iteration.

8) Go to Step 2 if the stop condition is not accomplished (c < C).

Fig. 1. Steps to apply the VMO algorithm

it explores in the direction of the node which has the best
fitness of the current population, called the global extreme
of the mesh (ng). X new nodes nx = {vx1 , xx2 , . . . , xxM} are
generated (X = P−1), one for each ni, towards ng , following
the Equation 5.

vxj =

{
average(vij , v

g
j), if U [0, 1] ≤ Pr(ni, ng)

U [average(vij , v
g
j), v

g
j], otherwise

(5)

If there is a great difference (in fitness) between ni and ng ,
then there will be a high probability for the j-th component to
take closer values to vgj . In the other case, the average value
is obtained. Figure 3 shows a example of this step.
Step 4. (Nodes generation starting from the frontier nodes of
mesh) In this step, new nodes are created from the frontier
nodes in the current population, to complete the expansion
process. This step is only run if the number of created nodes
in the previous steps (Z +X) is lower than the expected one,
T . Y = T − (Z +X) new nodes are created in this step. If
Y > P , only P new nodes are created, one for each mesh
node.

In this step, we consider frontier nodes (nt). The frontier
is composed of the nodes that are nearest (known as interior
frontier or internal nodes, nu) and furthest (known as exterior
frontier or external nodes, ns) from the point that represents
the search space center. To detect these nodes the euclidean

Fig. 3. Example of Step 3

distance is used. Starting from these sets, new nodes are
created (one for each frontier node), in function of the frontier
type.

• bY/2c are created from ns nodes, using the Equation 6.

vhj =

{
vsj + wj , if vsj > 0

vsj − wj , if vsj < 0
(6)

• Y − bY/2c nodes are created from nu nodes, following
the Equation 7.

2555

vhj =

{
|vuj + wj |, if vuj > 0

|vuj − wj |, if vuj ≤ 0
(7)

where wj represents a displacement for each component j and
is calculated in a decreasing way in function to the running
of the algorithm, according to Equation 8:

wj = (w0
j − w1

j) ·
C − c
C

+ w1
j (8)

The variable wj take values between w0
j w

0
j represents the ini-

tial displacement and w1
j its final value. In addition, the values

C and c are used (see the description of Equation 4). In this
work we use w0

j = range(aj , bj)/10 and w1
j = range(aj , bj)

/100. Figure 4 shows an example of this step, with Y = 4.

Fig. 4. Example of Step 4

B. Mesh contraction process
The contraction operation selects the nodes of the mesh that

will be used as the population for the next algorithm iteration.
Nodes with the best fitness are selected from among the current
mesh and the new nodes created for the expansion process,
applying an elitist criterion.

Before the selection, VMO applies an adaptive clearing
operator to increase diversity in the mesh in order to keep
a minimum distance between the mesh nodes.

In the following the contraction process is described:
Step 5. All mesh nodes are ordered depending on their fitness
(Ascending).
Step 6. The difference between each node and their successors
is calculated for each dimension. Successor nodes with any
difference smaller than its corresponding ξj value are removed.
The ξj value is calculated by Equation 4. Finally we are left
with B nodes.
Step 7. The nodes with best fitness are selected as the
population for the next iteration. If B < P then the mesh
is completed with new random nodes.

This mechanism considers two important elements: the node
qualities and their places in the solution space. The nodes
with better fitness have a higher probability of taking part in
the next population. Adaptive clearing allows the method to
carry out more general explorations and eventually to reduce
its frequency to focus on a smaller search space area. This
element increases the method’s exploitation level and makes
it stronger.

III. EXPERIMENTAL FRAMEWORK

The test suite that we have used for the experiments consists
of 20 benchmark multimodal functions chosen from the set
designed for the special session on real parameter optimisation
organised in the 2005 IEEE congress on evolutionary compu-
tation (CEC2005) [8]. The unimodal functions are not used
for this study because these are simpler than the multimodal
functions. In [8] they can be found the complete description
of the multimodal functions and their source codes.

In order to be able to compare our results with other
algorithms involved in the competition, we followed the re-
quirements described in [8]:

• Each algorithm is run 25 times for each test function,
and the average of error of the best individual of the
population is computed. The function error value for a
solution x is defined as (f(x)− f(x∗)), where x∗ is the
global optimum of the function.

• The study has been made with dimensions D = 10, D =
30, and D = 50.

• The maximum number of fitness evaluations for each run
(parameter C) is 10, 000 ·D, where D is the dimension
of the problem.

• Each run stops either when the error obtained is less
than 10−8, or when the maximal number of evaluations
is achieved.

We have used for the comparisons the non-parametric tests
[9], because it was recommended for the used test suite [10].
In particular, we use the statistical tests recommended in [11]:

• Application of the Wilcoxon matched-pairs signed-ranks
test, to compare directly the differences between two
algorithms.

• Application of Iman and Davenport’s test and Holm’s
method as post-hoc procedures, to compare three or more
algorithms. The first test is used to see whether there are
significant statistical differences among the algorithms to
compare. If differences are detected, then Holm’s test is
employed to compare the best ranking algorithm (control
algorithm) with the remaining ones.

Any reader interested in this topic can find additional
information on the Web site http://sci2s.ugr.es/sicidm/.

IV. STUDY OF THE VMO’S PARAMETER

In this section, we study the VMO’s behaviour for some
internal elements: size of the initial population (Section IV-A),
adaptive clearing operator (Section IV-B) and generation by
means of the frontier’s nodes (Section IV-C).

2556

A. Size of mesh
The definition of the size of the population is very important

in current PMHs in order to obtain a high performance from
these methods. In the specific case of VMO, is specially
important, because all the population nodes are involved in
the explorations.

In this section, we study the results with different sizes of
mesh: P =(8, 12, 24, 50, and 100). In all cases, the total
expansion size used for these studies is T = 1.5 · P . The
neighbourhood size is fixed to k = 3.

To apply the non-parametric test to this case study, we
present in Table II the average ranking of the VMO algorithm
for different mesh sizes for all dimensions (the VMO(P) refers
to the VMO algorithm with P population size, the best rank is
presented in bold typeface). The results of Iman-Davenport’s
test show that the mesh size could produce significant dif-
ferences; due to this fact the hypothesis of equality has been
rejected for each dimension, because the statistical test value
is greater than the critical value (see Table III).

TABLE II
RANKING OF THE VMO ALGORITHM FOR DIFFERENT MESH SIZES FOR

EACH DIMENSION.

Algorithm Rank (D=10) Rank (D=30) Rank (D=50)
VMO(8) 4.4750 3.449 2.875
VMO(12) 3.650 1.400 1.400
VMO(24) 2.900 2.600 2.775
VMO(50) 1.651 3.950 3.250
VMO(100) 2.325 3.600 4.700

TABLE III
RESULTS OF IMAN-DAVENPORT’S TEST FOR DIFFERENT MESH SIZES FOR

EACH DIMENSION.

Dimension Test value Critical value Hypothesis
D=10 18.154 2.4920 Rejected
D=30 13.674 2.4920 Rejected
D=50 23.974 2.4920 Rejected

Holm’s test is applied to compare the configuration with
the best rank in each dimension (VMO(50) for D = 10
and VMO(12) for D = 30 and D = 50), with each of the
four remaining ones. Table IV contains all the computations
associated with Holm’s procedure.

Table IV shows that results obtained with a mesh size of
50 nodes are significantly superior to three of the compared
configurations (VMO(8), VMO(12) and VMO(24)) for D =
10. Only in comparison with VMO(100) are the differences
insignificant. For D = 30 and D = 50 the VMO algorithm
with a population size of 12 nodes obtained significantly
superior results to the other mesh configurations.

In these experiments we can conclude that the mesh size
has a influence over the results, and its bet value depends
on the dimension of the problem. For problems with a small
dimension a population size of between 50 and 100 nodes
obtains good results, and for high dimensions the best results
are obtained with a smaller mesh.

In the following experiments, we use a popsize P = 12 for
dimension 10, and P = 50 for dimensions 30 and 50.

TABLE IV
RESULTS OF HOLM’S TEST FOR EACH DIMENSION WITH P-VALUE=0.05

i Algorithm z = R0−Ri
SE

p-value α/i Hypothesis
D=10, VMO(50) as reference algorithm

4 VMO(8) 5.649 1.60E-08 0.0125 Rejected
3 VMO(12) 3.999 6.33E-05 0.0166 Rejected
2 VMO(24) 2.499 0.012 0.0250 Rejected
1 VMO(100) 1.349 0.177 0.0500 Accepted

D=30, VMO(12) as reference algorithm
4 VMO(50) 5.100 3.39E-7 0.0125 Rejected
3 VMO(100) 4.400 1.08E-5 0.0166 Rejected
2 VMO(8) 4.099 4.13E-5 0.0250 Rejected
1 VMO(24) 2.400 0.016 0.0500 Rejected

D=50, VMO(12) as reference algorithm
4 VMO(100) 6.600 4.11E-11 0.0125 Rejected
3 VMO(50) 3.699 2.15E-4 0.01666 Rejected
2 VMO(8) 2.949 0.003 0.0250 Rejected
1 VMO(24) 2.750 0.005 0.0500 Rejected

B. Adaptive clearing operator

Here we are going to study the effect of applying an
adaptive clearing operator to the VMO algorithm. For this
study, we compare the results among other clearing operators
and our adaptive proposal. VMO-NC and VMO-AC represent
the results of the algorithm without the clearing operator, and
using the adaptive clearing, respectively. VMO-C1, VMO-
C2, VMO-C3, VMO-C4 y VMO-C5 show the VMO solu-
tions with the clearing operator for different constant values
of the distance (ξj =

range(aj ,bj)
4 , range(aj ,bj)

8 , range(aj ,bj)
16 ,

range(aj ,bj)
50 and range(aj ,bj)

100 , respectively), depending on the
domain amplitude in each test function (see Equation 5).

TABLE V
RESULTS OF THE IMAN-DAVENPORT’S TEST FOR DIFFERENT

ALTERNATIVES OF CLEARING OPERATOR FOR EACH DIMENSION.

Dimension Test value Critical value Hypothesis
D=10 26.315 2.1791 Rejected
D=30 64.320 2.1791 Rejected
D=50 14.641 2.1791 Rejected

First, we apply Iman-Davenport’s test to each dimension,
Table V shows the results, detecting statistically significant
differences for each dimension. Thus, we applied Holm’s
multiple comparisons test, to find out which algorithm is
statistically better than the others.

Holm’s test compares the algorithm with the best rank
for each dimension VMO-AC, with each one of the other
configurations, in pairs. Table VI shows the results of Holm’s
test with the significance value 0.05. We can see that there
are significant differences in the majority of cases, with the
exception of VMO-C3 and VMO-C2, where there are no
significant differences in dimension 10.

We have also applied Wilcoxon’s test to determine which of
them presents the best behaviour. Table VII shows the results
between VMO-AC and VMO-C3, and VMO-AC and VMO-
C2 for D = 10, showing that VMO-AC is statistically better.
In resume, not only the clearing method improves the results,
but also the proposed adaptive clearing method statistically
improves results obtained with a fixed distance value.

2557

TABLE VI
RESULTS OF THE HOLM’S TEST FOR EACH DIMENSION, WITH

P-VALUE=0.05

i Algorithm z = R0−Ri
SE

p-value α/i Hypothesis
D=10, VMO-AC as reference algorithm

6 VMO-NC 6.733 1.65E-11 0.0080 Rejected
5 VMO-C5 5.379 7.46E-8 0.0100 Rejected
4 VMO-C4 3.989 6.63E-5 0.0125 Rejected
3 VMO-C1 3.440 5.86E-4 0.0166 Rejected
2 VMO-C3 1.427 0.153 0.0250 Accepted
1 VMO-C2 1.061 0.288 0.0500 Accepted

D=30, VMO-AC as reference algorithm
6 VMO-NC 8.087 6.07E-16 0.0080 Rejected
5 VMO-C5 6.587 4.48E-11 0.0100 Rejected
4 VMO-C4 5.635 1.74E-8 0.0125 Rejected
3 VMO-C1 4.062 4.86E-5 0.0170 Rejected
2 VMO-C3 2.927 0.003 0.0250 Rejected
1 VMO-C2 2.159 0.031 0.0500 Rejected

D=50, VMO-AC as reference algorithm
6 VMO-NC 6.661 2.73E-11 0.0080 Rejected
5 VMO-C4 4.977 6.45E-7 0.0100 Rejected
4 VMO-C5 4.794 1.63E-6 0.0125 Rejected
3 VMO-C3 4.391 1.13E-5 0.0167 Rejected
2 VMO-C1 3.989 6.65E-5 0.0250 Rejected
1 VMO-C2 2.855 0.004 0.0500 Rejected

TABLE VII
RESULTS OF WILCOXON’S TEST (SIGNIFICANCE VALUE 0.05)

VMO-AC vs R+ R− p-value Hypothesis
VMO-C3 156.50 53.50 0.038 Rejected
VMO-C2 167.50 42.50 0.013 Rejected

C. Generation from the frontiers nodes

This generation process explores the domain space around
the frontiers of the population. In this section, we check if
this exploration of frontiers improves the search. Then, we
compare the experimental results comparins the VMO when
the frontier’s operator is not used, VMO-NF, against the
VMO using the frontier’s operator, VMO-F. For this study,
we use Wilcoxon’s test to compare both algorithms for each
dimension.

TABLE VIII
RESULTS OF WILCOXON’S TEST (SIGNIFICANCE VALUE 0.05)

VMO-F vs
VMO-NF R+ R− p-value Hypothesis

D=10 190.50 19.50 0.001 Rejected
D=30 180.50 29.50 0.002 Rejected
D=50 180.50 29.50 0.002 Rejected

It can clearly be seen (see Table VIII) that VMO-F obtains
better results than VMO-NF in all dimensions (R+ values
are higher than the R− ones). In addition, the statistical test
indicates that these improvements are statistically significant.

V. COMPARATIVE STUDY WITH OTHERS ALGORITHMS

In this section, we present a comparative study between
VMO and other PMHs that have demonstrable a high level
of performance. These PMHs are representative evolutionary
algorithms. We compare with the following algorithms.

• Steady-State Genetic Algorithm (SSGA) [12], with
BLX − α operator (α = 0.5), selection of parents
Negative Assortative Mating [13] with Nnam = 3, and
a replacement strategy of replacing the worst (RW). The
population size was 60 solutions.

• Linearly Decreasing Inertia Weight in Particle Swarm
optimisation (LDWPSO) [14]. The algorithm PSO pro-
posed by Shi and Ebenhart is taken into account, applying
the authors’ configuration: the inertia varies from the
maximum value (wmax = 0.9) to the minimum value
(wmin = 0.4); and the parameters c1 y c2 are equal to 2.8
and 1.3, respectively. The parameters used were defined
by the authors themselves, you can see the reference to
obtain more information.

• Opposite Differential Evolution (ODE) [15]. This al-
gorithm is a DE that enforces diversity in the search,
considering in the search process the opposite of each
new solution created. The parameters used were defined
by the authors themselves, you can see the reference to
obtain more information.

In this analysis we compare VMO with other algorithms
presented in this section, using Wilcoxon’s test. Tables IX,
X and XI show the results for dimension 10, 30, and 50,
respectively.

TABLE IX
RESULTS OF WILCOXON‘S TEST FOR D = 10

VMO vs R+ R− p-Value Hypothesis
SSGA 210.0 0.0 0.000 Rejected
ODE 89.0 121.0 0.550 Accepted
LDWPSO 210.0 0.0 0.000 Rejected

TABLE X
RESULTS OF WILCOXON‘S TEST FOR D = 30

VMO vs R+ R− p-Value Hypothesis
SSGA 210.0 0.0 0.000 Rejected
ODE 156.5 53.5 0.040 Rejected
LDWPSO 210.0 0.0 0.000 Rejected

TABLE XI
RESULTS OF WILCOXON‘S TEST FOR D = 50

VMO vs R+ R− p-Value Hypothesis
SSGA 210 0 0.000 Rejected
ODE 205 5 0.000 Rejected
LDWPSO 167 43 0.044 Rejected

According to the results obtained in the tables it can be
observed that:

• VMO is significantly better than the SSGA and LDWPSO
for D = 10. VMO is only worse in absolute terms in
relation to ODE ((R+ values are lower than the R−

ones)), but not in a significant way.
• VMO is statistically better than all considered PMHs into

consideration for D = 30 and D = 50.

2558

VI. CONCLUSIONS

A PMH denominated Variable Mesh optimisation (VMO)
was introduced in this paper. It includes new ways of exploring
the search space:

• It create solutions towards the neighbour with best fitness
for each mesh node, towards the node with the best fitness
of the mesh, and the frontiers of the mesh. For these
exploration methods, the algorithm obtains a suitable
balance between the exploitation and the exploration.

• It combines an elitist replacement criterion for population,
taking into account the quality and the distance between
the nodes by means of a clearing operator. This mecha-
nism introduces diversity in the population that facilitates
a larger exploration of the solution space. In addition, the
population contains the best representative of each zone
of the explored domain search.

• The clearing operator functions in an adaptive manner
because it decreases the allowed distance between the
nodes as the algorithm is conducted, depending on the
extent of each interval. This operator causes the method
to start with a high exploration level that decreases as the
allowed distance during the running of the algorithm.

It has been shown that the proposed VMO algorithm
presents a good scalability level presenting good results with
dimensions 30 and 50.

The promising research line initiated with the present opti-
misation framework based on VMO is worthy of further study.
We will extend our investigation to test its behaviour with
higher dimensions. Furthermore, we will study the clearing
operator to regulate the diversity levels that it introduces in
the mesh and to see its influence on the behavior of the VMO
algorithm.

REFERENCES

[1] F. Herrera, M. Lozano, and J. Verdegay, “Tackling realcoded genetic
algorithms: Operators and tools for the behavioral analysis,” Artificial
Intelligence Reviews, vol. 12, no. 4, pp. 265–319, 1998.

[2] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
IEEE International Conference on Neural Networks, 1995, pp. 1942–
1948.

[3] M. Laguna and R. Martı́, Scatter Search. Methodology and Implemen-
tation in C. Kluwer Academic Publishers, 2003.

[4] R. Storn and K. Price, “Differential Evolution: A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces,” Journal of
Global Optimization, vol. 11, pp. 341–359, 1997.

[5] L. Davis, in Handbook of Genetic Algorithms, N. Y. Van Nostrand Rein-
hold, Ed., 1991.

[6] J. Brest, B. Boskovic, S. Greiner, V. Zumer, and M. S. Maucec, “Per-
formance comparison of self-adaptive and adaptive differential evolution
algorithms,” Soft Computing, vol. 11, no. 7, pp. 617–629, 2007.

[7] J. Kennedy and R. Mendes, “Population structure and particle swarm
performance,” in Proceeding of the 2002 Congress on Evolutionary
Computation, 2002, pp. 1671–1676.

[8] P. Suganthan, N. Hansen, J. Liang, K. Deb, Y.-P. Chen, A. Auger, and
S. Tiwari, “Problem Definitions and Evaluation Criteria for the CEC
2005 Special Session on Real-Parameter Optimization,” Nanyang Tech-
nological University, http://www.ntu.edu.sg/home/EPNSugan/, Tech.
Rep., May 2005.

[9] D. J. Sheskin, Handbook of parametric and nonparametric statistical
procedures. Chapman and Hall/CRC, 2007.

[10] S. Garcı́a, D. Molina, M. Lozano, and F. Herrera, “A study on the
use of non-parametric tests for analyzing the evolutionary algorithms’
behaviour: a case study on the CEC’2005 Special Session on Real
Parameter Optimization,” J. Heuristics, vol. 15, no. 6, pp. 617–644,
2009.

[11] J. Derrac, S. Garcı́a, D. Molina, and F. Herrera, “A practical tutorial
on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms.” Swarm and
Evolutionary Computation, vol. 1, pp. 3–8, 2011.

[12] G. Syswerda, “Uniform Crossover in Genetic Algorithms,” in Proc.
Thrid International Conference on Genetic Algorithms, J. Schaffer, Ed.
Morgan Kaufmann, San Mateo, 1989, pp. 2–9.

[13] C. Fernandes and A. Rosa, “A Study of non-Random Matching and
Varying Population Size in Genetic Algorithm using a Royal Road
Function.” in Proc. IEEE Congress on Evolutionary Computation, no. 1.
IEEE Press, Piscataway, New York, 2001, pp. 60–66.

[14] Y. Shi and C. Eberhart, “A Modified Particle Swarm Optimizer,” in Proc.
IEEE International Conference on Evolutionary Computation, 1998, pp.
69–73.

[15] S. Rahnamayan, H. Tizhoosh, and M. Salama, “Solving large scale
optimization problems by Opposition-Based Differential Evolution,”
IEEE Transactions on Computation, vol. 7, no. 10, pp. 1792–1804, 2008.

2559

